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1_ NUMPAC rout ine 

Library programs of NUMPAC are roughly divided into two cathegories. ie .• function subprograms 

and subroutine subprograms. There are some general rules for each of them and the rules are used 

in this manual for simple description. Please read the following explanations carefully before 

using NUMPAC. 

(I) Function subprogram 

(1) Function name and type 

The function name of the real type follows the rule of the iAplicit type specification of 

FORTRAN. 

Example : BJO. ACND 

The function name of the double precision real type consists of the function name of the 

corresponding real type with adding D to the head of it. The function name of the quadruple 

precision real number type (if exists) consists of the function name of the corresponding real 

type with adding Q to the head of it. However. there are some exceptions. 

Example : SINHP. DSINIIP. QSINIIP 

Example of exception : ALOGl. DLOG1. QLOGl 

It is severely observed that the function name for double precision begins with D and that for 

quadruple precision begins with Q. Note that the function name should be declared with a 

suitable type in each program unit referring to the function. 

Example : DOUBLE PRECISION DCOSII~ DJl 

REAL*8 DCELll.DCELI2 

REAl.*16 QSINIIP. QASINII 

Because the function name of double precision always begins with D and that of quadruple 

precision with ~ it is convenient to use the IMPLICIT statement considering other variables. 

Example: IMPLICIT REAL*8(D) 

IMPLICIT REAL*8(A-II.0-Z) 

In this way. you need not declare the function name. separately. 

(2) Accuracy of function value 

Function routines are created aiming at the accuracy of full working precision as a rule. 

However. this cannot be achieved completely because of fundamental or technical difficulty I). 

( 
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Especially, it is not achieved,for functions of two variables and functions of complex variable. 

(3) Limit of argument 

(a) The domain is limited. 

Example : ALOGl 

This function calculates log(1 +x) . Therefore, x>-l should be sat isf ied. 

(b) The singular point exists. 

Example : TANHP 

This function calculates tan 7rx/2. Therefore, an odd integer x is a sungularity. 

(c) The function value overflows. 

Example : BIO 

This function is for modified Bessel function Io(x) , and for big x, eX is calculated 

referring to standard function EXP. Therefore. overflow limit 252loge2~174.673 of EXP 

is the upper bound of the argument of t~is functio~ 

(d) The function value becomes meaningless. 

Example : BJO 

This function is for Bessel function Jo(x). and standard f~nctions SIN and COS are referred 

to for big x. Therefore. the argument limit I x I ~2187rq.8.23·105 of SIN and COS is the 

limit of the argument of this function. 

There are many such examples. Note that the value 2 187r is not a sharp limit and that the 

number of significant digits for the function decreases gradually as approaching this limit even 

if within this limit. 

When the function value underflows. it is set to 0 without special processing. 

(4) Error processing 

When the argument exceeds the limit. an message for the error is printed and the calculation is 

continued with the all function values set as O. The message consists of the· function name. the 

argument value. the function value (0) and the reason for the error. 

Example: ALOGl ERROR ARG=-0.2000000E+Ol VAL=O.O ARG.LT.-l 

The error processing program counts the frequency of the errors and stops the calculation if 

the frequency exceeds a certain limit. considering the case that the calculation becomes 

meaningless when the error occurs one after another. Because all users do not want this. you can 

adopt or reject this processing including the print of the message. Subroutine FNERST is 
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provided for this purpose and you can use it in the following way. 

CALL FNERST(IABORT,MSGPRT,LIMERR) 

Argument Type and Attrib Content 
kind ute 

IABORT Integer Input IABORT=O The calculation is not stopped. 
type IABORT=I=O The calculation is stopped. 

MSGPRT Integer Input MSGPRT=O The message i·s not pr inted. 
type MSGPRT=I=O The message is prInted. 

LIMERR Integer Input Upper bound of frequency of errors. 
type 

If this subroutine is not called, following values are set as a standard value. 

IABORT=1,MSGPRT=1,LIMERR=10 

(11) Subroutine subprogram 

(1) Subroutine name and type 

There is no meaning of the type in the head character of the subroutine name. Subroutines with 

the same purpose and the different type are distinguished by the ending character of the name. 

The principle is as follows. 

Single precision : S Complex number : C Vector computer single precision 
Double precision : D Double precision : V 
Quadruple precision complex number : B Vector computer double precision 
: Q Quadruple precision : W 

complex number : Z Vector computer complex number : X 
Vector computer double precision 
complex number : Y 

However, there are ~ome exceptions. 

Example Example of exception 

LEQLUS/D/Q/C/B FFTR/FFTRD 
RK4S/D/Q/C/B MI NVSP/MI NVDP 
GJMNKS/D/Q 

(2) Argument ••• The following four kinds are distinguished as an attribute of the argument. 

Input Users should set this data before calling the subroutine. As long as it is not 
especially noticed, the data is preserved as it is at the subroutine eXIt. This 
includes the case when the function name and the subroutine name are used as 
arguments. Note that those names should be declared with EXTERNAL. 
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Output This data is created in the subroutine and is significant for the user. 

Input/Du Data is output in the same place as the input to save area. When input/output 
tput argument is a single variabl~ you should not specify a constant as a real 

argument Por instanc~ if LBQLUS is called with ronstant 1 specified in 
input/output argument and is ended normally, IND=O is output, but all constants 1 
are changed to O. 

Work It is an area necessary for calculation in a subroutine, and the content of the 
area subroutine at exit is meaningless for users. 

The type and attribute of the argument are explained for each subroutine group. The explanation 

is for-single precision •. Por others, please read it with exchanging the type for the suitable 

When a subroutine is called with an argument, but the argument is not used, the area for the 

argument need not be prepared, and anything can be written in th~t place. The same area can be 

allocated for the different arguments, only if it is pointed as it like SVDS. There is an 

example (FT235R) that special demand is requested for the argument. 

It is requested for users to provide the function routine and the subroutine for the numerical 

integration routine and the routine for solving differential equations. In this case, the 

number, the type, and the order of the argument should b~ as specified. If parameters except a 

regulated argument are necessary, they are allocated in COMMON area to communicate with the main 

program. Refer to the explanation of an individual routine for the example. 

1) Ichizo Ninomiya; »Current state, issues of mathematical softwareD
, information processing, 

Vol. 23 and PP. 109-117(1982). 
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5 
[ Opening source program to the public] 

The following source programs are published for users requesting them. Calculation can be 

requested directly, and the source list can be output or can be copied .in the shared file. The 

copied program cannot be given to the third party without the permission of this center. 

If you need to copy the source list in the card or the data set, please execute following 

procedures. 

(1) Input the following command for TSS. 

NLIBRARY ELM (library name) ~OS (data set name)~ ~SLAVB(ON)D 

When you need on I y the source 1i s t.. you can om i t OS and SLAVE. When SLAVB (ON) is spec i fi ed, 

all slave routines of the program will be output. 

(2) Bxecute the following job for BATCH. 

//EXEC NLIBRARY,ELM=program namesLOS='data set names'] L SLAVE=ON] 

You can have examples of the program usage with the following procedures. 

(1) For TSS 

BXAMPLB NAME (1 ibrary name) [OS (data set name)] 

(2) For BATCH 

/ /EXEC EXAMPLB, NAME=progr am names L DS=' data set names'] 

Four kinds of manual listed below are prepared concerning library program. 

Numb Manual title Content 
er 

1 Library program and data list All library programs and data which can be 
used in this center are listed. 
Additionally, ~description format of the 
NUMPAC routine and notes on use~, ~lIow to 
choose the NUMPAC routine", and usage of 
error processing subroutine ~FNERST~ are 
described in this lisl 

2 Guidance to use library program This volume describes the general use of 
programs except NUMPAC, which can be used in 

(General volume : GENERAL VOL. 1) th is center. 
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3 Guidance to use library program This volume describes how to use the 
following five kinds of programs. 

(Numerical calculation: NUMPAC VOL. 1) 1. Basic matrix operations 
2. System of linear equations 
3. Matrix inversion 

. ( Eigenvalue analysis 
5. Polynomial equation and nonlinear 

equation 

4 Guidance to use library program This volume describes how to use the 
following five kinds of programs. 

(Numerical calculation: NUMPAC VOL. 2) 6. Interpolation, smoothing, and numerical 
differentiation and integration 

7. Fourier analysis 
8. Numerical quadrature 
9. Ordinary differential equation 

10. Elementary function 

5 Guidance to use library program This volume describes how to use the 
following nine kinds of programs. 

(Numerical calculation: NUMPAC VOL.3) 11. Table functions 
12. Orthogonal polynomial 
13. Special functions 
1( Bessel fu~ction and related function 
~ Acceleration of convergence of sequences 
ffi Linear programming 
It Special data processing 
la Figure display application program 
IR Others 

All these manuals can be output by -MANUAL command-. -PICKOUT command- is available if you 

need part of the usage of individual program. 
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For NUHPAC users 

Please note the.following and use NUMPAC effectively. 

(1) The user has the responsibi 1 ity for the result obtained by NUlfPAC. 

(2) When the trouble is found. please report it to the center program 

consultation corner (Bxtension 6530). 

(3) Do not use NUMPAC in computer systems other than this center without 

perm i ss ion. 

(4) To publish the result obtained NUMPAC. the used program names (for 

instance. *** of NUMPAC) should be referred to. 

This manual was translated using Fujitsu's macbine translation system ATLAS. 
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AD DMMV I W I X I Y and S U BMMV I W I X I Y (Addi tion and Subtract ion of Matr ices-Vector Version) 

Addition and Subtraction of Matrices-Vector Version 

Programm Ichizo Ninomiya. July 1987 

ed by 

Format Subroutine Language: FORTRAN; Size: 70 lines 

(1) Outl ine 

The ADDMMV (N. X. Y) and SUBMMV (N. X. Y) ca I cu la te the sum C=A+B and d i ff erence C=A-B of the 

two matrices A and B. They are for the single precision real numbers (double precision real 

number. single precision complex number. and double precision complex number). 

(2) Directions 

CALL ADDMMV/W/X/Y(A.B.C.KA.KB.KC.M.N. ILL) 
CALL SUBMMV/W/X/Y (A. B. C. KA. KB. KC. M. N. ILL) 

Argument Type and Attrib Content 

kind (*1) ute 

A Real type Input ~1XN matrix A 
Two-dimens 
ional 
array 

B Real type Input MXN matrix B 
Two-dimens 
ional 
array 

C Real type Output MxN matrix C. MB or A-B 
Two-dimens' 
ional 
array 

KA Integer Input Adjustable dimensions of A. 
type 

KB Integer Input Adjustable dimensions of B. 
type 

KC Integer Input Adjustable dimensions of C. 
type 

KA~~f 

KB~M 

KC~M 

M Integer Input Number of rows of A. B. and C. M~1 
type 
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Argument Type and Attrib Content 

kind (*1) ute 

N Integer Input Number of columns of A, B, and C. N~l 
type 

ILL Integer Output ILL=O: normal termination; ILL=30000: argument 
type error 

*1 For ADDMMW(X, Y) and SUBMMW(X, V), all real types should be changed to double precision real 
types (complex type and double precision complex type). 

(3) Note 

1. This routine is for vector computers. However, it can be used also for scalar computers. 

0987. 09. 18) 
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/2 
MDETS/D/Q/C/B/Z (Calculation of Determinants) 

Calculation of Determinants 

Programm Ichizo Ninomiya. April 1977 
ed by 

Format Subroutine language: FORTRAN; size: 45. 34. 45. 34. and 35 lines 
respectively 

(1) Outl ine 

MDETS/D/O/C/B/Z calculates the determinant of a given matrix. 

(2) Direct ions 

CALL MDETS/D/Q/C/B/Z(A.KA.N.EPS.D. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input Matrix whose determinants should be calculated. Destroyed 
Two-dimens 
ional 
array 

KA Integer Input Value of the first subscript in the array-A declaration. 
type KA~N 

N Integer Input Degree of AN ~2 
type 

EPS Rea.! type Input Criterion constant for matrix singula~ity. If the absolute 

value of pivot elements is smaller than this constant. D··= 0 

is assumed. EPS>O 

D Real type Output The value of determinant is output. 

ILL Integer Output ILL = 3000: Limi ts on KA. N. and EPS are violated. 
type Otherwise. 0 is output. 

*1 For MDETD (0. C. B. Z). A and 0 are double precision real types (quadruple precision real 

type. complex type. double precision complex type. and quadruple precision complex type). 

For (~ C. B. Z). EPS is a double precision real type (quadruple precision real type. real 

type. double precision real type. and quadruple precision real type). 

(3) Perf ormance 
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/3 
Precision depends on problems. Because the LU-decomposition method (Ooolittle method) is used, 

and double precision arithmetic operation is performed to calculatE the inner products in MOETS, 

precision is high. The required computation time is almost the same as that for solving a syslem 

of linear equations. 

(4) Remarks 

1. If the typical size of elements in the matrix A is assumed to be a, the standard value of 

EPS is ox 10-6 (ox 10-16 ,ox 10-3°) for &tOETS (MDETD)'. 

2. When a system of linear equations is to be solved, and the determinant is to be calculated 

at the same tim~ it is recommended to use LEQLUS and LEQLUD. 

(1987. 06. 17) (1987. 08. 07) 
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14 
MNORMS/D/Q/C/B/Z (Normalization of a Matrix) 

Normalization of a Matrix 

Programm Ichizo Ninomiya. April 1977 
ed by 

Format Subroutine language: FORTRAN; size: 20. 21. 20. 23. 24. and 24 lines 
respectively 

(1) Out! ine 

MNORMS/D/O/C/B/Z divides each row of a given matrix by a number of the form of 2" to limit the 

maximum absolute value of elements in each row to the order of 1. 

(2) Direct ions 

CALL MNORMS/D/OIC/B/Z(A.KA.N.M.S. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input/ou Matrix to be normalized 
Two-dimens tput 
ional 
arny 

KA Integer Input Value of the first subscript in the array-A declaration. 
type KA~N 

N Integer- Input Number of rows in A. N~2 
type 

M Integer Input Number of columns in A. M~N 
type 

S Real type Output S (I) 0=1. .... N) contains a divisor in the form of power of 
One-dimens 2 to normalize the row I. 
ional 
array 

ILL Integer Output ILL=O: Normal termination 
type ILL=30000: Limits on K~ i and M are violated. 

The row number whose elements are all 0 

*1 For MNORMD (~ C. B. Z), A is assumed to be a double precision real type (quadruple precision 

real number, complex number, double precision complex number. and quadruple precision complex 

number), and S is assumed to be a double precision (quadruple precision, single precision, double 

precision, and quadruple precision) real type. 
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(3) Remarks 

1. When normalization is to be done as preprocessing for solving a system of linear equations. 

merge the right side column in the right of the coefficient matrix, and apply this routine to the 

augmented matrix. The solution obtained by solving the normalized equation is the solution of 

the original equation. That is. postprocessing is not required. 

2. The inverse matrix of the original matrix is obtained by dividing each I-th column of the 

inverse matrix of the normalized matrix by the scale factor S (I). 

3. In general, normalization changes a symmetric matrix to an ~symmetric matri~ 

( For symmetric positive definite matrices, the special-purpose routine such as MNRSPS should 

be used. 

(1987. 06. 17) (1987. 08. 07) 
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MNRMBS/D/Q/C/B/Z and MNMBSS/D/Q (Normalization of Band Matrices) 

Normalization of Band Matrices 

Programm Ichizo Ninomiya. May 1982 
ed by 

Format Subroutine language; FORTRAN77 
Size; 25. 26. 26. 26. 27. 27. 25. 26. and 26 lines 

respectively 

(l) Out line 

The general band matrix subroutine MNRMBS/D/O/C/B normalizes each row of a given band matrix by 

dividing it by a power of 2 that is close to the maximum absolute value of the row. 

The symmetric positive definite band matrix subroutine MNMBSS/D/O normalizes each row and 

column of a given band matrix by dividing it by a power of 2 that is close to the square root of 

the diagonal element. 

N N 

~1 

(2) Direct ions 

CALL MNRMBS/D/Q/C/B/Z{A.KA.N.NB.LB.S. ILL) 

CALL MNMBSS/D/O (A. KA. N. NB. S. ILL) 
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Argument Type and Attribut 

A 

KA 

N 

NB 

LB 

s 

ILL 

kind {:tl} e 

Number of 
real 
numbers 
Two-dimens 
ional 
array 

Integer 
type 

Integer 
type 

Integer 
type 

Integer 
type 

Real type 
One-dimens 
ional 
array 

Integer 
type 

Input/ou 
.tput 

'Input 

Input 

Input 

Input 

Output 

Output 

J / 

Content 

Matrix to be normalized. 
General matrices are transformed into a rectangular form as 
shown in Figure 1. That is. the (I, J) elements are stored 
in A (J - 1 + LB. I) • 
Positive definite symmetric matrices are transformed into a 
rectangular form as shown in Figure 2. That is. the (I, J) 
elements are stored in A (I - J + 1. J). 

Adjustable dimension of A (first subscript in array 
declaration). 
KA~NB 

Degree of A (number of columns>. N~NB 

Entire band width for general matrices. NB~LB 

Half band width for symmetric positive definite matrices. 
NB~l 

Left band width of A. LB~1 

Normalization factor. Real number of the form of power of 2 
used to divide each row (column). 
One-dimensional array of size N 

ILL=O: Normal termination. 
ILL=K: Normalization is interrupted at Kth step. 

General: The Kth line is all zer~ 
Symmetric positive definite matrix: The Kth diagonal 

element is not positive. 
ILL=30000: Argument error. 

:t1 For MNRMBD (0, C, B. Z), A is assumed to be a double 'precisiGn real type (quadruple 

precision real type, complex type, double precisi~n complex type, and quadruple precision complex 

type). and S is assumed to be double precision (quadruple precision, single precision, double 

precision. and quadruple precision) real type. 

For MNMBSD (0). real types are changed to double (quadruple) precision real types. 

(3) Example of use 

1. Example of MNRMBS 

A quindiagonal matrix (NB = 5. LB = 3) equation (N = 1000) is solved with LEOBDS, after 

normalizing it with MNRMBS. All diagonal elements are put as Qjj=5j and non-diagonal 

elements as 1. and constant terms are set so that all elements of the solution are 1. 

DIMENSION A(7i1000),S(1000),X(1000),MAX(1000) 
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N=1000 
KA=7 
NB=5 
LB=3 
EPS=1.E-6 
DO 10 J=1,N 
DO 20 1=1,5 

20 AeI,J)=1.0 
Ae3,J)=J*5 
XeJ)=Ae3,J)+4.0 
IF(J.LE.2> X(J>=X(J)-FLOAT(3-J) 
IFeJ.GE.N-1) xeJ)=xeJ)-FLOATeJ+2-N) 

10 CONTINUE 
CALL MNRMBseA,KA,N,NB,LB,S,JND) 
DO 25 I=1,N 

25 XeI)=xeI)/seI) 
IND=O . 

/g 

CALL LEQBDSeA,KA,N,NB,LB,MB,X,N,1,MAX,EPS,IND) 
EM=O.O 
DO 30 I=1,N 
EM=AMAX1(ABS(X(I)-1.0),EM) 

30 CONTINUE . 
WRITE(6,600) EM 

600 FORMAT(10X,E11.3) 
STOP 
END. 

2. Example of MNMBSS 

An equation having a positive definite symmetric band matrix (N = 1000. NB = 5) as a 

coefficient is solved by CHLBDS after normalizing it by MNMBSS. All diagonal elements are 

put as Qjj=10j and non-diagonal elements as 1. and all constant terms are set so that all 

elements of the solution are 1. 

DIMENSION A(5,1000),Se1000),Xe1000) 
N=1000 
KA=5 
NB=5 
EP·S=1. E-6 
DO 10 J=1,N 
Ae1,J)=1*10 
DO 20 1=2,5 

20 AeI,J)=1.0 
XeJ)=A(1,J)+8.0 
IFeJ.LE.4) X(J)=X(J)-FLOAT(5-J) 
IF(J.GE.N-3) X(J)=X(J)-FLOAT(J+4-N) 

10 CONTINUE 
CALL MNMBSS(A,KA,N,NB,S,IND) 
DO 25 I=1,N 

25 X(I)=X(I)/SeI) 
IND=O 
DET=O. 
CALL CHLBDS(A,KA,N,NB,X,N,1,DET,EPS,IND) 
DO 27 I=1,N 

27 X(I)=X(I)/S(I) 
EM=O.O 
DO 30 I=1,N 
EM=AMAX1(ABS(X(I)-1.0),EM)· 

wJ 

wJ 
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(4) Remarks 

30 CONTINUE 
·WRITE(6,600) EM 

600 FORMAT(10X,E11.3) 
STOP 
END 

1. When this routine is used to solve a system of linear equations that has a band matrix as a 

coefficient, each element of the right side constant vector must be divided by the corresponding 

normalization factor before the e simultaneous linear equation routine is called. For general 

matrices, nothing need not be done after a solution is obtained. For a symmetric positive 

definite matrix, however, each element of the solution must be divided by the corresponding 

normal ization factor. (See the example of use.) 

(1981.06. 11) <1981.08.01) 
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cl" 

MNRSPS/D/C (Normalization of a Symmetric Positive Definite Matrix) 

Normalization of a Symmetric Positive Definite Matrix 

Programm Ichizo Ninomiya, April 1977 
ed by 

Format Subroutine language: FORTRAN; size: 20, 21, and 21 lines respectively 

(1) Out line 

UNRSPS/D/C limits the maximum absolute value of elements in each row and column to the order of 

1 by dividing each row and column of a given symmetric positive definite matrix by a number of 

the form of ~n preserving symmetric positive definiteness. 

(2) Directions 

CALL MNRSPS/D (A, KA, N, M, S, ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input/ou Matrix to be normalized. Only the upper right half including 
Two-dimens tput the diagonal lines is processed. Other part is preserved. 
ional 

~ 

array 

KA Integer Input Value of the first subscript in the array-A declaration. 
type. KA~N 

N Integer Input Number of rows in A. N~2 
type 

M Integer Input Number of columns in A. M~N 

type 

S Real type Output S (I) (I = 1, 2, "', N) contains a divisor in the form of 
One-dimens power of 2 to normalize the row I and column I. 
ional 
array 

ILL Integer Output ILL=O: Normal termination 
type ILL=30000: Limits on KA, N, and M are violated. 

The row number of the diagonal element which is not positive 

*1 For MNRSPD (C), all real types are changed to double (quadruple) precision types. 

(3) Remarks 

1. When normalization is done as a preprocessing for solving a system'of linear equations, 
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~/ ' 

~/ 

every element of solution of normalized equation should be divided by the corresponding scale 

factor. 

2. When normalization is done as a preprocessing for obtaining inverse matrix, every row and 

column of the inverse of normalized matrix should be divided by the corresponding scale factors. 

(1987. 06. 17) (1987. 08. 08) 
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MULMMV/W/X/Y (Multiplication of Matrices-Vector Version) 

Multiplication of Matrices-Vector Version 

Programm Ichizo Ninomiya. July 1987 

ed by 

Format Subroutine Language: FORTRAN; Size: 80 lines 

(1) Out} ine 

MULMMV/W/X/Y calculates the product C=A·B of two matrices A and B. MULMMV(W.X, Y) is for 

the single precision real numbers (double precision real number. single precision complex number. 

and double precision complex number). 

~ 

(2) Direct ions 

CALL &tULMMV/W/X/Y (A, B. C. KA, KB. KC, L, M, N, ILL) 

Argument Type and Attrib Content 

kind (*1) ute I 

i 

I 

A Real type Input LxM multiplicand matrix A 
Two-dimens 
ional 
array 

B Real type Input MXN multipl ier matrix B : 
Two-dimens 
ional 
array ~ 

C Real type Output LXN product matrix C 
Two-dimens 
ional 
array 

KA Integer Input Adjustable dimensions of A. KA~L 
type 

KB Integer Input Adjustable dimension of B. KB~M 

type 

KC Integer Input Adjustable dimensions of C. KC~L 

type 

L Integer Input Number of rows of A and C. L~1 
type 

-
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~ 

..2~ 

Argument Type and Attr ib Content 

kind (*1) ute 

M Integer Input Number of columns of A and rows of B. U~l 
type 

N Integer Input Number of column~ of Band C. N~l 
type 

ILL Integer Output ILL=O: normal termination; ILL=30000: argument 
type error 

*1 For UULMMW(X, Y), all real types should be changed to double precision real types (complex 
type and double precision complex type). 

(3) Calculation method 

The product of 1 xm matrix A and mxn matrix B is an 1 xn matrix. 

It is 
lit 

Cij=EailJ>kj,i=l, ••• ,l ;j=l,··· ,n 
k=:1 

If A and C are considered as sets of column vectors A=(al ,U2,··· ta.) and 

C=(CJ,C2t··· tCn) respectively, then Cj can be written as 
m 

Cj=EOkjQk,j=l ,2,··· ,n 
k=1 

The algorithm of th'is subroutine is based on this idea. 

(4) Note 

1. The product of a matrix and a vector can be calculated with this routine with B assumed as 

a single column matr ix. However, it is more reasonable to use the special rout ine MULMVV. 

2. This routine is for vector computers. However, it can be used also for scalar computers. 

(1987.08.04) 
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MULMVV/W/X/Y (Multiplication ofa ~fatrix and a Vector-Vector Version) 

Multiplication of a Matrix and a Vector-Vector Version 

Programm Ichizo Ninomiya. July 1987 

ed by 

Format Subroutine Language: FORTRAN; Size: 70 lines 

(1) Out line 

MULMVV/W/X/Y calculates the product y=Ax of a matr ix A and a vector x. MULMVV (W. X. Y) is for 

the single precision real numbers (double precision rea] number. single precision complex number. 

and double precision complex number). 

(2) Direct ions 

CALL MULMVV/W/X/Y(A.X. Y.KA.M.N. ILL) 

Argument Type and Attrib Content 
kind (*1) ute 

A Real type Input MXN matrix A 
Two-dimens 
ional 
array 

X Real type Input N vector x 
One-dimens 
ional 
array 

Y Real type Output M vector y 
One-dimens 
ional 
array 

KA Integer Input Adjustable dimensions of A. KA~M 

type 

M Integer Input Number of rows of A and order of y. N~l 
type 

N Integer Input Number of co I umns of A and order of x. M~1 
type 

ILL Integer Output ILL=O: Normal termination; ILL=30000: Argument 
type error 

*1 For MULMVW(X, Y>, all real types should be changed to double precision real types (complex 
type and double precision complex type). 
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(3) Calculation method 

If the matri·x A is considered as a set of the column vector (01,02,··· ,am). y=Ax can be 

wri tten as 
m 

y=I;XkOk 
k=1 

The algorithm of this subroutine is based on this idea. 

(4)' Note 

This routine is for vector c~mputers. However. it can be use!f also for scalar computers. 

(1987. 08. 04) 
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2. System of linear equations 

[Method of choice of linear equation routines] 

NUMPAC provides a variety of effective linear equation subroutines that you can select 

depending on the type, characteristics, and structure of each coefficient matrix. By carefully 

selecting them based on the guideline shown below, you can enjoy much of their superiority in all 

aspects of precision. speeds, and storage capacities. To make the following explanation simple, 

the name,of each recommended routine is represented by the one for single precision. The routine 

marked by * is written in assembly language and recommended specially. 

(A) Real coefficient 

1. Non-symmetry 

(1) Dense matr ix 

(2) Band matr ix 

(3) Tridiagonal matrix 

2. Symmetry 

(1) Dense matr ix 

(2) Band matr ix 

3. Positive-definite symmetric 

(1) Dense matr ix 

(2) Band ma tr i x 

(3) Variable width band matrix 

(4) Tridiagonal matrix 

4. General system of linear equations 

(B) Complex coefficient 

1. Dense ma tr i x 

2. Band matrix 

LEQLUS* 

LEQBDS 

TRIDGS 

BUNCHS 

BUNCBS 

CHOLFS*, MCHLFS* 

CHLBDS*, lfCIILBS* 

CflLVBS 

TRDSPS, TDSPCS 

LEQLSS, LSlfNS 

LEQLUC 

LEQBDC 

"If there is a great difference between coefficients and between solutions of linear equations, 

satisfactory precision is not generally expected. It is important to level the coefficients and 

solutions in advance by means of normalization or variable transformation. 

Many users seem to use an inverse matrix routine to solve linear equations because the solution 

of 1 inear equations Ax=b is theoretical1y written as X=A-1b. lIowever, they shouldn't do this 
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because it takes three times for calculation that taken by a linear equation routine and the 

accuracy of the solution is remarkably worse. 

To repeat solving equations with the same coefficients by changing the right-hand side column 

only, it seems reasonable to calculate xi=A-1bi, i=l ,2, --- by calculating an inverse matrix 

only onc~ For this, howev~~ it is far more advantageous to exploit the function of reuse of 

decomposition component available in all Nagoya University routines. 

In short, it is nothing but the abuse of inverse matrixes to use them to solve linear­

equat ions. 
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BUNCBS/D (Solution of linear equations with symmetric band matrix of coefficients by 

bunch's method) 

Solution of Linear Equations with Symmetric Band Matrix of Coefficients by Bunch's Method 

Programm Ichizo Ninomiya; April 1981 
ed by 

Format Subroutine language; FORTRAN Size; 200 lines each 

(1) Outl ine 

BUNCBS and BUNCBO are single or double precision subroutines used to obtain the following 

solution using the bunch's l1)LT decomposition method: The solution obtained by the 

subroutines is X=A-1B of the linea~ equations AX=B· with right-hand side matrix B, and 

symmetric band matrix A which is not necessarily positive definite as a coefficient. 

These subroutines have the function of the reuse of the l1)LT decomp~sition component. 

(2) Directions 

CALL BUNCBS/D (A, KA, N, NB. X. KX. M. CHG. EPS, I W. I NO) 

Argument Type and Attribut Content 

Kind (*1) e 

A Real type Input/ou The left lower half containing the diagonal of the symmetric 

Two-dimens tput band matrix is transformed to a rectangle as shown in the 

ional figure and· input. That i~ the I. J elements of the matrix 

array are put in A(I-J+l.J). After processing by this routine. the 

Bunch's decomposition component is·output. 

KA Integer Input Adjustable dimension of A (value of the first subscript in 

type array declaration of A). The band width of A will generally 

increase by pivoting. It is therefore necessary to make KA 

large enough to meet it. KA~NB 

,) 
~ 
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Argument Type and Attribut Content 

N 

NB 

x 

KX 

CJlG 

EPS 

Integer 

type 

Input Number of unknowns in the equation (number of columns of A). 

N~l 

Integer 

type 

Input/ou HaIf band width of A (number of rows) is input. HaIf band 

tput width after processing is output. 

NB~2 

Integer 

type 

Input/ou The right hand side matrix is input. The solution matrix is 

Two-dimens 

ional 

array 

Integer 

type 

tput 

Input 

Integer Input 

type 

Real type Outp~t 

One-dimens 

ional 

array 

Real type Input 

generated to the corresponding place. 

Adjustable dimension of X. KX~N 

Number of columns in X. When M~O, only decomposition of A 

is done. 

One-dimensional array of size N or greaterInformation on 

pivoting and the determinant of the 2x2 diagonal block are 

generated. 

When the size of the pivot element becomes smaller than 

11 A II·EPS during decomposition, the coefficient matrix is 

assumed to be singular and then calculation is interrupted. 

Wh en EPS~O. 0 is 

value u is used, 

(single precision) and u=2-52 

g i v e n, d e f a u I t 

w her e u=2-20 

(double precision). 
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Argument Type and Attribut Content 

Kind (*1) e 

IW Integer Work Ooe-dimensional array of size N 

type area 

One-dimens 

ional 

array 

For input, this argument has the following meanings: 

IND Integer Input/ou IND=O: The equation is solved by restarting Bunch's 

type tput decomposition from the beginning. 

IND~O: The equation is solved by using the decomposition 

component calculated immediately before. To do this, the 

contents of A and CUG must have been store~ 

For output, this argument has the following meanings: 

IND=O: Normal end 

IND=K: Judged as singular"at step K of decomposition or 

band width exceeded KA. 

IND=30000: The input argument violated the limit. 

*1 For double precision subroutines. real types should be changed to double precision real 

types. 

(3) Calculation method 

When coefficient matrix A is a symmetric positive definite. modified Cholesky decomposition 

A=l1>LT is possible using unit lower triangular matrix L and diagonal matrix D. lIowever. when A 

is not positive definite. decomposition is generally impossible even if it is symmetric. 

Uowever. if 0 is assumed to be a block diagonal matrix for which the submatrix of 2x2 is 

permitted as a diagonal block element. decompositi~n above is possible. Bunch designed an 

algorithm to perform decomposition A=l1>LT in a numerically stable manner by exchanging rows 

and columns properly. I) .2) This routine is based on Bunch's algorithm D. 
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N 

By using this decomposition, solution X=A-IB ofAX=B can be determined by forward 

sUbstitution Y=L-1B and backward substitution X=L-TD-1y . 

(4) Notes 

1. Th~ standard value of EPS for BUNCBS or BUNCBO is 10-6 (10- 16
) • If EPS~O. 0 is given, 

default" value 2-2°(2-52) will be used. 

2. Argument INO is used for both input and output. Therefore, do not use a constant as an 

actual argument. 

3. The routine's function of reusing decomposition components is very useful to repeatedly 

solve the equations with the same coefficient matrix and different right hand side matrices. It 

is superior to the inverse-matrix method in all aspects of accuracy, speed, and storage capacity. 

( When M, the number of columns of B. is 1. a one-dimensional array is acceptable for the 

actual argument corresponding to l for thi~ howeve~ it is necessary to meet the condition 

KX~N. 

Bibliography 
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1) J. R. Bunch et al.; "'Decomposition of a Symmetric llatrix '" Numer. Math •• Bd. 27. pp.95-109 (1976L 

2) J.R.Bunch et al.; "Some Stable Methods for Calculating Inertia and Solving Symmetric Linear 
Systems"', Math. Comp., Vol.31. No. 137. PP. 163-179 <1977>' . 

(1987.06.16) 
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BUNCHS/D (Solution of Linear Equations with Symmetric Matrix of Coefficient by Bunch's 

~iethod) 

Solution of Linear Equations with Symmetric Matrix of Coefficients by Bunch's Method 

Programm Ichizo Ninomiya. April 1981 
ed by 

Format Subroutine language: FORTRAN; size: 200.200 lines respectively 

(l) Out} ine 

BUNCHS (D) is a single (double) precision subroutine for finding )(=A-113 or the solution of 

the simultaneous linear equation AU(=13 with a symmetric matrix A (not necessarily positive 

definites) and multiple right side columns B. using the Bunch' s UTOO decomposition method. It 

has the facility for reusing the UTlXJ decomposition elements. 

(2) Direct ions 

CALL BUNCIIS/D (A. KA. N. X. KX. M. CIIG. BPS. I ND) 

Argument Type and Attribut· Content 

kind (*l) e 

A Real type Input/ou The upper right half including the diagonal of the 

Two-dim~ns tput coefficient matrix is input. The upper right half is 

ional processed with this routine. and the Bunch decomposition 

array elements are output. The lower left half is preserved. 

KA Integer Input Adjustable dimension of A (value of the first subscript in 

type array decla~ation). KA~N 

N Integer Input Order of equation. N~l 

type 
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Argument 

X 

KX 

M 

COG 

EPS 

IND 

Type and 

kind (*1) 

Real type 

Two-dimens 

ional 

array 

Integer 

type 

Integer 

type 

Real type 

One-dimens 

ional 

array 

Real type 

Integer 

type 

Attribut 

e 

Input/ou 

tput 

Input 

Input 

Output 

Input 

Input/ou 

tput 

Content 

The right side columns are input. The solution vectors are 

output in the corresponding place. 

Adjustable dimension of X. KX~N 

Number of columns of X. If M~O, only A is decomposed. 

One-dimensional array of size N or greater. Pivoting 

informat ion and 2 x 2 diagonal block determinants are 

output. 

If the size of pivot elements becomes smaller than 11 A 11 -EPS 

during decomposition, the coefficient matrix is decided to be 

singular, and the calculation is interrupted. If EPS~O. 0 is 

ass i g n e d, the standard value u 

is used, where u=2-20 (single precision) and u=2-52 

(double precision). 

This argument has the following meaning as an input argument. 

IND = 0: Solve equation newly starting'with Bunch's 

decompos i t ion. 

IND iF 0: Solve equations, reusing the decomposition 

elements previously calculatet In this cas~ A and CHG must 

be kept unchanged in the states of previous call. 
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Argument Type and Attribut Content 

kind (*1) e 

This argument has the following meaning as an output 

argument. 

IND = 0: Normal termination 

IND = K: Singularity is decided at Kth step of the 

decomposition 

IND = 30000: The input argument violates the limit. 

*1 For double precision subroutines, all real types are changed to double precision real types. 

(3) Calculation method 

If the coefficient matrix A is symmetric positive definites, a modified Cholesky decomposition 

A~TLXJ is possible with an upper unit triangular matrix U and a diagonal matrix ~ If the 

matrix A is not of positive definites even though it is symmetric, the decomposition is generally 

impossible. Howeve~ if D is assumed to be a diagonal block matrix that permits a 2 x 2 

submatrix as a diagonal block element, the similar decomposition is possible. Bunch designed a 

"algor i thm for calculating the decomposition A=UTOO wi th numer ical stabi 1i ty by properly 

interchanging rows and columns. 1) .2) 

This routine is based on Bunch's algorithm A. 

If this decomposition is applied, the solution X=A-1B of AX=B is found by the forward 

substitution Y=lrTB and backward substitution X=U-1D-1y. 

(4) Remarks 

1. The standard value of BPS is 10-6(10- 16) for BUNCIIS (D). If EPS~O. 0 is given, the 

standard va I ue 2-20 (2-52) is used. 

2. Because IND is an input/output argument, a constant must not be used as an actual argument. 

3. When a solution to the same coefficient matrix is to be repeatedly found changing only the 

right side columns. the facility for reusing the decomposition components of this routine is 

extremely useful. As compared with the method by inverse matrices. this calculation method is 
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excellent in precision. speed. and- storage size. 

4. If the number of right side columns 0.0 is 1. an actual argument that corresponds to X can 

be a one-dimensional array. However. KX~N must be met. 

References 

l)J. R. Bunch et al. ;"Decomposition of a Symmetric Matrix"Numer. Math •• Bd~ 27. PP. 95-109(1976>' 

2) J.R.Bunch et al. ;"Some Stable Methods for Calculating Inertia and Solving Symmetric Linear 
Systems" and Math. Comp. Vol. 31. No. 137. and PP. 163-179(1977). 

(1987. 06. 16) 

~. 
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CGHTCS/D Solution of a Linear System of Equations with Positive Definite Symmetric 

Coefficients lfatrix by Conjugate Gradient Method (Compressed matrix storage Mode) 

Solution of a Linear System of Equations with Positive Definite Symmetric Coefficients Matrix by 

Conjugate 

Gradient Method(Compressed matrix storage mode) 

Programm Tsuyako Miyakoda and Tatsuo Torii, February 1982 
ed by 

Format Subroutine language: FORTRAN; size: 55 and 56 lines respectively 

~. 

(1) Out! ine 

This is a solution routine with a conjugate gradient method if the upper triangular and 

diagonal elments of the matrix are stored in a row to set up the storage arrays, where the 

symmetric positive definite matrix A is a coefficient matrix. 

(2) Direct ions 

CALL CGIITCS/D (A. NA. N. B. X. EPS. NMAX. W, I DUMP) 

Argument Type and Attr ibut Content 

kind e 

A Real type Input The upper triangular and diagonal elements of the matrix are 

One-dimens stored in a one-dimensional array. Element (I, J) (I ~J) is 

ional assumed to be (J*(J-l)/2+I)th element of a one-dimensional 

array array. 

A(k)=aij. k=j(j-l)/2+i 

NA Integer Input Length of the vector when the coefficient matrix is made into 

type a one-dimensional array. 

N Integer Input Number of unknowns of the system. 

type 

37



Argument Type and Attribut Content 

B 

x 

BPS 

NMAX 

IDUMP 

kind e 

Real type Input Right-side vector of the system. 

One-dimens 

ional 

array 

Real type Input/ou Input: Approximative solution vector {i nit i a I va I ueL 

One-dimens tput 

ional 

array 

Real type Input 

Integer 

type 

Double 

Input 

Work 

precision area 

real type 

One-dimens 

ional 

array 

Output: Corrected solution vector. 

Conver~ence criterion. It is assumed to be 8·u·1I b 11 as 

external page storage if it is too small. u is a unit of the 

• rounding error. 

Maximum number of iterations. When a too large value is 

input. it is assumed to be 3·N/2. 

Size N x3. 

Integer 

type 

Input/ou It has the following meaning as an input argument. 

tput I DUMP<O: No printing of the result on the way. 

IDUMP=l: Printing of residual (P.AP) of each iteration. 

I DUMP>2: Printing of residual. A - orthogonal set vectors. 

and approximative solution of each iteration. 

It has the following meaning as an output argument. 

The same as input: Normal termination. 

IDUMP=l*N : Not settled even for 3*N iterations •. 

I DUMP=30000: Input parameter error. 
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* All real types are assumed to be a double precision real type for CGHTCD. 

(3) Calculation method 

CGHTCS/D finds the solution of a linear system of equations with the symmetric positive 

definite matrix. Ax=b. so th~t the error function q:>(x)=(r,A-tr) is minimized if the' 

residual r=b-Ax is assumed. In the conjugate gradient methl)d. both sides of a correction 

vector ~A-orthogonal system) calculation formula of the original version is divided by 1 n+1 12 

• and normalized as a type of formula (Takahashi version). The calculation formula becomes 

simple. but the speed of residual reduction and the computation time are not much changed. The 

calculation expression is as follows: 

Initial value XO=O, ro=b-Axo, Po=ro/I ro 12 

(Xi=l/(Pi ,APi) 

Convergence decision 1 ri+1 1 2< (EPS) 2 ? 

Pi+t=Pi-ri+t/l n+l 12 

i=O, 1 , •••.•...•• 

(4) Example 

C MAIN FOR CGHTCS 
DIMENSION AS(SOSO),X(100),B(109),A(100),XO(100) 
DOUBLE PRECISION W(300),SU 
NR=S 
NW=6 
EPS=0.1E-4 
XX=0.1EB+1. 
N=100 
XI=1234S67B.00 
DO 10 I=1,N 
XO(I)=O.O 
X(I)=4.*XI/1.EB-2. 
XI=AMOD(23.*XI,XX) 

10 CONTINUE 
NT=O 
DO 40 I=1,N 
SU=O.ODO 
DO 20 J=1,N 
IJ=IABS(I-J) 
A(J)=FLOAT(N-IJ) 

20 SU=A(J)*X(J)+SU 
B(I)=SU 
DO 30 J=1,I 
NT=NT+1 
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30 ASCNT)=ACJ) 
40 CONTINUE 

WRITECNW,1000)N 
1000 FORMATC1H1,15H EXAMPLE 3-6 N=,I4) 

IOUMP=O 
MAXN=100 
CALL CLOCKMCJTIME1) 
CALL CGHTCSCAS,NT,N,B,XO,EPS,MAXN,W,IOUMP) 
CALL CLOCKMCJTIME2) 
JTIME=JTIME2-JTIME1 
WRITEC6,1010) IOUMP,JTIME 

1010 FORMATC1H " IOUMP =',IS,3X,'TIMECMSEC)=',IS) 
DO 50 I=1,N 
RES=XCI)-)50CI) 
WRITECNW,1020) I,XCI),XOCI),RES 

1020 FORMATCI5,2E13.5,E11.3) 
50 CONTINUE 

1030 FORMATCC1H ,SC1PE13.S») 
STOP 
END 

EXAMPLE 3-6 N= 100 
IK= 26 ZANSA= 0.535816110-02 

IOUMP = 0 TIMECMSEC)= 565 
1 -0.1S062E+01 -0.15031E+01 -0.303E-02 
2 -0.18420E+01 -0.18510E+01 0.899E-02 
3 -0.196SSE+01 -0.19646E+01 -0.883E-03 
4 -0.1605SE+01 -0.16043E+01 -0.119E-02 

(5) Note 

The conjugate gradient method is characterized by fast convergence if a coefficient matrix is 

large in the number of dimensions and sparse. For dense coefficient matrices. it is desirable to 

use other methods or the conjugate gradient method that includes preprocessing (PRCGFS/D). 

References 

1) Hayato Togawa: Conjugate Gradient Method. Kyoiku Shuppan. 1917 

(1987. 06. 16) (1987. 08. 07) (1987. 08. 10) 
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CHLBDC/B/Z,MCHLBC/B/Z 

(Solution of Hermitian Positive Definite.Linear Equations by Cholesky and Modified Cholesky 

Method (Band Matrix» 

Solution of Hermitian Positive Definite Linear Equations by Cholesky and Modified Cholesky 

Method(Band Matrix) 

Programm Ichizo Ninomiya. December 1983 
.. 

ed by 

Format Subroutine language: FORTRAN; size: 63. 64. 64. 70. 71. and 71 lines 

respectively 

(l) Outline 

CHLBDC(B.Z) (MCHLBC(B.Z» is a single (double or quadruple) precision subroutine for obtaining 

the solution X=A-1B of the equation AX=B having a lIermitian positive definite band matrix A 

as coefficient matrix and multiple right side columns B. using modified Cholesky decomposition 

method. It reuses Cholesky decomposition component. 

(2) 0 i rect ions 

CIILBDC/B/Z 
CALL (A. KA. N. NB. X. KX. M. DET. EPS. I NO) 

MCHLBC/B/Z 

Argument Type and Attribut Content 

A Complex Input/ou The lower left half band area containing the diagonal of a 

type tput coefficient matrix is transformed into a rectangular form and 

Two-dimens input. That is, the I and J elements of the matrix are input 

ional in A(I-J+l.J). These elements are processed with this 

array routine. and Modified Cholesky decomposition elements are 

output. See the figure. 

KA Integer Input Adjustable dimensions of A (value of the first subscript in 

type the array declaration). KA~NB 
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Argument Type and Attr ibut Content 

N Integer Input Order of equations (number of columns of A). N~l 

type 

NB Integer Input Band width (number of rows of A). l~NB~N 

type 

x Complex Input/ou The right side columns are input. The solution vectors are 

type tput output to the corresponding p~sitions. 

Two-dimens 

ional 

array 

KX Integer Input Adjustable dimensions of X. KX~N 

type 

M Integer . Input Number of columns of X. If M~O, only modified Cholesky 

type decomposition is executed. 

DET Real type Input/ou If DETiFO.O is input, coefficient matrix determinan~s are 

tput output. 

If DET=O.O is input, 0.0 is output. 

EPS Real type Input Coefficient matrix positivity criterion. If the value of a 

diagonal element becomes smaller than EPS during Cholesky 

decomposition,- it is decided to be not positive definite, and 

the computation is interrupted. EPS>O 

42



''-' 

Argument Type and Attribut Content 

kind (*1) e 

IND Integer Input/ou This argument has the following meaning as an input argument. 

type tput 

IND=O: Equation is solved newly beginning with Cholesky 

decompos i t ion. 

IND:;eO: Equation is solved reusing the Cholesky decomposition 

component computed before. 

This argument has the following meaning as an output 

argument. 

IND=O: Computation is normally executed. 

IND=K: Because the value of a diagonal element becomes 

smaller than EPS at the K-th step of Cholesky decomposition, 

computation is interrupted. 

IND=30000: The input argument exceeded the limit. 

1* For double (quadruple) precision subroutines, all single precision types are changed to 

double (quadruple) precision types. 

(3) Calculation method 

1. Cholesky decomposition method 

The coefficient matrix A is decomposed into A=U· with a lower triangular matrix Land 

its transposition conjugate matrix L*. The solution X=A-1B is obtained with the forward 

substitution 'Y=L-1B and backward substitution X=(L*)-Iy. 

2. Modified Cholesky decomposition method 

The coefficient matrix A is decomposed into A=LDL* with a lower unit triangular matrix 

L, its transposition conjugate matrix A=LDL*, and a diagonal matrix D. The solution 

X=A-1B is obtained with the forward sUbstitution y=L- 1B and backward substitution 

X=(L*)-ID-1y. 

(4) Notes 

1. If the typical size of coefficient matrix elements is a, the value 10-60(10- 160,10-300) 
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4-~ 
is adequate as the standard va I ue of EPS for {MCIILBS (0, a) CHLBOS (0, a)} . 

2. Because DET and IND are I/O arguments, constants must not be used as an actual argument. 

Note that DET is a real type. 

3. When a solution to the same coefficient matrix is to be repeatedly obtained with only the 

right side column changed, the func~~on that reuses the Modified Cholesky decomposition 

elements of this routine is particularly useful. It is more efficient in all of storage 

size, precision, and speed as compared with the method using the inverse matrix. 

4. If the number M of right side columns is I, the real argument that corresponds to X can be 

a one-dimensional array. However. KX~N must be met. 

(1987.06.19) (1987.08.07) 

~ 

vJ 
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CHLBDS/D/Q,MCHLBS/D/Q 

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky 

Method) (Band Matr ix) 

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method 

(Band Matr ix) 

Programmed by Ichizo Ninomiya in April 1981 

'Format Subroutine language:Assembler (CHLBDQ and MCIILBQ FORTRAN) 
Size:233. 239. 64.202. 199. and 71 lines respectively 

(1) Out! ine 

CIILBDS (D. Q) (MCHLBS (D. Q» is a single (double or quadruple) precision subrout ine that finds 

the solution X=A-1B of the equation AX=B with a symmetric positive definite band matrix A 

as a coefficient matrix and multiple right sides B. using modified Cholesky decomposition 

method. It has the facility for reusing Cholesky decomposition components. 

(2) Direct ions 

[
CHLBDS/D/Q] 

CALL (A. KA. N. NB. X. KX. M. DET. EPS. I NO) 
MCHLBS/D/Q 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input/ou Transform the lower left half including the diagonal of the 
two-dimens tput coefficient matrix into a rectangular form. that is. the I 
ional and J element of the matrix is stored in A(I-J+l.J). The 
array array is processed by this routin~ and modified Cholesky 

decomposition components are output. See the figure. 

KA Integer Input Adjustable dimension of A (value of the first subscript in 
type the array declaration of A). KA~NB 

N Integer Input Order of equations (number of columns of A). N~1 
type 

NB Integer Input Band width (number of rows 01 A). I~NB~N 
type 
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X Real type Input/ou The right side columns are input. The solution vectors are 
two-dimens tput output to the corresponding place. 

KX 

M 

ional 
array 

Integer 
type 

Integer 
type 

Input 

Input 

Adjustable dimension of X. KX~N 

Number of columns in X. If M~O. only (modified) Cholesky 
decomposition is executed. 

DET Real type Input/ou If DET~O.O is input. coefficient matrix determinant is 
tput output. 

EPS 

IND 

Real type 

Integer 
type 

Input 

Input/ou 
tput 

If DET=O.O is input. 0.0 is output. 

Constant for determining the positivity of coefficient 
matrices. If the value of a diagonal element becomes smaller 
than that of EPS during Cholesky decomposition. the input 
matrix is decided to be non positive definite. and the 
calculation is interrupted. EPS>O 

This argument has the following meaning as an input. 
IND=O: Solve an equation newly starting from Cholesky 

decompos i t ion. 
IND~O: Pind the solution of an equation. reusing the 

Cholesky decomposition elements calculated before. 
This argument has the following meaning as an output. 

IND=O: The calculation is normally executed~ 
IND=K: Because the value of a diagonal element becomes 

smaller than that of EPS at the K-th step of Cholesky 
decomposition. the calculation is interrupted. 

IND=30000: The input arguments violate the limit. 

*1 Por a double (quadruple) precision subroutine. all real types are changed to double 
(quadruple) precision real types. 

(3) Calculation method 

1. Cholesky decomposition method 

Decompose A=ljlT with a lower triangular matrix L and its transposition LT. The solution 

X=A-1B is found by the forward substitution Y=L-1B and backward substitution X=L-Ty. 

2. Modified Cholesky decomposition method 

Decompose A=LDLT with a lower unit triangular matrix L. its transposition LT. and a 

diagonal matrix D. The solution X=A-1B is found by the forward substitution Y=L-1B and the 

'backward substitution X=L-T _D-1y. 

3. Because the partial double precision calculation is used for all inne~ product calculations in 

CHLBDS and MCIILBS. the influence of the round-off error is negl igible. 
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(4) Remarks 

1. If the typical size of elements in a coefficient matrix is assumed to be a. 

the value BPS= 10-oa(10-loa ,10-.)\]a) is adequate for rMCHLBS(D, Q) "l 
LcHLBDS (0, Q) J 

2. Because DBT and IND are input/output arguments, constants must not be used as actual 

arguments. 

3. If solutions to the same coefficient matrix is to be repeatedly found changing the right side 

columns. the facility for reusing modified Cholesky decomposition components of this routine is 

extremely useful. It exceeds in storage size, precision, and speed as compared with the-method 

by inverse matrices. 

! If the number of right side columns M is 1, the actual argument that corresponds to X can be a 

one-dimensional array. However, KX~N must be met. 

(1987. 06. 16) 

~ 

~ 
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CHLBDV/W,MCHLBV/W 

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky 

Method (Band Matrix) - Vector Version -) 

Solution of Symmetric Positive Definite Linear Equations by Chulesky and Modifie~ Cholesky 

Method(Band Matrix) -Vector Version-

Programm Ichizo Ninomiy~ May 1986 

ed by 

Format Subroutine language: FORTRAN77; size: 106. 107. 114. and 115 lines 

respectively 

(1) Outline 

CHLBDV(W) (MCHLBV(W» is a single (double) precision subroutine for obtaining the solution 

X=A-1B of the equation AX=B having a symmetric positive definite band matrix A as 

coefficient matrix and muitiple right side columns B. using modified Cholesky decomposition 

method. It has the faci lity of reusing Cholesky decomposition component. 

(2) Directions 

CHLBDV!W 
CALL (A. KA. N. NB. X. KX.l!. DET. BPS. W. INO) 

MCHLBV/W 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input/ou The lower left half band area containing the diagonal of a 

Two-dimens tput coefficient matrix is transformed into a rectangular form and 

ional input. That is. the I and J elements of the matrix are input 

array in A (I-J+1. J). These elements are processed with this 

rout ine. and modified Cholesky decomposition elements are 

output. See the figure. 
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Argument Type and Attribut 

KA 

N 

NB 

kind (*l) e 

Integer 

type 

Integer 

type 

Integer 

type 

Input 

Input 

Input 

Ijo 

Content 

Adjustable dimensions of A (value of the first subscript in 

the array declaration). KA~NB 

Order of equations (number of columns of A). N~l 

Band width of A (number of rows of A). l~NB~N 

X Real type Input/ou The right side columns are input. The solution vectors-are 

KX 

two-dimens tput 

ional 

array 

Integer 

type 

Integer 

type 

Input 

Input 

output to the corresponding positions. 

Adjustable dimensions of X. KX~N 

Number of columns of X. If M~O, only modified Cholesky 

decomposition is executed. 

DBT Real type Input/ou If DBT~O.O is input, coefficient matrix determinant is 

EPS 

tput output. 

Real type Input 

Real type Work 

one-dimens area 

ional 

array 

If DBT=O.O is input, 0.0 is output. 

Coefficient matrix positivity criterion. If the value of a 

diagonal element becomes smaller than EPS during Cholesky 

decomposition, it is decided to be not positive definite, and 

the computation is interrupted. BPS>O 

One-dimensional array of size NB. 
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Argument Type and Attribut Content 

kind (*1) e 

IND Integer Input/ou This argument has the following meaning as an input argument. 

type tput 

IND=O: An equation is solved newly beginning with Cholesky 

decompos i t ion. 

IND:FO: Equation is solved reusing the Cholesky decomposition 

component calculated before. 

This argument has the following meaning as an output 

argument. 

IND=O: Computation is normally executed. 

IND=K: Computation is interrupted because the value of a 

diagonal element becomes smaller than EPS at the K-th step of 

Cholesky decomposition. 

IND=30000: The input argument exceeded the limit. 

*1 For double precision subroutines. all real types are changed to double precision real types. 

(3) Calculation method 

1. Cholesky decomposition method 

The matr ix A is decomposed into A=U} using a lower tr iangular matr ix Land its 

transpose LT. The solution X=A-1B is obtained with the forward substitution Y=L-1B 

and backward substitution X=L-Ty. 

2. Modified Cholesky decomposition method 

The matrix A is decomposed into A=l1JLT with a lower unit triangular matrix L. its 

transposition LT. and a diagonal matrix D. The solution X=A-1B is obtained with the 

forward substitution Y=L-1B and backward substitution X=L-TD-1y. 

3. Because partial double precision calculation is used for all inner sums in CIILBDS and 

MCHLBS. the influence of rounding errors is small. 

(4) Notes 
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1. If the typical size of coefficient matrix elements is a, the value 10-6a (10-16a ) is 

adequate as the standard value of EPS for (lfCHLBV(W) ·CHLBDV(W)}. 

2. Because DET and IND are I/O arguments, constants must not be used as an actual argument. 

3. When a solution with the same coefficient matrix is to be repeatedly obtained with only the 

right side column changed, the function of reusing modified Cholesky decomposition component of 

this routine is particularly useful. It is more efficient in all of storage size, precision, 

and speed as compared with the method using the inverse matrix. 

( If the number M of right side columns is 1, the actual argument corresponding to X can be a 

one-dimensional array. However, KX~N must be met. 

(1987.06.19) (1987.08.07) 

~ 

~ 
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CHLVBS/D 

(Solution of Symmetric Positive Definite Linear Equations by Cholesky Method) (Band Matrices 

with Variable Bandwidth. Compact Mode) 

Solution of Symmetric Positive Definite Linear Equations by Cholesky.Method 

(Band Matrices with Variable Bandwidth. Compact Mode) 

Programm Ichizo Ninomiya, April 1977 
ed by 

Format Subroutine language: FORTRAN; siz~: 94 and 94 lines respectively 

(1) Outline 

CHLVBS/D finds the solution X=A-1B of the equation AX=B with a symmetric positive 

definite variable bandwidth matrix A as a coefficient matrix and a multiple right sides B. 

using Cholesky decomposition method. A is first decomposed as A~TU with an upper 

triangular matrix U and its transpose UT. then the solution is given by X=U-1 (U-TB). 

C:=U-TB is calculated by the forward substitution methpd for the lower triangular matrix· UT, 

and X=U-1c: is calculated by the backward substitution method for the upper triangular matrix 

U. This routine posesses faci! ity for reusing Cholesky decomposition components. 

(2) Direct ions 

CALL CHLVBS/O (A. NB. X. KX. N. M. EPS. I NO) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input/ou Rearrange the upper right half including the diagonal 
One-dimens tput excluding zero elemnts of a symmetric positive definite band 
ional matrix in a line as shown in the figure. These elements are 
array processed by this routine. and Cholesky decomposition 

components are output. 

NB Integer Input One-dimensional array with N elements. Input the band width 
type of each column in the upper right half of a coefficient 
One-dimens matr ix. (See the figure.) 
ional 
array 
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Argument 

X 

KX 

N 

M 

EPS 

IND 

Type and Attribut 
kind (*1) e 

Real type Input/ou 
Two-dimens tput 
ional 
array 

Integer Input 
type 

Integer Input 
type 

Integer Input 
type 

Real type Input 

Integer 
type 

Input/ou 
tput 

Content 

The right side columns are input. The solution vector is 
output to the corresponding place. 

Value of the first subscript in the array declaration of X. 
KX~N 

Order of· equations. that is. the number of rows of X. N~2 

Number of columns of X. M~O 
If U=O. only Cholesky decomposition is executed. 
If M=l. an actual argument to X can be a one-dimensional 
array. 

Constant for determining the positivity of coefficient 
matrix. If the value of a diagonal element becomes smaller 
than that of EPS during Cholesky decomposition. the input 
matrix is decided to be non positive definite. and the 
calculation is interrupted. EPS>O 

This argument has the following meaning as an input. 
IND=O: Solve an equation newly starting from Cholesky 

decompos i t ion. 
IND~O: Solve an equation reusing ChoIesky decomposition 

components previously obtained. 
This argument has the following meaning as an output. 

IND=O: The calculation is normally executed .. 
IND=30000: Limits on input-output arguments are violated. 
IND=K: Because the value of a diagonal e'lement becomes 

smaller than that of EPS at the Kth step. the calculation is 
interrupted. 
Because this argument is for both input and output. a 
constant must not be used as an actual argument. 

*1 For CHLVBD. all real types are assumed to·be a double precision real type. 
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1 2 4 7 

3 5 8 11 

6 9 12 15 19 ... 

10 13 16 20 ... 

14 17 21 ... 

18 22 ... 

23 ... 

NB 1 2 3 4 4 4 5 ... 

(3) Remarks 

If the facility for reusing the Cholesky decomposition components of this routine is exploited, 

it becomes almost unnecessary to calculate inverse matrices. This is because inverse matrices of 

band matrices are not band matrices any more, thus losing their advantage. The reuse of 

Cholesky decomposition is more excellent in computation speed and precision than processing via 

inverse matrice~ 

(1987. 06. 16) 
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CHOLCS/D/Q,MCHLCS/D/Q 

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky 

Method) (Full Matrix. Compact Mode) 

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified 

Cholesky Method(Full Matrix.Compact·Mode) 

Programm Ichizo Ninomiya. April 1981 
ed by 

Pormat Subroutine language: Assembler (CHOLCa and MCHLCQ are PORTRAN.) 
Size: 203. 217. 60. 180. 179. and 96 lines 

respectively 

(1) Outl ine 

CHOLCS (D. a) and (MCIILCS (D. 0» are sing le (doub I e or quadrup I e) prec i s i on subrout i nes that 

find the solution X=A-1B of the equation AX=B with the compressed symmetric positive 

definite matrix A as a coefficient matrix and multiple right side columns B. using modified 

Cholesky decomposition method. It has the facility for reusing modified Cholesky decomposition 

components. 

C
HOLCS/D/J 

CALL (A. N, X. KX, M, DET. EPS. I NO) 
MCHLCS/D/ 

(2) Directions 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input/ou Converts the upper right half including the diagonal of a 
One-dimens tput coefficient matrix column wise into a one dimensional vector 
ional before it is input. That is. the I and J element in the 
array original matrix is stored in A «J - 1»*J/2 + I). The 

array is processed by this routin~ and modified Cholesky 
decomposition elements are output. 
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Argument Type and Attribut Content 
kind (*1) e 

N Integer Input Order of equations. N~l 
type 

x Real type Input/ou The right side columns are input. The solution vectors are 
Two-dimens tput output to the" corresponding place. 
ional 
array 

KX Integer Input Adjustable dimension of X. KJ(~N 

type 

M Integer Input Number of columns in X. If M~o, only modified Cholesky 
type decomposition is executed. 

DBT Real type Input/ou If DET*O. ° is input, coefficient determinants are output. 
tput If D8T=0. ° is input, 0. ° is output. 

BPS 

IND 

Real type Input 

Integer 
type 

Input/ou 
tput 

Constant for determining the positivity of coefficient 
matrices. If the value of a diagonal element becomes smaller 
than that of EPS during Cholesky decomposition, the input 
matrix is decided to be non positive definite and the 
calculation is interrupted. 

This argument has the following meaning as an input. 
IND=O: Solve an equation newly starting from Cholesky 

decompos i t ion. 
IND*O: Solve an equation, reusing the Cholesky 

decomposition components calculated previously. 
This argument has the following meaning as an output. 

IND=O: Calculation is normally executed. 
IND=K: Because the value of diagonal elements becomes 

smaller than that of BPS at the Kth step of Cholesky 
decomposition, the calculation is interrupted. 

IND=30000: The input arguments violate the limit. 

*1 For a double (quadruple) precision subroutine, all real types are changed to double 

(quadruple) precision real types. 

(3) Calculation method 

1. Cholesky decomposition method 

Decompose A=!JTlJ with an upper triangular matrix U and its transpose lJT. The solution 

X=A-1B is found by th'e forward substitution y=U-TB and backward substitution y=U-1y. 

2. Modified Cholesky decomposition method 

Decompose A=uTOO with a unit upper triangular matrix U, its transpose UT, and a 

diagonal matrix D. The solution X=A-1B is found by the forward sUbstitution y=UTB and 

backward substitution X=lf1D-1y. 
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3. Because CHOLCS and MCHLCS use partial double precision in all product inner calculations, 

the effects of rounding errors on the results is negligible. 

(4) Remarks 

1 If the typical size of elements in a coefficient matrix is assumed to be Cl as the 

standard val'ue of external page storage, 1 0-6a (1 O-J6a , 10-30a) is adequate for: 

[
CHOLCS (Di Q) ] 

MCHLCS (D, Q) 

~ Because DET and IND are input-output arguments, a constant must not be used as an actual 

argument. 

3. When a solution to the same coefficient matrix is repeatedly found changing only the right 

side columns, facility for reusing the modified Cholesky decomposition components of this routine 

is extremely useful. As compared with the method by inverse matrices, this calculation method is 

excellent in storage size, precision, and speed. 

( If the number of right side columns M is I, an actual argument that corresponds to X can be 

a one-dimensional array. However, KX~N must be met. 

(1987.06. 17) 

.. 

~ 

~ 
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CHOLFC/B/Z,MCHLFC/B/Z 

(Solution of Hermitian positive definite linear equations by Cholesky and modified Cholesky 

methods (full matrix)} 

Solution of Hermitian Positive Definite Linear Equations by Cholesky and Modified Cholesky Method 

(Full Matrix) 

Programm Ichizo Ninomiya; December 1983 

ed by 

Format Subroutine language; FORTRAN Size; 50. 51. 51. 50. 51. and 51 lines 

respectively 

(l) Outl ine 

CHOLFC (Dt Z) and MCHLFC (D. Z) are complex single (double. quadruple) precision subroutines. 

each of which calculates solution )(=A-113 of equation ~=13 by the Cholesky or modified 

Cholesky decomposition method. where A is a Hermitian symmetric positive definite matrix and 13 

is a right-hand side matrix. It has the facility of reusing Cholesky decomposition components. 

(2) Directions 

CHOLFC/D/Z 
CALL (A. KA. Nt X. KX. M. DET. EPS. I NO) 

MCHLFC/B/Z 

Argument Type and Attr ibut Content 

kind (*l) e 

A Complex Input/ou The upper right half including the diagonal of the 

type tput coefficient matrix is input. After processing by this 

Two-dimens routine. Cholesky- or modified Cholesky-decomposed components 

ional are output. The lower left half is retained. 

array 

KA Integer Input Adjustable dimension of A (value of the first subscript in 

type array declaration). KA~N 
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Argument Type and Attribut Content 

kind (*1) e 

N Integer Input Number of unknowns of the equation. N;;;:l 

type 

X Complex Input/ou A right-hand side vectors are input, as a matrix. Solution 

type tput vectors are generated in the corresponding locations. 

Two-dimens 

ional 

array 

KX Integer Input Adjustable dimension of X. KX~N 

type 

M Integer Input Number of columns of X. When M~O, only Cholesky or modified 

type Cholesky decomposition- is performed. 

OBT Real type Input/ou When a value other than 0.0 is input, the coefficient 

tput determinant is output. 

When 0.0 is input, 0.0 is output as'it is. 

BPS Real type Input Constant for test of positiveness of coefficient matrix. 

When the diagonal element becomes smaller than BPS during 

Cholesky decomposition, it is decided as non positive and 

calculation is interrupted. 
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Argument Type and Attribut Content 

kind (*1) e 

IND Integer Input/ou This argument has the following meanings for input: 

type tput IND=O: An equation is solved beginning with Cholesky 

decompos i t ion. 

IND~O: An equation is solved by reusing the 

Cholesky-decomposed components obtained immediately before. 

This argument has the following meanings for output: 

IND=O: Calculation is performed normally. 

IND=K: Because the diagonal element became smaller than BPS 

at step K in Cholesky decomposition, calculation was 

d iscont inued. 

IND=30000: The input argument violated the limit. 

*1 For double (quadruple) precision subroutines, single precision types are all changed to 
double (quadruple) precision types. 

(3) Calculation method 

1. Cholesky decomposition method 

A is decomposed as a product of an upper triangular matrix II and its conjugate 

t~anspose 11* as A=li*ll. Then the solution X=A-IB is determined by forward substitution 

Y=(ll*)-IB and backward substitution X~ly. 

2. Modified Cholesky decomposition method 

A is decomposed as a product of an upper triangular matrix II and its conjugate 

transpose 11* and diagonal matrix D as A=li*OO. Then the solution X=A-IB is determined 

by forward substitut ion y= ell*) -IB and backward subst i tution X=~ID-Iy. 

(4) Notes 

1 Let a be the typical size of elements of the coefficient matrix. then 

10-6a (10-16a,10-30a) is a reasonable EPS value for {CHOLPS (D. Q) MCHLPS (D. Q)}. 

2. Do not use a constant as the actual argument for DET and IND because these are used for 

both input and output. 

3. When equations sharing the same coefficient matrix are solved iteratively with different 
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right-hand side columns. this routine's facility of reusing the Cholesky- or modified 

Cholesky-decomposed components is very useful. This routine is superior to the inverse 

matrix method in every respect of storage capacity. accuracy. and speed. 

! When the number of right-hand side columns M is 1. the actual argument corresponding to X 

can be a one-dimensional array. where KX~N must be met. 

(1987. 06. 19) <1987. 08. 07) (1987. 08. 10) 

vJ 

~ 
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CHOLFS/D/Q,MCHLFS/D/Q 

(Solution of symmetric positive definite linear equations by Cholesky and modified Cholesky 

method (full matrix» 

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method 

(Full Matrix) 

Programm Ichizo Ninomiya; April 1981 

ed by 

Format Subroutine language; Assembler (CHOLFQ and MCflLFQ are in FORTRAN) 

Size; 207. 217. 49. 179. 176. and 51 lines respectively 

(1) Out 1 ine 

CHOLFS(D.Q) (MCHLFS(D.Q» is a subroutine for single (double or quadruple) precision to obtain 

solution )(=A-l13 of matrix equation AOr=13 by the Cholesky or modified Cholesky decomposition 

method when A is positive definite. It has the facility reusing Cholesky or modified Cholesky 

decomposition components. 

(2) Directions 

CHOLFS/D/Q 
CALL (A. KA. N. X. KX. M. DET. EPS. I ND) 

MCHLFS/D/Q 

Argument Type and Attrib Content 

kind (*1) ute 

A Real type Input/ The upper right half of a coefficient matrix including the 

Two-dimens output diagonal is input. After processing by this routine. Cholesky 

ional or modified Cholesky composition components are generated. The 

array lower left half is saved. 

KA Integer Input Adjustable dimension of A (value of the first subscript in 

type array declaration). KA~N 

N Integer Input Number of unknowns of equation. N~1 

type 
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Argument Type and Attrib Content 

kind (*1) ute 

X Real type Input/ The matrix of right-hand columns are input. Solution vectors 

two-dimens output are generated at the corresponding columns. 

ional 

array 

KX Integer ·Input Adjustable dimension of X. KX~N 

type 

Integer Input Number of columns of X. If U ~ 0, only Cholesky or modified 

type Cholesky decomposition is done~ 

DBT Real type Input/ When DBT~O.O is input, coefficient determinant is generated. 

output When DBT=O.O is input, O. 0 is returned. 

BPS Real type Input Constant used to check positivity of the coefficient matrix. 

When the diagonal element .becomes smaller than BPS during 

Cholesky decomposition, it is assumed to be non-positive 

definite and calculation is interrupted. 

IND Integer Input/ For input, this argument has the following meanings: 

type output IND=O: The equation is solved by restarting Cholesky 

decomposition from the beginning. 

IND~O: The equation is solved by reusing the Cholesky 

decomposition component calculated immediately before. 

For output, this argument has the following meanings: 

IND=O: Calculation has been done normally. 

IND=K: Calculation was terminated because the diagonal element 

became smaller than BPS at step K in Cholesky decomposition. 

IND=30000: The input argument violated the limit. 

*1 For double or quadruple precision subroutines, all real types are changed to do.uble or 
quadruple precision real types. 

(3) Calculation method 

1 Cholesky decomposition method 

A is decomposed as A=UTU by an upper triangular matrix U and its conjugate transpose 
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matrix UT. Solution X=A- 1B is obtained by forward substitution y=U-TB and backward 

substitution X=u-1y. 

~ Modified Cholesky decomposition method 

A is decomposed as A=uTOO by an unit upper triangular matrix U. its conjugate 

transpose matrix UT. and a diagonal matrix D. Solution X=A-1B is obtained by forward 

substitution Y=lTTB and backward substitution X=u-1D-1y. 

3. Because the partial double precision calculation is used for all inner product 

calculations in CHDLFS and MCHLFS. rounding errors have little influence on it. 

(4) Notes 

1. When a typical size of the element of-the coefficient matrix is assumed to be a • . 
10-6a (10-16a,10-30a) is suitable as a standard BPS value for {CHDLFS(D.Q) and 

MCHLFS (D. Q) } . 

2. Do not specify a constant for an actual argument of DHT and IND because these arguments 

are used for both input and output. 

3. For the purpose of obtaining solutions of the same equation by simply changing its 

right-hand side column. this routine's facility to reuse Cholesky or modified Cholesky 

decomposition components is extremely useful. The Cholesky method is superior to the inverse 

matrix method in all aspects of the storage capacity, accuracy. and speed. 

4. When M, the number of right hand side columns, is 1, a one-dimensional array is acceptable 

for the actual argument corresponding to X. KX~N should hold, however. 

(1987.06. 19) (1987.08. 10) 
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CHOLFV/W,MCHLFV/W 

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky 

Method {Full Matrix} - Vector Version-} 

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky 

Method(FuII Matrix} -Vector Version-

Programm Ichizo Ninomiya. December 1984 

ed by 

Format Subroutine language: FORTRAN77; size: 141. 142. 141. and 142 lines 

.. respectively 

{l} Out line 

CHOLFV(W) and (MCHLFV(W}) are single (double) precision subroutines for obtaining the solution 

X=A-1B of the equation AX=B ·having a symmetric positive definite matrix A as coefficient 

matrix and multiple right sides B. using modified Cholesky decomposition method. It has the 

facility of reusing modified Cholesky decomposition component. 

CHOLFV(W) and MCHLFV{W} are for single (double) precision. 

(2) Directions 

CHOLFV/W . 
CALL (A. KA. N. X. KX. M. DET. EPS. W. I ND) 

MCHLFV/W 

Argument Type and Attribut Content 

kind (*I) e 

A Real type Input/ou The upper right half containing the diagonal of a coefficient 

Two-dimens tput matr ix is input. It is processed with this routine. and 

ional modified Cholesky decomposition elements are output. The 

array lower left half is retained. 

KA Integer Input Adjustable dimensions of A (value of the first subscript in 

type the array declaration). KA~N 
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Argument Type and Attribut Content 

N Integer .Input Order of equations. N~l 

type 

X Real type Input/ou The right side Lolumns are input. The solution vectors are 

KX 

M 

two-dimens tput 

ional 

array 

Integer 

type 

Integer 

type 

Input 

Input 

output to the corresponding positions. 

Adjustable dimensions of X. KX~N 

Number of columns of X. If M~O. only modified Cholesky 

decomposition is executed. 

DET Real type Input/ou If DBT~O.O is input, coefficient matrix determinant is 

EPS 

w 

tput output 

Real type Input 

Real type t~ork 

one-dimens area 

ional 

array 

If DET=O.O is input, 0.0 is output. 

Coefficient matrix positivity criterion. If the value of a 

diagonal element becomes smaller than EPS during Cholesky 

decomposition. it is decided to be not positive definite, and 

the computation is interrupted. 

One-dimensional array of .ize N. 
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Argument Type and Attribut Content " 

kind (*1> e 

IND .. Integer Input/ou This argument ha~ the following meaning as an input argument. 

type tput 

IND=O: An equation is solved newly beginning with Cholesky 

decompos i t ion. 

IND~O: An equation is solved reusing the Cholesky 

decomposition elements calculated before. 

This argument has the following meaning as an output 

argument. 

IND=O: Computation is normally executed. 

IND=K: Computation is interrupted because the value of a 

diagonal element becomes smaller than BPS at the K-th step of 

Cholesky decomposition. 

IND=30000: The input argument exceeded the limit. 

*1 For double precision subroutines, all real types are changed to double precision real types. 

(3) Calculation method 

1. Cholesky decomposition method 

The coefficient matrix A is decomposed into A={}TlI using an upper triangular matrix II 

and its transpose UT. The solution X~A-1B is obtained with the forward substitution 

Y=irTB and backward substitution X=~ly. 

2. Modified Cholesky decomposition method 

The coefficient matrix A is decomposed into A=lITlXJ using an upper unit triangular. 

matrix U, its transpose liT, and a diagonal matrix D. The solution X=A-1B is obtained 

with the forward substitution Y=irTB and backward substitution ·X=irID-1y. 

(4) Notes 

1. If the typical size of coefficient matrix elements is a, the value 10-6a (10-16a ) is 

adequate as the standard value of BPS for {CHOlFV(W) MCHlFV(W)}. 

~ Because DBT and IND are input-output arguments, constants must not be used as an actual 
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argument. 

3. When a solution with the same matrix is to be 'repeatedly obtained with only the right side 

column changed. the function of reusing the modified Cholesky decomposition component of this 

routine is particularly useful. It is more efficient in all of storage size. precision. and 

speed as compared with the method using the inverse matrix. 

( If the number M of right side columns is 1. the actual argument corresponding to X can be 

a one-dimensional array. However. KX~N must be met. 

<1987. 06. 19) 
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CHOLSK/CHOLSD (Solution of Symmetric Positive Definite Linear Bquations by Cholesky 

Method) 

Solution of Symmetric Positive Definite Linear Bquations by Cholesky Method 

Programm Ichizo Ninomiya. April 1977 
ed by 

Format Subroutine language: FORTRAN; size: 43 and 43 lines respectively 

(1) Out} ine 

CHOLSKlCHOLSD solves multiple simultane.ous lin~ar equa.tions thlt share a symmetric positive 

definite coefficient matrix. using Cholesky decomposition method. In other words. it finds the 

solution X=A-1B of the matricial equation AX=B.· 

(2) Directions 

CALL CHOLSK(A,KA,N,M,BPS. IND) 

CALL CHOLSD (A, KA. N. M. BPS. I NO) 

Argument ·Type and Attribut 

A 

KA 

N 

kind (*1) e 

Real type Input/ou 
Two-dimens tput 
ional 
array 

Integer 
type 

Integer 
type 

Input 

Input 

Content 

Input an augmented matrix with multiple right side columns 
added to the right of a symmetric positive coefficient 
matrix. Only the upper right half including the diagonal of 
the coefficient matrix need be input. When the matrix is 
processed with this routine, Cholesky decomposition 
components are output in the same place. The corresponding 
solution vectors are output in the corresponding right side 
columns. The lower left half of the coefficient matrix is 
preserved. If Cholesky decomposition components are 
preserved, the computation time required for Cholesky 
decomposition can be saved when another equation with the 
same coefficient matrix is to be solved. 

Value of the first subscript in the array declaration of A. 
KA~N 

Number of rows of A. It is also the order of equation. N~2 
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Argument Type and Attribut Content 

M 

EPS 

IND 

kind (*1) e 

Integer Input 
type 

Real type Input 

Number of columns of A. Sum of the order of equations and 
the number of right side columns. M~No If M = N. only 
Cholesky decomposition of the coefficient matrix is executed. 

Constant for dec!ding the positivity of A. If the value of a . 
pivot element in A is smaller than that of EPS, the input 
matrix is decided to be non positive definite, and the the 
calculation is interrupted. 
EPS>O 

.Integer 
type 

Input/ou Determines whether to reuse Cholesky decomposition components 
tput or not as an input. If IND = 0, normal. calculation is 

executed. If IND~O. the component is reused. 

Indicates the calculation status in the routine as an output. 
If limits on KA, N. M, and BPS are violated, 30000 is 

assumed. If calculation is interrupted at K-th stage of 
decomposition, K is assumed. If calculation is normally 
executed. 0 is assumed. 

*1 For CHOLSD, all real types are changed to double precision real types. 

(3) Remarks 

1. Because the argument IND is used for both input and output, a constant must not be written 

as an actual argument for it. 

2. Wh~n a number of equations that has the same coefficient matrix, but differ in the right 

side only are to be solved, computation time can be saved by using the facility for reusing the 

Cholesky decomposition components of this routine. 

3. If the typical size of matr ix elements is a, ax t 0-6(ax t 0-16) is adequate as the 

standard value of EPS for CHOLSK (CHOLSD). 

( CHOLFS/D routine that is similar to this routine but has much more facilities, and the 

CHLBDS/D routine for band matrix are available in NUMPAt 

7/ 

(1987.06. 17) (1987.08.07) 
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GAUELS/D/Q/C/B (Solution of Linear Equations by LU-Decomposition) 

Solution of Linear Equations by LU-Decomposition 

Programm Ichizo Ninomiya. April 1977 
ed by 

Pormat Subroutine language: PORTRAN (GAUELS/D is assembler); size: 180. 183. 53. 
43. and 44 lines respectively 

(1) OutI ine 

GAUELS/D/Q/C/B solves multiple simultaneous linear equations that share a coefficient matrix. 

using a modified Doolittle method a version of Gaussian elimination accompanied by row 

interchange for pivot selection. In other words. it finds the solution )(=A-t13 of the 

matricial equation A)(=13. 

(2) Directions 

CALL GAUELS/D/O/C/B (A, KA, N. M. EPS. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input/ou Input an augmented matrix in which right side columns are 
Two-dimens tput added to the right of the coefficient matrix. The solution 
iona! vectors are output in the corres~onding right side columns. 
array 

KA Integer Input Value of the first subscript in the array-A declaration. 
type KA~N 

N Integer Input Number of rows in A. that is. the order of the equation. N~2 
type 

M Integer Input The number of columns in A. that is. the order of the 
type equation plus the number of equations to be solved at the 

same time. ~f>N 

EPS Real type Input Criterion constant for matrix singularity. If the absolute 

value, of a pivot element is smaller than this constant. the 

input matrix is decided to be singular. and the calculation 

is interrupted. EPS>O 
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Argument Type and Attribut Content 
kind (*1) e 

ILL Integer Output ILL=O: Normal termination 

type ILL; 30000: Limits on ~ N. M. and HPS are violated. 

The number of the pivot element whose absolute value is 

sma 11 er than HPS. 

*1 Por GAUHLD (~ C, B), A is a double precision real type (quadruple precision real type. 

complex type, and double precision complex type). 

Por GAUHLD (~ CB), HPS is a double precision real type (quadruple precision real typ~ 

real type, and double precision real type). 

(3) Remarks 

1. If the magnitude of coefficient of equations differ significantly, it is desirable to 

normalize the equations in advance using MNORMS and MNORMD to insure precision in the results. 

2. If the typical absolute value of elements in a coefficient matrix is to be a, 

ax 10-6(ax 10-16 ,ax 10-3°) is adequate as the standard value of HPS for GAUHLS and (GAUHLD, 

GAUHLO). 

3. If there is no special reason. it is recommended to use LHOLUS with high precision and 

various facilities, as a simultaneous linear equation solver. 

(1987. 06. 17) (1987. 08. 07) 
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GSORSS/D (Solution of lin~ar equations for sparse matrices. by SOR method (compact mode» 

Solution of Linear Bquations for Sparse Matrices by SOR Method(Compact Mode) 

Programm Yasuyo Hatano 1977. Revised: Ichizo Ninomiya 1982 

ed by 

Pormat Subroutine language; PORTRAN Size; 49 and 50 lines respectively 

(1) Out line 

Bach of these subroutines solves linear equations with coefficient matrices including many 0 

elements. To do thi~ it uses the SOR (successive over-relaxation) method based on the 

Gauss-Seidel method. This routine is used when only non-zero elements of coefficient matrices 

are reduced to a one-dimensional system by the compact mode and input. 

(2) Directions 

CALL GSORSS/D(IJTAB. A. LA. B. N. X. BPS. OMG. IMAX. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

IJTAB Two bytes Input The numbers of rows and columns with non-zero elements are 
: 

In.teger input to IJTAB (1. K) and IJTAB (2. K) .respectively. Suppose 

type A(K)=aij. for instance. t~en input 

Two-dimens IJTAB(1. K) = i. 

ional IJTAB (2. K) = j. 

array The values are not retained. 

A Real type Input Only non-zero elements of the coefficient matrix are input 

one-dimens in a row. 

ional The values of i, j are rearranged in ascending order. 

array divided by the pivot element. and put in this argument. 

Note that the values are not retained. 
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~ 

,~ 

Argument Type and Attribut 

kind (*1) e 

LA Integer Input 

type 

B Real type Input 

one-dimens 

ional 

array 

N Integer Input 

type 

X Real type Input/ou 

one-dimens tput 

ional • 

array 

EPS Real type Input 

OMG Real type Input 

lMAX Integer Input/ou 

type tput 

ILL Integer Output 

type 

Content 

Number of non-zero element~ of coefficient matrix 

One right-hand side column is input. It is then divided by 

the pivot element and output. The value is not retained. 

Number of unknowns of equation. 2~N 

Input: Initial value of solution vector. 

Output: Solution vector after iterative calculation. Size, 

N. 

Tolerance for r.onvergence test in iteration method~ 

When all correction quantities of solution vectors are 

below EPS, it is assumed that convergence has occurred. 

Acceleration factor for convergence in iteration method. 

I~OMG<2 

Input: Upper limit of the number of iterations. O<JMAX. 

Output: Actual number of iterations until convergence of 

solution vectors 

ILL=O: Normal termination 

'ILL=30000: The restrictions on N or OMG are not observed. 

ILL=25000: IJTAB error 

ILL=K: Calculation is not done because the diagonal element 

on Kth row is O. 

ILL=IMAX: Convergence does not occur in IMAX iterations. 

*1 Por double precision subroutines, real types are all assumed to be double precision real 

types. 
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7b 

(3) Bxample 

00010 
00020 
00021 
00030 
00040 

c.... TEST OF GSORSS •••• 

.00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 
00270 
00280 
00290 
00300 
00301 
00310 
00320 
00330 
00331 
00340 
00341 
00350 
00360 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 

DIMENSION V(41,31),IV(41,31),AC4500),X(1000), 
1 B(1000) 

INTEGER*2 IJTAB(2,4S00) 
EQUIVALENCE (V,IV) 
M=41 
N=31 
IMAX=1000 
EPS=1.E-4 
OMG=1.8 
DO 20 J=2,30 
DO 20 1=2,40 

20 IVCI,J)=1 
DO 21 J=1,31 
V(1,J)=0. 

21 V(41,J)=0. 
DO 22 1=12,40 
V(I,1)=0. 

22 V(I,31)=0. 
DO 23 1=2,11 
DO 23 J=1,11 
V(I,J)=O. 

23 V(I,J+20)=0. 
DO 24 J=11,21 
DO 24 1=21,31 

24 V(I,J)=100. 
WRITE(6,601) «IVCI,J),J=1,31),1=1,41) 
LA=4S00 
NA=1000 
CALL CLOCKM(ITO) 
.CALL LAPLSS(V,IV,M,M,N,IJTAB,A,LA,B,NA,X,EPS,OMG, 

2 IMAX,ILL) 
tALL CLOCKMCIT) 
IT=IT-ITO 
WRITE(6,600) ILL,NA,LA,IT,IMAX,C(VCI,J),J=1,16), 

3 1=1,41) 
600 FORMATC1H111110X,SHILL =,I6,5X,4HNA =,17,5X,4HLA 

4 =,15 
*,5X,6HTIME =,I7,5X,6HITER =,I711IC~X,16F8.3» 

DO 40 1=1,41 
DO 40 J=1,31 

40 IVCI,J)=VCI,J)+O.S 
555 WRITEC6,601) CCIVCI,J),J=1,31),1=1,41) 
601 FORMAT(1H111IC5X,3114» 

STOP 
END 
SUBROUTINE LAPLSSCV,IV,KV,NR,NC,IJTAB,A,LA,B,NA,X 

*,EPS,OMG,IMAX,ILL) 
DIMENSION VCKV,NC),IVCKV,NC),ACLA),BCNA),XCNA) 
INTEGER*2 JJTABC2,LA) 
IF(NR.LT.3.0R.NC.LT.3.0R~KV.LT.NR.OR. 

* EPS.LE.0 •• OR.OMG.LT.1 •• 0R.OMG.GE.2.) GO TO 130 
NR1=NR-1 
NC1=NC-1 
N=O 
L=O 

~ 

vJ 
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00530 DO 70 J=2,NC1 
00540 LB=1 
00550 DO 60 I=2,NR1 
00560 IFCIVCI,J).NE.1) GO TO 50 
00570 N=N+1 
00580 IF(N.GT.NA) GO TO 120 
00590 X(N)=O.O 
00600 IVCI,J)=N 
00610 LEFT=IVCI,J-1) 
00620 IFCLEFT.GT.O.AND.LEFT.LT~N) GO TO 10 
00630 BCN)=VCI,J-1) 
00640 GO TO 20 
00650 10 L=L+1 
00660 ACL)=-1.0 
00670 IJTABC1,L)=LEFT 
00680 IJTABC2,L)=N 
00690 20 IFCLB.EQ.O) GO TO 30 
00700 BCN)=VCI-1,J)+BCN) 
00710 GO TO 40 , 
00720 30 L=L+1 
00730 ACL)=-1.0 

~ 00740 IJTABC1,L)=N-1 
00750 IJTABC2,L)=N 
00760 40 L=L+1 
00770 IFCL.GT.LA) GO TO 120 
00780 ACL)=4.0 
00790 IJTABC1,L)=N 
00800 IJTABC2,L)=N 
00810 IFCIVCI+1,J).NE.1) B(N)=VCI+1,J)+BCN) 
00820 IFCIVCI,J+1).NE.1) BCN)=VCI,J+1)+BCN) 
00830 LB=O 
00840 GO TO 60 
00850 50 LB=1 
00860 60 CONTINUE 
00870 70 CONTINUE 
00880 NA=N 
00890 KM=L 
00900 DO 80 K=1,KM 
00910 IFCACK).NE.-1.) GO TO 80 
00920 L=L+1 
00930 IFCL.GT.LA) GO TO 120 

~ 00940 ACL)=-1.0 
00950 IJTABC1,L)=IJTABC2,K) 
00960 IJTABC2,L)=IJTABC1,K) 
00970 80 CONTINUE 
00980 LA=L 
00990 CALL GSORSSCIJTAB,A,LA,B,NA,X,EPS,OMG,IMAX,ILL) 
01000 IFCILL.NE.O) GO TO 110 
01010 DO 100 J=2,NC1 
01020 DO 90 I=2,NR1 
01030 L=IVCI,J) 
01040 IFCL.LE.O.OR.L.GT.NA) GO TO 90 
01050 VCi,J)=XCL) 
01060 90 CONTINUE 
01070 100 CONTINUE 
01080 RETURN 
01090 110 ILL=10000 
01100 RETURN 
01110 120 ILL=20000 
01120 RETURN 
01130 130 ILL=30000 
01140 RETURN 
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'78' 

01150 END 

(4) Note 

If the coefficient matrices are positive definite symmetri~ the Gauss-Seidel method (when 

DMG=l) converges. Furthermore, if the sum of absolute values of non-diagonal elements on each 

row is smaller than that of diagonal elements, that is, if 

N 

E I Qi i I < I QH I 
i e ) 

is met, then convergence occurs. However, this is effective only when the right-hand side is 

sufficiently larger than the left-hand side and DUG is adequate. 

Bibliography 

1} Hayato Togawa; »Numerical calculation of matrices, » page 64, Dhm-sha (1971) 

(1987. 06. 19) 
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LAPLBS/VS/SS/CS (Solution of 2-dimensional Laplacian equation) 

Solution of 2-Dimensional Laplacian Bquation 

Programm Ichizo Ninomiya. Yasuyo Hatano. and Tsuyako Miyakoda; September 1982 

ed by 

Format Subroutine language; FORTRAN77 Size; 07. 69. 73. and 73 lines 

respectively 

(1) Outline 

Bach of these subroutines solves a Dirichlet boundary value problem of two-dimensional 

Laplacian equations by five-point difference approximation with uniform orthogonal mesh. When 

the mesh division of the solution region and the distribution of the boundary values are given. 

it automatically generates a five-point difference approximation equation. and solves it by the 

corresponding method as follows: 

LAPLBS: Modified Cholesky decomposition method for symmetric band matrix 

LAPLVS: Cholesky "decomposition method for symmetric band matrix of variable width 

LAPLSS: SOR method for sparse matrix 

LAPLCS: Conjugate gradient method with preconditioning for sparse matrix 

(2) Dlrections 

CALL LAPLBS(V. IV. KV. NR. NC. A, LA. NA. S, IND) 

CALL LAPLVS(V. IV, KV. NR, NC, A, LA, NA, NB, S, IND) 

CALL LAPLSS(V. IV, KV, NR, NC, IJTAB, A, LA, B, NA. X. EPS, mm, IMAX, ILL) 

CALL LAPLCS (V, IV, KV, NR. NC, I JTAB, A, LA, B, NA, X, EPS, OMG. I MAX. I W. 1':. ILL) 

177 
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Argument Type and Attribut 

kind (*l) e 

Content 

v Real type Input/ou Solution region. V and IV are connected by the EQUIVALENCE 

IV 

KV 

NR 

NC 

IJTAB 

A 

two-dimens tput 

ional 

array 

lnteger 

type 

two-dimens 

ional 

array 

Integer 

type 

Integer 

type 

Integer 

type 

Integer. 

type 

one-dimens 

ional 

array 

Input/ou 

tput 

Input 

Input 

Input 

Output 

Real type Output 

one-dimens 

ional 

array 

statement to be assig~ed to the same region. It is then 

used appropriately for V or IV depending on purpose. 

Input: A boundary value is input in V in the boundary 

point, IV=! in inner points, and IV=O in the other points. 

Output: A solution is output in the interior point as V. 

(See the example.) 

Adjustable dimension of V(IV}. KV~NR 

Number of rows of V(IV}. NR~3 

Number of columns of V(IV}. NC~3 

Numbers of rows and columns of non-zero coefficients of 

equat ion. 

Size LA. 

Equation coefficients {non-zero coefficients for LAPLSS/D 

and LAPLCS/D} are generated and processed. Size LA. 
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Argument 

LA 

B 

NA 

S 

x 

BPS 

OMG 

IlIAX 

IW 

Type and Attribut Content 

kind (*1) e 

Integer 

type 

Input/ou Input: Bstimation of the total number of equation 

tput coefficients. 

Real type Output 

one-dimens 

ional 

array 

Output: Total number of equation coefficients. 

Right-hand side vector of equation. Size N~ 

Integer Input/ou Input: Bstimation of the number of unknowns of equations. 

type tput 

Real type Output 

one-dimens 

ional 

array 

Output: Number of unknowns of equations. 

Solution vector. Size N~ 

The same is output also in V. 

Real type Input/ou Input: Initial approximation vector of solution. 

one-dimens tput 

ional 

array 

Real type Input 

Output: Solution vector. The same is output also in V. 

Size NA. 

Criterion for convergence test. BPS>Q 

Real type Input Acceleration factor. l:iOMG<2 

Integer 

type 

Integer 

Input/ou Input: Upper limit of the number of iterations. 

tput Output: Number of iterations. 

Work Size LA. 

type area 

one-dimens 

ional 

array 

~\ 
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Argument Type and Attribut Content 

kind (*1) e 

W Real type Work .The size is 6*NA. 

one-dimens area 

ional 

array 

IND Integer Input/ou Input: IND=O: A coefficient matrix is generated and 

type tput decomposed. A right-hand side vector is generated 

and solved. 

IND*O:Generation and. decomposition of a coefficient 

matrix is omitted, and only a right-hand side vector 

is generated and solved by using the result of the 

prev i ous ca 11. It is useful to repeat calculation 

for the same region with different boundary values. 

Output: IND=O: Normal termination. 

IND=lOOOO: Cholesky decomposition was interrupted. 

IND=20000: LA or NA is too small. 

IND=30000: Parameter error. 

ILL Integer Output ILL=O: Normal termination. 
, 

type ILL=lOOOO: The number of iterations· exceeded the upper 

limit. 

ILL=20000: LA or NA is too small. 

ILL=30000: Parameter error. 

(3) Example 

The program shown below uses LAPLBS to solve the Laplacian equations for a convex region with a 

rectangular hole, whose external boundary value is 0, and whose internal boundary value is 100. 

KKK=l (IND=O) indicates an ordinary usage. 

KKK=2 (IND=l) indicates how to reuse the decomposed components of a coefficient matrix. 
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DIMENSION V(41,31),IV(41,31),A(36900),X(1000) 
EQUIVALENCE (V,IV) 
DO 555 KKK=1,2 
DO 20 J=2,30 
DO 20 1=2,40 

20 IVCI,J)=1 
DO 21 J=1,31 
VC1,J)=0. 

21 V(41,J)=0. 
DO 22 1=12,40 
VCI,1)=0. 

22 VCI,31)=0. 
DO 23 1=2,11 
DO 23 J=1,11 
VCI,J)=O. 

23 VC1,J+20)=0.· 
DO 24 J=11,21 
DO 24 1=21,31 

24 VCI,J)=100. 
IFCKKK.EQ.l) WRITEC6,601) CCIVCI,J),J=1,31),I=1,41) 
M=41 
N=31 
IND=KKK-l 
NA=1000 
LA=36900 
CALL CLOCKMCITO) 
CALL LAPLBSCV,IV,M,M,N,A,LA,NA,X,IND) 
CALL CLOCKMCIT) 
IT=IT-ITO 
WRITEC6,600) IND,NA,LA,IT,CCVCI,J),J=1,16),I=1,41) 

600 FORMATC1H111110X,5HILL =,I6,5X,4HNA =,I7,5X,4HLA =,17 
*,5X,6HTIME =,17111(5X,16FB.3» 

DO 40 1=1,41 
DO 40 J=1,31 

40 IV(I,J)=VCI,J)+0.5 
555 WRITEC6,601) CCIVCI,J),J=1,31),I=1,41) 
601 FORMATC1H111IC5X,31I4» 

STOP 
END 

A program that solves the· same problem by using LAPLSS and the source program of LAPLSS are 

shown in the e~amp I.e of GSORSS. 

(4) Notes 

1. For the method of solving the difference equation generated. see the direction of each 

corresponding subroutine as follows: 

LAPLBS············UCHLBS 

LAPLVS············CHLVBS 

LAPLSS············GSORSS 

LAPLCS········:···PRCGSS 
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~ It is recommended to allocate a solution area in m x n matrices where m (columns) is larger 

than n (rows). This can reduce the band width of the coefficient matrices generated and also 

save the storage capacity and computation time. 

3. When calculation is repeated in the same region with different boundary values by using the 

LAPLBS or LAPLVS subroutine, the subroutine's facility of reusing the Cholesky-decomposed 

components is very effective to save computation time. Refer to the explanation of IND and the 

example. 

( When LAPLSS or LAPLCS is used, it is desirable to put a value as close as possible to the true 

solution into the initial value (X) of the solution vector. If sufficient information for it is 

not available, however, a zero vector, for instance, or a vector whose components are all equal 

to the average boundary value can be used. 

(1987.06.19) 
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LEQBDS/D/Q/C/B (Solution of Linear Equations with Band l{atrix of Coefficients by 

Gaussian Elimination) 

Solution of Linear Equations with Band Matrix of Coefficients by Gaussian Elimination 

Programm Ichizo Ninomiya. September 1978 
ed by 

Format Subroutine language: FORTRAN; size: 80. 80. 80. 81. and 80 lines 
respectively 

(1) Out 1 ine 

LEQBDS/D/Q/C/B finds the solution X=A-1B of the simultaneous linear equation AX=B with 

a band matrix A as coefficient matrix and multiple right side columns B using the Gaussian 

elimination accompanied by row interchange for piv~t selection. It has facility for reusing the 

ill-decomposition elements of A obtained by the elimination . 

. " 

(2) Direct ions 

CALL LEQBDS/D/Q/C/B(A.KA.N. NB.LB.MB. X. KX. NX.MAX. EPS. IND) 
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Argument Type and Attrihut Content 
kind (*1) e 

A Real type Input/ou Transform the coefficient band matrix into a rectangle form. 
Two-dimens tput that is. the I and J elements in an original matrix is stored 
ional in A (J-l+LB. I) (Sce the figure). The LU decomposition 
array elements processed by this routine are output. 

KA Integer Input Value of the first subscript in the array declaration of k 
type KAE1:NB 

N Integer Input The order of an equation. that is. the number of columns in 
type k N~NB 

NB Integer . Input Total band width (see the figure). It is also the number of 
type rows in k NB>LB 

LB Integer Input Left band width (see the figure). LB~2 
type 

MB Integer Output Number of rows in A after processing. MB~KA must hold. 
type 

X Real type Input/ou If the right side columns are input. the solution vectors are 
Two-dimens tput output in the corresponding place. 
ional 
array 

KX Integer Input Value of the first subscript in the array declaration of X. 
type KX~N 

NX Integer Input Number of columns in l Only A is processed when NX~O. 
type 

MAX Integer Output One-dimensional array containing N elements. It stores 
type information on row interchange. and is used when LU elements 
One-dimens are reused. 
ional 
array 

EPS Real type Input Criterion constant for matrix singularity. If the absolute 

value of pivot elements is smaller than that of EPS. the 

input matrix is decided to be singular. and calculation is 

interrupted. EPS>O 
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Argument Type and Attribut Content 
kind (*1) e 

This argument ha~ the following meaning as an input. If 

IND Integer Input/ou IND=O. it indicates that an equation should be solved from 

type tput the beginning starting from the elimination. If INDi=O. it 

indicates that a solution should be obtained immediately by 

reusing the LU decomposition elements previously obtained and 

skipping the elimination. A and MAX must be left unchanged 

in the state of the previous call. 

This argument has the following meaning as an output. 0: 

When calculation terminates normally. 30000: When no 

calculation is executed because limits on the argument are 

violated. K: When a matrix is decided to be singular, and 

the elimination is interrupted at the Kth step 

*1 For'LEQBDD (~ C, B), A and X are double precision real tipes (quadruple precision real 

type, complex type. and double precision complex type). 

For LEQBDD (~ C, B), EPS is a double precision real type (quadruple precision real type. 

real type, and double precision real type). 

(3) Example of use 

This example shows a program for solving an equation with order N=1000, total band width NB=7 

and left band width LB=3. 

C TEST FOR LEQBDS 
DIMENSION A(10,1000),MAX(1000),XC1000) 
N=1000 
NB=? 
LB=3 
KA=10 
EPS=1.0E-6 
NX=1 
C=1. 
DO 10 I=1,N 
AC1,I)=C 
AC2,I)=-C 
AC3,I)=0. 
AC4,I)=0. 
ACS,I)=C 
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A(6,I)=0. 
10 A(7,I)=-C 

DO 20 L=1,2 
INO=L-1 
DO 11 I=1,N 

11 X(I)=O.O 
X(2)=-C*C 
X(N-2)=C*C 
X(N-3)=C*C 
CALL CLOCKM(KO) 
CALL LEQBOS(A,KA,N,NB,LB,MB,X,N,NX,MAX,EPS,INO) 
CALL CLOCKM(K1) 
KO=K1-KO 
AM=O.O 
DO 12 I=1,N 
AA=ABS(X(I)-C) 
IF(AA.LE.AM) GO TO 12 
AM=AA 
MM=I 

12 CONTINUE 
WRITE(6,600) IND,KO,AM,MM,MB 

600 FORMAT(//10X,'ILL=',I6,SX,'TIME =',I6,SX'ERR=',1PE10.2, 
*SX,'IMAX ='I6,5X,'MB=',I6/) 

20 CONTINUE 
STOP 
END 

(4) Remarks 

1. Since this routine posesses facilities of simultaneous solution of multiple right hand sides 

and reuse of LU decomposition components, it can play the role of both a linear equation solver 

and an inverse matrix routine. The reuse of LU decomposition components is especially 

impottant. 'This el iminates the needs for inverse matrix calculation. 

2. Because rows are interchanged, if necessary, for pivot selection, the number of columns of 

the coefficient matrix normally becomes greater than that in the initial state. Thus, KA must be 

assigned so that MB~KA. Because MB=NB+LB-l even in the worst case, KA=NB+LB-l should be 

assigned for safety. 

a If equation coefficients differ significantly in siz~ it is desirable to normalize the 

coefficient matrix in 'advance so that the maximum absolute value of each equation coefficient is 

in the order of 1 

4. If the typical size of elements in a coefficient matrix is a, ax 10-6(ax 10-16
) is 

adequate as the standard value of BPS for LBQBDS (LBQBDD). 

5. If a coefficient matrix consists of symmetric positive definites, it is wise to use the 

special routine CHLBDS. 
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cR~ 
6. Beca~se the. argument INO is lused for;·both.:input and output •. ··.a :constarit must not be used as 

an actual argument for it. 

(1987. 06. 22) (1987. 08. 07) 

.~ 

~ 
., :; .t. 

+ •• -
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LEQBDV IW/X/V (Solution of linear equations with band matrix of coefficients by Gaussian 

elimination - vector version -) 

Solution of Linear Bquations with Band Matrix of Coefficients by Gaussian Blimination 

-Vector Version-

Programm Ichizo Ninomiya; May 1986 

ed by 

Format Subroutine language; FORTRAN Size; 146. 147. 149. and 150 

respectively 

(1) Outl ine 

Each of these subroutines determines the solution X=A-JB of the linear equation AX=B having 

band matrix A as a ~oefficient matrix and right-hand side matrix B by the Gaussian Blimination 

involving row interchange for pivoting. It has the facility to reuse LU-decomposition components 

of A. 

{2) Directions 

CALL LBQBDV!W/X/Y (A, KA. N. NB. LB. MB. X. KX. NX. MAX. BPS. W. I NO) 

Argument Type and Attribut Content 

kind (*1) . e 

A Real type Input/ou A band matrix of coefficients·transformed to a rectangular 

Two-dimens tput form is input. That is. elements I and J of the original 

ional matrix are put in A (J-I+LB. I). (See the figure for LBQBOS.) 

array After processing by this routine. LU-decomposition components 

are entered. 

KA Integer Input Value of the first subscript in array declaration of A. 

type KA~NB 

N Integer Input Number of unknowns of the equation. or number of columns of 

type A. N~NB 

~ 
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Argument Type and 

NB 

LB 

MB 

Integer 

type 

Integer 

type 

Integer 

-type 

Attribut Content 

Input Total band width (See the figure.) Number of rows of k NB>LB 

Input Left band width (See the figure.) LB~2 

Output Number of rows of A after processing. MB~KA must be met. 

X Real type Input/ou Right hand side columns are input. and corresponding solution 

KX 

NX 

MAX 

EPS 

two-dimens tput 

ional 

array 

Integer 

type 

Integer 

type 

Integer 

type 

one-dimens 

ional 

array 

Input 

Input 

Output 

Real type Input 

Real type Work 

one-dimens area 

ional 

array 

vectors are output. 

Value of the first subscript in array declaration of X. KX~N 

Number of columns of X. Only A is processed when NX~O. 

One-dimensional array with the N elements. Information 

concerning row interchange is kept in it. It is needed when 

LU-decomposition components are reused. 

Criterion constant of singularity of coefficient matrix. 

When the absolute value of an pivot element is smaller than 

EPS. the coefficient matrix is decided as singular and 

calculation is interrupted. EPS>O 

One-dimensional array of size LB+NB. 
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Argument Type and Attribut Content 

kind (*1) e 

IND Integer Input/ou Input: IND=O indicates that the equation will be solved 

type tput starting with elimination from the beginnin~ IND:#=O 

indicates that it will be solved immediately by reuse of the 

LU-decomposition components obtained previously. For this 

case, A and MAX must hold the content of the previous call. 

Output: o indicates normal termination of calculation. 

30000 indicates that no calculation has been done because the 

restrictions on the argument were not observed. K indicates 

that the equation was decided as singular and elimination 

terminated at step l 

*1 ~ X. and Ware assumed to be double precision real types (complex type and double precision 

complex type) for LEQBDW(X. V). 

EPS is changed to a double precision real type for LEQBDW/Y. 

(3) Example 

A program for solving an equation with 1000 unknowns (N=1000), total band width 7 (NB=7). and 

left band width 3 (LB=3) is shown below: 

C' TEST FOR LEQBDV 
DIMENSION AC10,1000),MAXC1000),XC1000),WC1000) 
N=1000 
NB=7 
LB=3 
KA=10 
EPS=1.0E-6 
NX=1 
C=1. 
DO 10 I=1,N 
AC1,I)=C 
AC2,I)=-C 
AC3,I)=0 
AC4,I)=0 
ACS,I)=C 
AC6,I)=0. 

10 AC7,I)=-C 
DO 20 L=1,2 
IND=L-1 
DO 11 I=1,N 

11 XCI)=O.O 
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~ 

~ 

X(2)=-C*C 
XCN-2)=C*C 
XCN-3)=C*C 
CALL CLOCKMCKO) 
CALL LEQBDVCA,KA,N,NB,LB,MB,X,N,NX,MAX,EPS,W,IND) 
CALL CLOCKMCK1) 
KO=K1-KO 
AM=O.O 
DO 12 I=1,N 
AA=ABSCXCI)-C) 
IFCAA.LE.AM) GO TO 12 
AM=AA 
MM=I 

12 CONTINUE 
WRITEC6,600) IND,KO,AM,MM,MB 

600 FORMATC//10X,'ILL =',I6,5X,'TIME =',I6,5X,'ERR = 
1 ',1PE10.2, 5X,*'IMAX =',I6,5X,'MB =',16/) 

20 CONTINUE 
STOP 
END 

(4) Notes 

1 This routine has the facilities of simultaneous processing of multiple right-hand columns 

?-3 

and reuse of LU-decomposition components. Therefore. it can work as both a linear equation 

routine and an inverse matrix routine. Especially. the reuse of LU-decomposed components 

is important. It almost eliminates the need for calculation of inverse matrices. 

2. Because rows are interchanged for pivoting. if necessary. the original number of columns of. 

the coefficient matrix generally increases. Therefore. KA must be prepared to meet the 

condition MB~KA. 

Because MB=NB+LB-l even in the worst case. it is safe to take KA=NB+LB-l. 

3. If there is a large difference between the size of the coefficients of the equations." it is 

desirable to normalize the coefficient matrix beforehand so that the maximum absolute value 

of the coefficient of each equation becomes the order of 1. 

4. The recommended standard value of BPS is about ax 10-6(ax 10-16) for LBOBDV/X (LEOBDW/Y) 

when the typical size of an element of the coefficient matrix is supposed to be a. 

5. For a positive symmetric coefficient matrix. it is wiser to use special routines such as 

CHLBDV. 

6. Argument IND is used for both input and output. So. do not use a constant as the actual 

argument for this. 

<1989. 04. 06) 
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LEQLSS/D/Q/C/B 

(least squares solution and minimum norm solution of general system of linear equations by 

Householder transformation) 

Least Square and Minimum Norm Solutions of General Simultaneous Linear Equations by Householder 

Transformation 

Programm Ichizo Ninomiya March. 1979 

ed 

Format Subroutine Language; FORTRAN Size; 94. 94. 94. 94 lines 

(1) Outline 

When matrix A with m rows n columns (m~ne: 1) and n as rauk and matrix B with m rows 1 

co I umns are given. 

Least squares solutio~ X=(ATA)-lATB (n rows 1 columns) <X=(ATA)-lA-TB for complex number) 

of overdetermined system of linear equations AOr=B is calculated by A triangulation with 

Householder transformation. When the simi lar matrix A and matrix B with n rows k columns are 

given. minimum norm solution X=A(ATA)-lB (m rows k columns) (X=A (ATA)-lB) for complex 

number) of underdetermined system of linear equations ATX=B is calculated with a similar 

method. 

(2) Direct ions 

CALL LEQLSS/D/Q/C/B (At KA. M. N. X. KX. NX. BPS. R. Q, I SW. ILL) 

Argument Type and Attribut Content 

kind * e 

A Real type Input Coefficient matrix. Triangulation is done by Householder 

Two-dimens tr ansf orma t ion. 

ional 

array 
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Argument Type and Attribut 

kind * e 

KA 

N 

Integer 

type 

Integer 

type 

Integer 

type 

Input 

Input 

Input 

Content 

Value of the first subscript in array declaration of ~ KA~M 

Number of rows of ~ M~N 

Number of columns of ~ N~l 

X Real type Input/Du When risht side matrix B is input to call tbis routine, 

KX 

NX 

BPS 

R 

Q 

Two-dimens tput 

ional 

array 

Integer· Input 

type 

Integer 

type 

Input 

Real type Input 

Real type Output 

One-dimens 

ional 

array 

Real type Work 

one-dimens area 

ional 

array 

solution matrix X is generatpli. Two-dimensional array with M 

rows NX columns. 

Value of the first subscript in array declaration of X. KX~M 

Number of columns of X. Only triangulation of A is done if 

NX~O. 

The criterion constant E for the rank degeneration of A. The 

rank is judged to be degenerat~d when the absolute value of 

the diagonal element is smaller than that of 11 Alii- E in the 

process of ~riangulatio~ and the processing is interruptet 

The minimum unit of the round-off error is set as a standard 

value if BPS~O. 

One-dimensional array of size NX. The residual norm or the 

norm of each solution vector (each column of X) is generated. 

One-dimensional array of size N. 
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Argument Type and Attribut Content 

kind :I: e 

ISW Integer Input The least squares solution is calculated if ISW~O and the 

type minimum norm solution is calculated if ISW<O. The 

triangulation of A is done if IISWI~I. and the triangulation 

of A is omitted if IISWI>~ 

ILL Integer Input ILL=O: Normal termination. 

type ILL=20000: Rank degeneration. 

ILL=30000: Input variable-error 

* All real types are assumed to be a double precision real type if the subroutine is for double 

precision. 

~ X. and Q are assumed to be a (double precision) complex type if the subroutine is for the 

(double precision) complex number. 

(3) Performance 

In the current method to calculate the least squares solution (minimum norm solution). ATA is 

created from coefficient matrix A(AT) and system of linear equations with this as a coefficient 

is solved. Therefore. the condition of the equation deteriorates and it is difficult to obtain 

the solution with good accuracy. 

On the other hand. the condition does not deteriorate in thi~ routine because A is transformed 

into upper triangular matrix lI=IIA without creating ATA by Householder's orthogonal 

transformation 11. Therefore. the accuracy of the solution is excellent though it is a little 

inferior to the current method in the point of quantity of calcGlation. 

The following table shows the result of the accuracy experiment of the numerical solution when 

A is the first N column of Hilbert matrix (aij=l/(i+j-l)) of the order M. and B is given 

so that all elements of the strict solution may become 1. 

Least N=10 Minimum N=10 
squares norm 
solution solution 

M=10 I M=20 M=10 I M=20 
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LEQLSD 5 digits 8 digits 6 digits 4 Digits 

Current method IND=8 IND=9 IND=8 IND=9 
I 

CHOLPD using interrupte interrupte interrupte !nt:rupte 
d d d 

- ------- --

(4) Example 

The following program is to calculate the least squares solution in the above experiment: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 10 
12 
13 
14 600 
15 
16 

(5) Calculation method 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION A(20,10),X(20),Q(10) 
M=20 
N=10 
EPS=1.0D-17 
ISW=O 
DO 10 I=1,M 
X(I)=O.ODO 
DO 10 J=1,N 
A(I,J)=1.0DO/DFLOAT(I+J-1) 
X(I)=A(I,J)+X(I) 
CALL LEQLSD(A,M,M,N,X,M,1,EPS,R,Q,ISW,ICON) 
WRITE(6,600) ICON,R,(X(I),I=1,N) 
FORMAT(1H1,I10,D25.17/(1H ,10X,D25.17» 
STOP 
END 

Matrix M with m rows n columns (m~n~ 1) and vector v of the order m are divided into two 

parts with m-n rows and n rows and written as follows 

M= ( ~~) v= ( ~ ) 

The following explains the case when the right side is vector o. 
1. Least squares solution 

Norm 11 r 11°2 of residual r=Ax-b is minimized. lIouseholder's orthogonal transformation matrix 

11 is multiplied to the left of A 

IIA=( ~ ) 

, where Ut is the right upper triangular matrix, and Oz is zero matrix. 

It is sufficient to minimize IIl1r 112 because IIr=IIAx-lIb ana IIl1r 112 .... 11 r 112. Putt ing 

Hb=( ~!) 

1(. 
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we have 

( 
Ulx:bl ) 

Hr= -b2 

Therefore, the least squares solution is calculated as x--Utlbl by Back-substitut ion method 

of the upper triangular matrix and the folowing rElation holds : 

IIrll2 - IIHrll2 - 11 b211 

2. Minimum norm solution 

Out of the infinitely many solutions of ATx=b, the one with minimum IIxll2 is calculated. 

(HA)THx-~ is obtained by the same conversion as that for the least squares solution. Putting 

y=Hx, we obtain 

(UI T02 T) (~J) =b 

, that is, U I T YI=b. 

The minimum norm solution of this Y is calculated by forward substitution method of lower 

triangular matrix UI T and is given by 

_( ll1Tb ) 
Y- 02 

, where D2 is assumed to be zero vector of the order m-n. When we ca I cu I ate X by x=HT Y 

from y, X is the minimum norm solution because of IIxll2 - IIHTYll2 - lIyll2. 

(6) Note 

1. To solve system with identical A and different 13 many times, it is recommended to set 

! ISW! ~1 in the first call. and to set ! ISW! ~2 in the subsequent calls with A and Q 

preserved, since in this way Householder transformation can be omitted. 

2. When the rank of A is smaller than n, this subroutine cannot handle it. In such a case, it 

is better to use subroutine LSMNS/D based on the singular value decomposition. 

(1987.06.23) (1987.08.07) (1987.08. 11) (1987.08.21) 

~ 

~ 
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LEQLUS/D/Q/C/B/Z (Solution of linear equations by LU-decomposition method) 

Solution of Linear Bquations by LU-Decomposition Method 

Programm Ichizo Ninomiya; April 1977 
ed by 

Pormat Subroutine language; PORTRAN (assembler for LBQLUS/D only) 
Size; 293. 241. 7t 75. and 76 lines respectively 

(1) Outline 

A number of linear equations that share a coefficient matrix are solved by the LU-decomposition 

method involving a row exchange for pivotin~ That is. a solution )(=A- I13 of matrix equation 

A)(=13 is obtained. 

(2) Directions 

CALL LBQLUS/D/Q/C/B/Z(~KA.N.X.KX.~DET.MAX.BPS. IND) 

Argument Type and Attribut Content 
Kind (*1) e 

A Real type Input/ou Specify a coefficient matrix. An LU-decomposition component 
Two-dimens tput of the coefficient matrix is determined and is overwritten. 
ional When this component is stored. it can be reused to eliminate 
array the need for repeated LU-decomposition and thereby save 

computation time if an equation with the same coefficient 
needs to be solved at a later time (see the description of 
MAX and I ND) . 

KA Integer Input Value of the first subscript in array declaration of ~ KA~N 
type 

N Integer Input Number of unknowns of the equation. that is. the number of 
type rows in ~ N~2 

X Real type Input/ou Specify several right-hand side columns of the equation. 
Two-dimens tput After processing of this routine, solution vectors which 
ional correspond to individual columns are overwritten. 
array 

KX Integer Input Value of the first subscript in array declaration of X. KX~N 
type 
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Argument Type and Attribut Content 
Kind (*1) e 

M Integer Input Number of right-hand side columns, that is, the number of 
type columns of matrix X. M~O 

If M = 0, only LU-decomposition of the coefficient matrix is 
done but the equation is not solved. 
If M = 1. a one-dimensional array is acceptable for the real 
argument of X. 

DHT Real type Input/ou If DHT~O. a coefficient determinanf is output. 
tput If DHT=O. the value remains unchanged. 

~X Integer Output Information concerning the row exchange in LU-decomposition 
type is entered using the name of one-dimensional array having the 
One-dimens N number of elements. It is useful to store this 
ional information because it can be reused if an equation of the 
array same coefficient needs to be solved later. 

HPS Real type Input Criterion constant for singularity of coefficient matrix. 

The calculation is interrupted because of singularity if the 
~ 

absolute value of a pivot element becomes smaller than this 

constant. HPS>O 

As an input variable. IND=O indicates that the equation 

IND Integer Input/ou should be solved by LU-decomposition, and IND~O indicates 

type tput that the equation should be solved immediately by using the 

result of previous LU-decomposition. Por this, A and MAX 

must be retained the same as those when this subroutine was 

called previously. 

As an output variable. 0 indicates that calculation ends 

successfully, 30000 indicates that no calculation has been 

done because the restrictive conditions for the argument was 

violated, and a value K indicates that LU-decomposition was 

• interrupted at the K-th stage of elimination by the 

singularity test. 

*1 ~ X. and DHT each are a double precision real type (quadruple precision real type, complex 

type, double precision complex type, or quadruple precision complex type) for LHQLUD, LHQLU~ 

LHQLUC, LHQLUB, and LEQLUZ. 

EPS is a double precision real type (quadruple precision real type, real type, double 

precision real type, or quadruple precision real type) for LHQLUD, LEQLU~ LHQLUC, LEQLUB, 
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and LEQLUZ. 

(3) Perf ormance 

Because LEQLUS and LEQLUD are written with the assembler, they run fast and efficiently. 

Moreover, because double precision operation is partially used for LEQLUS, round-off errors' are 

minimized and accuracy is improved accordingly. 

(4) Notes 

1 This routine has the functions of simultaneous processing of several right-hand-side 

columns, calculation of determinants, and reuse of LU-decom~osition components. Therefore, it 

can also work as routines to solve linear equations and calculate determinants and inverse 

matrices. Especially, the function of reuse of LU-decomposition is most important. This 

function almost eliminates the need for calculation of inverse matrices. 

If there is a substantial difference between the absolute values of coefficients in the 

equations, it is desirable to normalize the coefficient matrix in advance by MNORMS or MNORMD to 

secure precision. 

3. If a typical absolute value of coefficient matrix elements is assumed to be a, 

axl0-6(axlO-16 ,axlO-30) is adequate for the standard value of EPS for LEQLUS, LEQLUD, or 

LEQLUQ. 

4. When the coefficient matrix is a syinmetric:positive definite, it is wiser to use special' 

routines CHOLFS and CHOLFD, etc. 

5. Arguments DET and IND are used for both input and output. Therefore, do not use constants 

as real arguments ,for them. 

(1987. 06. 19) (1987. 08. 07) 
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LEQLUV IWIXIV (Solution of linear equations by LU-decomposition method ~vector version-) 

Solution of Linear Bquations by LU-Decompos'ition Method -Vector Version-

Programm Ichizo Ninomiya; May 1986. December 1984 

ed by 

Format Subroutine language; FORTRAN77 Size; 201. 202. 205. and 206 

respectively 

(1) Outl ine 

A number of linear equations that share a coefficient matrix are solved by the LU-decomposition 

method involving row interchange for pivoting. That is. a solutionJ(=A-113 of matrix equation 

AUr=13 is determined. LBQLUV is for single precision. LBQLUW is for double precision, LBQLUX is 

for single precision complex numbers. and LBQLUY is for -double precision complex numbers. 

(2) Directions 

CALL LBQLUV/W/X/Y (A, KA, N. X. KX. M. DBT, LIST, BPS. w. IND) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input/ou A coefficient matrix is input. After processing by this 

KA 

N 

Two-dimens tput 

ionaI 

array 

Integer 

type 

Integer 

type 

Input 

Input 

routine. the LU-decomposition components of coefficient 

matrix are entered. These components are stored so that they 

can be used when it is later needed to solve equations with 

the same coefficients. This can eliminate the need for 

repeating LU-decomposition. thus saving computation time (see 

the descriptions of LIST and IND). 

Value of the first subscript in array declaration of ~ KA~N 

Number of unknowns of equation, that is. the number of rows 

in ~ N~2 
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Argument Type and Attribut Content 

X Real type Input/ou One or more right-hand side columns of equations are input. 

KX 

two-dimens tput 

ional 

array 

Integer 

.type 

Integer 

type 

Input 

Input 

After processing by this routi~e. corresponding solution 

vectors are output. 

Value of the first subscript in array declaration of X. 

KX~N 

Number of right-hand side columns. that is. the number of 

columns of matrix X. 

lI~O 

When M=O. only LU-decomposition of the coefficient matrix is 

performed. 

When M=l. the real argument for X can be a one-dimensional 

array. 

DET Real type Input/ou When a value other than 0 is input. the coefficient 

LIST 

EPS 

tput determinant is output. 

Integer 

type 

one-dimens 

ional 

array 

Output 

Real type Input 

When 0 is input. it is retained as it is. 

A one-dimensional array with N elements. Information 

concerning row interchange in LU-decomposition is kept in it. 

If this information is preserved. it can be reused when an 

equation·having the same coefficients needs to be solved. 

Tolerance for test of singularity of coefficient matrix. If 

the absolute value of a pivot element becomes smaller than 

this constant. the matrix is decided as singular and 

calculation is interrupted. 

EPS>O 
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the facility of reuse of LU-decomposition is most important. eliminating the need for 

calculation of inverse matrix. 

~ If a typical absolute value of coefficient matrix elements is assumed to be a. 

ax 10-6(ax 10-16) is reasonable" value of EPS for LEQLUV anj LEQLUX (LEQLUW and LEQLUY). 

3. When the coefficient matrix is symmetric positive definite. it is wiser to use special 

routines CHOLPV/W and MCHLPV/W etc. 

( Arguments DET and IND are used for both input and output. Therefore. do not use constants 

as actual arguments for them. 

<1987.06.19) <1987.08.07) 
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LSMNS/D (Least Squares and Minimum Norm Solutions of General Simultaneous Linear Equations 

by Singular Value Decomposition) 

Least Squares and Minimal Norm Solutions of General Simultaneous Linear Equations by 

Singular Value Decomposition 

Programm Ichizo Ninomiya. March 1979 
ed by 

Pormat Subroutine language: PORTRAN; size: 194.194 lines respectively 

(1) Outl ine 

LSMNS/D finds an n x 1 matrix X that minimizes 

11 Axi-bi 112 i=l ,2, • · · , 1 

and 

i=l ,2, .. · , 1 

if an m x n matrix A and an m x 1 matrix B are given. Where. 

and 

X=(Xt,X2, ••• ,Xl) 

When this type of least square and minimal norm solutions are to be found.A is first 

. decomposed as 

by the singular value decomposition method. where U is an m x n matrix. and I: and V are n x 

n matrices. 

qte;q2E:····· e;qne;O are the singular value of A. that is. the positive square roots of 

eigenvalues of AT A. 

The solution X is then given by 

Where. 
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I C} 6 

I7=diag(qt ,q2+, • - - ,qn+) 

qt={16qi Qi>O 
Qi-O 

i=l ,2, • - - ,n 
i=l ,2, • - - ,n 

(2) 0 i rect ions 

CALL LSMNS/D (A, KA. M. N. B. KB. NB. Q, EPS. W. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input/ou If a coefficient matrix is input. the orthogona] matrix V is 
Two-dimens tput output to the first N-th row of it. Array of max (M. N) rows 
ional and N co 1 umns. 
array 

KA Integer Input Value of the first subscript in the array declaration of A. 
type KA~max (M, N) 

M Integer Input Number of rows of A. M~l 
type 

N Integer Input Number of columns of ~ N~l 
type 

B Real type Input/ou If a right side matrix is input, the solution matrix X is 
Two-dimens tput output to the first N-th row of it. Array of max (~ N) rows 
ional and NB co 1 umns. 
array 

: 

KB Integer Input Value of the first subscript in the array declaration of B. 
type KB~max (M, N) 

NB Integer Input Number of columns of B. NB~l 
type 

Q Real type Output The singular value of A is output in descending order. 
One-dimens One-dimensional array of size N. 
ional 
array 

EPS Real type ·Input Constant E used for convergence test and test for singular 
values. If a double diagonal matrix obtained by bilateral 
Householder transformation from A is denoted by J. 
IIJllm-£+u i s used as a threshold 
value for zero test of the non-diagonal element and singular 
values of A. If EPS~O, the rounding unit error u is used as 
E. 

- --

~ 

~ 
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c., 

Argument Type and Attribut Content 
kind (*1) e 

W Real type Work One-dimensional array of size N. 
One-dimens area. 
ional 
array 

ILL Integer Output ILL=O: Normal termination. 
type ILL=2000: Singular value decomposition does not converge in 

30N i tera t ion. 
ILL=30000: Input arguments violate the limits. 

*1 For double precision subroutines, all real types are changed to double precision real 

types. 

(3) Performance 

The problem described on page 418 in the literature I} are solved by LSMNS. In that problem, A 

is an 8 x 5 rank 3 matrix with singular values ,11248 ,20,,/384 ,0,0 and B is an 8 x 3 

matrix. EPS=10-6 is chosen and the transformation matrix V was overwritten on A. The 

precision of the singular value ~ transformation matrix V, and three least squares and minimal 

norm solutions was about six digits. 

(4) Example of use 

The program for the above test is as follows: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

18 

19 

DIMENSION AC8,S),BC8,3),Q(S),W(S),R(S) 
M=8 
N=S 
KA=8 
KB=8 
NB=3 
EPS=1.E-6 
R(1)=SQRTC1248.) 
R(2)=20. 
R(3)=SQRT(384.) 
R(4)=0. 
R(S)=O. 
READ(S,SOO) (CA(I,J),J=1,N),I=1,M) 

500 FORMAT(SF4.0) 
READ(S,S10) (CB(I,J),J=1,NB),I=1,M) 

510 FORMATC3F4.0) 
WRITE(6,600) M,N,NB,«ACI,J),J=1,N),I=1,M) 

*,(CB(I,J),J=1,NB),I=1,M) 
600 FORMATC1HtII110X,'M =',I2,2X,'N =',I2,2X, 

*'NB',I2118(10X,1PSE13.S/)/C10X,3E13.S» 
CALL LSMNSCA,KA,M,N,B,KB,NB,Q,EPS,W,ICON) 
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20 WRITEC6,610) EPS,ICON,CQCJ),RCJ),J=1,N), 
*CCACI,J),J=1,N),I=1,N),CCBCI,J),J=1,NB),I=1,N)· 

21 610 FORMATCII10X,'EPS =',1PE10.2,2X,'1CON =',161/ 
*SC10X,2E13.S/)1 SC10X,SE13.S/)/C10X,3E13.S» 

22 STOP 
23 END 

(5) Remarks 

1 The constant BPS used for the convergence criterion of singular value decomposition and zero 

test of singular values must be selected carefully. If BPS that is too small as compared with 

the precision of A and 8 is given. unnecessarily precise computation will be executed. or a 

singular value that should be discarded as 0 may be assumed to be significant. Conversely. too 

large BPS may cause a small. but meaningful singular value to be discarded as zero. 

2. If least squares and minimal norm solution is found only or.ce for the same coefficient 

matrix ~ it is not wise from the standpoint of computation time to find a generalized inverse 

matrix A+ using GINVS/D except that A+ itself is required. By all means. the routine LSMNS/D 

should be used in this case. 

References 

1)G.H. Golub.C.Reinsch; »Singular Value Decomposition and Least Squares SolutionsD
, 

Numerische Uathematik, 14. PP. 403-420(1970). 
(1987. 06. 16) 
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PRCGFS/D and RECGFS/D (Solution of a linear system of equations with positive definite 

symmetric coefficient matrix by conjugate gradient method with preconditioning) 

Solution of a Linear System of Equations with Positive Definite Symmetric Coefficient Matrix by 

Conjugate Gradient Method with Preconditioning 

Programm Tsuyako Miyakoda and Tatsuo Torii; February 1982 

ed 

Format Subroutine language; FORTRAN Size; 85 and 86 lines respectively 

(1) Out! ine 

Bach of these subr~utines solves a linear system of equations Ax=b for x. where A is a positive 

definite symmetric dense matrix and x and b are vectors. To do this. it performs preprocessing 

to improve convergence conditions and then uses the conjugate gradient method. 

It is useful to correct an approximate solution vector which is already known. RBCGFS (RBCGFD) 

is provided as an entry name used to perform calcuiation again by skipping preconditioning after 

PRCGFS (PRCGFD) is once called. 

(2) Cond i t ions 

CALL PRCGFS/D(A.NA.N.B.X.DMBGA.BPS.NMAX.W. IDUMP) 
CALL RBCGPS/D (A. NA. N. B. X. OltBGA. BPS. NMAX. W. I DUMP) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input Coefficient matrix. This is not retainel 

Two-dimens 

ional 

array 

NA Integer Input Adjustable dimension of ~ NA~N 

type 

N Integer Input Number of unknowns of a system of equations. 

type 
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/10 

Argument Type and Attribut Content 

kind (*1) e 

B Real type Input Right-side vector of the system. Size N 

one-dimens 

ional 

array 

X Real type Input/ou Input: Approximate solution vector 

OMEGA 

EPS 

NMAX 

one-dimens tput 

ional 

array 

Real type Input 

Real type Input 

Integer Input 

type 

Real type Work 

one-dimens area 

ional 

array 

Output: Solution vector 

Acceleration factor for convergence in iteration method. 

1~OMEGA<2. If a value outside the range is input, 1 is 

used for calculation. 

Tolerance for convergence test. Convergence is assumed 

when the sum of squares of the residuals is smaller than 

EPS**2. If EPS is too small, however, 8·u· 11 b 11 is used 

for it. 

u is the unit of rounding errors. 

Maximum number of iterations. Theoretically, t~e value of 

NMAX is N at most. If given NUAX is too large, it wi 11 be 

replaced by 3N/2. 
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Argument Type and Attribut Content 

kind (*l) e 

I DUMP Integer Input/ou On entry. this argument has the following meanings: 

type tput IDUMP~O: During calculation. no printing is don~ 

I DUMP=l: During calculation. the norm of residuals and 

(Po Ap) in each iteration are printed. 

IDUMP2;2: The approximate solution. residuals. and 

A-orthogonal vectors in each iteration are printed. 

On return, this argument has the following meanings: 

I DUMP=O: Normal termination. 

I DUMP=NMAX: Convergence does not occur in NMAX 

i terat ions. 

I DUUP=30000: Input argument error. 

*1 For double precision subroutines. real types are all assumed to be double precision real 
types. 

(3) Calculation method 

Regular division is done as A=M-N.where M have the same characteristics as A with symmetric 

positive definite and permit easy calculation to determine the inverse matrix. We think the. 

sy~tem preconditioned by using M as.follows: 

WtAx=Wtb 

Then. we obtain; 

- t t - 1 t 
A=W2~2,b=~r2b,y=M2X 

It is rewritten as 

This is a positive definite system equivalent to the original system. We then apply an algorithm 

of the conjugate gradient method to this system. 

Matrix M here is formed by the following method by (Nod era and Takahashi)J) :It' is decomposed as 

follows: 
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/1 2.. 

A=1..o+D+L1 

where 

1..0 : Lower triangular matrix (diagonal elements 0) 

0: Diagonal matrix 

We then multiply 

D-i from both sides of A. 

And. we put 

to obtain 

where. Q) is an acceleration parameter of the SOR method. satisfying Q<Q)<2. 

(4) Example 

00010 C 
00020 
00030 
00031 
00040 
00050 
00060 
00070 
00080 
00090 
00100 
00110 
00120 
00130 
00140 
00150 
00160 
00170 
00180 
00190 
00200 
00210 
00220 
00230 
00240 
00250 
00260 

MAIN FOR PRCGFS 
REAL*8 SU,A,X,B,W 
DIMENSION AA(100,100),B(100),A(100,100),XY(100), 

1 X(100),W(500) 
DIMENSION XO(100) 
NR=5 
NW=6 
E·PS=1. E-5 
NA=100 
N=100 
XX=1.OE8+1. 
DO 1800 I=1,N 
DO 1810 J=1,N 
IJ=IABS(I-J) 

1810 A(I,J)=FLOAT(N-IJ) 
1800 CONTINUE 

XI=12345678.0 
DO 7 I=1,N 
XO(I)=O.O 
X(I)=4.*XI/1.E8-2. 
XI=AMOD(23.*XI,XX) 

7 CONTINUE 
1100 FORMATCF12.0) 

DO 2000 IK=1,N 
SU=O. 
DO 2100 I=1,N 

2100 SU=SU+ACIK,I)*XCI) 
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~, 

~ 

00270 
00280 
00290 
00300 
00310 
00320 
00330 
00340 
00370 
00380 
00390 
00400 
00410 
00420 
00430 
00440 
00450 
00460 
00470 
00480 
00490 
00500 
00510 
00520 
00530 
00540 
00550 
00560 
00570 
00580 
00590 

2000 BCIK)=SU 
WRITECNW,1205)N 

1205 FORMATC1H1,15H EXAMPLE 3-6 N=,I4) 
IFCN.GE.10)GO TO 19 
DO 5 1=1,N 

5 WRITECNW,200)CA(I,J),J=1,N) 
19 CONTINUE 

WRITECNW,203)CBCI),I=1,N) 
203 FORMATC2H BII(4D23.15» 
200 FORMATC2H AIIC4D23.15» 

DO 20 I=1,N 
XYCI)=BCI) 
DO 20 J=1,N 

20 AACI,J)=ACI,J) 
IDUMP=1 
OMEGA=1.00 
CALL CLOCKMCJTIME1) 
NMAX=100 
CALL PRCGFSCAA,NA,N,XY,XO,OMEGA,EPS,NMAX,W,IDUMP) 
CALL CLOCKMCJTIME2) 
JT=JTIME2-JTIME1 
WRITECNW,300)IDUMP,JT 
DO 2200 I=1,N 
RES=X(I)-XO(I) 
WRITE(NW,303) I,XCI),XOCI),RES 

2200 CONTINUE 
303·FORMATCI5,2E15.6,E11.3) 
300 FORMAT(7H IDUMP=,I5,3X,'TIME =',15) 
302 FORMATC2H XIICD23.15» 

STOP 
END 

EXAMPLE 3-6 N= 100 
IDUMP= 0 TIME = 

1 -0.150617E+01 
2 0.135802E+01 
3 -0.765456E+00 
4 -0.160547E+01 
5 -0.925886E+00 

130 
-0.150611E+01 

0.135791E+01 
-0.765381E+00 
-O.160547E+01 
-0.925903E+OO 

-0.572E-04 
0.116E-03 

-0.755E-04 
-0.572E-05 

0.170E-04 

Bibliography 

1) T. Nodera and H. Takahasi; ·Preconditioned Conjugate Gradient Algorithm for Solving Biharmonic 

Equation· 4th IMACS and International Symposium (1981) 

(1987. 06. 19) (1987. 08. 08) 
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PRCGSS/D,RECGSS/D 

(Solution of a linear system of equations with sparse positive definite symmetric coefficient 

matrix by conjugate gradient method with preconditioning (compressed matrix storage mode» 

Solution of a Linear System of Bquations with Sparse Positive Definite Symmetric Coefficient 

Matrix by Conjugate Gradient Method with Preconditioning (Compressed Matrix Storage Mode) 

Programm Tsuyako Uiyakoda; 1982 

ed by 

Format Subroutine language; FORTRAN Size; 192 and 193 lines respectively 

(1) Outline 

Bach of these subroutines solves the linear system of equations Ax = b where coefficient matrix 

A having a relatively small number of nonzero elements is positive definite symmetric. To do 

this. it performs preconditioning to improve convergence conditions and then uses the conjugate 

gradient method. This solution routine is used when only non-zero elements of coefficient 

matrices are stored by rows in a one-dimensional array by the compressed storage mode. 

It is useful to correct an approximate solution vector which is'already known. RECGSS (RBCGSD) 

is provided as an entry name used to perform calculation again by skipping preconditioning after 

PRCGSS (PRCGSD) is once called. 

(2) Directions 

CALL PRCGSS/D (I JTAB. A. LA. B. N. X. BPS. ~UG. I MAX. I W. W. ILL) 

CALL RBCGSS/D(IJTAB.A.LA.B.N.X.BPS.DMG.IMAX. IW.W.ILL) 
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Argument 

lJTAB 

A 

LA 

B 

N 

x 

Type and Attribut Content 

kind (*1) e 

Two bytes Input The rows and columns numbers of nOD-zero elements are input 

Integer 

type . 

Two-dimens 

ional 

array 

Real type Input 

one-dimens 

ional 

array 

Integer 

type 

Input 

Real type Input 

one-dimens 

ional 

array 

Integer 

type 

Input 

to IJTAB(l.K) and IJTAB(~K) respectively. 

Suppose A(K) =aij, for instance, we set: 

I JTAB (1, K) =i and I JTAB (2. K) = j . 

The size is 2*Ll 

Output data in arrays are rearranged in ascending order in 

the values of i, j. 

The size is 2*Ll Only non-zero elements of the 

coefficient matrix are stored by row in an array of length 

LA appearing first. They are rearranged simultaneously 

with IJTAB. The non-zero elements of the preconditioned 

matrix are stored in the array of size LA appearing last. 

Number of non-zero elements of the coefficient matrix. 

LA~N 

The right-side vector of a system of equations. Size N 

Number of unknowns of a system of equations. N~3 

Real' type Input/ou Input; Approximate solution vector with size N. (Zero 

one-dimens tput vector at first) 

ional 

array 

Output; Solution vector. 
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{ I 6 

Argument Type and Attribut 

kind (*l) e 

Content 

EPS Real type Input/ou Tolerance for convergence test. When the sum of squares of 

OUG 

IMAX 

IW 

ILL 

tput the residuals is smaller than EPS**2. it is assumed that 

convergence has occurred. 

If EPS is too smaIl, however, 8-u- 11 b 11 is used instead. u 

is the unit of rounding errors. 

Real type Input Acceleration factor for convergence in iteration method. 

Integer 

type 

Integer 

I~OMG<2. If a value outside the range is input as 01&G, 

OMG=1 is used for calculation. 

Input/ou Input: Maximum number of iterations. Theoretically, it is 

tput N at most. If the given IMAX is too large, however, it is 

replaced by 3-N/2. 

Output: Actual number of iterations. 

Working The size is 2*N. 

type storage 

one-dimens 

ional 

array 

Re~l type Working The size is N*& 

one-dimens storage 

ional 

array 

Integer 

type 

Output ILL=O: Normal termination. 

ILL=IMAX: Convergence does not occur in IMAX iterations. 

ILL=25000: IJTAB error. 

ILL=30000: Input argument error. 

*1 For double precision subroutines, real types are all assumed to be double precision real 

types. 

(3) Bxample 
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C ••• TEST OF PRCGSS ••• 
DIMENSION A(40),BC6),XC6),IWC2,6) 
INTEGER*2 IJTABC2,20) 
REAL*4 WC1S) 
DATA NI 6/LA/201 
DATA A(1),IJTABC1,1),IJTABC2,1)/10.0,1,11 
DATA A(2),IJTABC1,2),iJTABC2,2)/-2.0,1,41 
DATA A(3),IJTABC1,3),IJTABC2,3)/-1.0,1,51 
DATA A(4),IJTABC1,4),IJTABC2,4)/-1.0,1,61 
DATA A(5),IJTABC1,5),IJTABC2,5)/12.0,2,21 
DATA A(6),IJTABC1,6),IJTABC2,6)/-3.0,2,31 
DATA A(7),IJTABC1,7),IJTABC2,7)/-1.0,2,41 
DATA ACS),IJTABC1,S),IJTABC2,S)/-2.0,2,61 
DATA A(9),IJTABC1,9),IJTABC2,9)/-3.0,3,21 
DATA A(10),IJTABC1,10),IJTABC2,10)/15.0,3,31 
DATA A(11),IJTABC1,11),IJTABC2,11)/-2.0,4r11 
DATA A(12),IJTABC1,12),IJTABC2,12)/-1.0,4,21 
DATA A(13),IJTABC1,13),IJTABC2,13)/20.0,4,41 
DATA A(14),IJTAB(1,14),IJTABC2,14)/-5.0,4,51 
DATA A(15),IJTABC1,15),IJTABC2,15)/-1.0,5,11 
DATA A(16),IJTABC1,16),IJTABC2,16)/-5.0,5,41 
DATA· A (17), IJTAB C1, 17), IJTAB C2, 17) 11.0,5,51 
DATA AC1S),IJTABC1,1S),IJTABC2,1S)/-1.0,6,11 
DATA A(19),IJTABC1,19),IJTAB(2,19)/-2.0,6,21 
DATA A(20),IJTABC1,20),IJTABC2,20)/6.0,6,61 
DATA CBCI),I=1,6)~10.,-5.,2S.5,37.5,-10.0,10.1 

WRITEC6,630) CI,ACI),IJTABC1,I),IJTABC2,I),I=1,LA) 
630 FORMATCI5,F10.3,2I3) 

ILL=O 
IMAX=100 
OMG=1.2 
EPS=1.E-4 
DO 100 I=1,N 

100 XCI)=1.0 
CALL PRCGSSCIJTAB,A,LA,B,N,X,EPS,OMG,IMAX,IW,W,ILL) 
WRITEC6,610) ILL,IMAX,N,OMG 

610 FORMATC1H ,'ILL,IMAX,N,OMG=',316,F10.3) 
WRITEC6,620)CXCI),I=1,N) 

620 FORMATC1HO,3Ei5.6) 
STOP 
END 

<Output result> 

1 10.000 1 1 
2 -2.000 1 4 
3 -1.000 1 5 
4 -1.000 1 6 
5 12.000 2 2 
6 -3.000 2 3 
7 -1.000 2 4 
S -2.000 2 6 
9 -3.000 3 2 

10 15.000 3 3 
11 -2.000 4 1 
12 -1.000 4 2 
13 20.000 4 4 
14 -5.000 4 5 
15 -1.000 5 1 
16 -5.000 5 4 
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17 1.000 5 5 
18 -1.000 6 1 
19 -2.000 6 2 
20 6.000 6 6 

ILL,IMAX,N,OMG= 0 7 6 1.200 

0.999998E+00 0.500000E+00 0.200000E+01 

0.100000E+01 -0.400000E+01 0.2000COE+01 

(4) Calculation method 

See the calculation method for subroutines PRCGFS and PRCGFD which use the conjugate gradient 

method with the preconditionin~ 

(5) Notes 

If the approximate solution vector is known as argument Xt input it. Otherwiset input the zero 

vector. 

Call RBCGSS or RBCGSD to restart the iterative calculation after PRCGSS or PRCGSD is once 

called. In this caset do not change the contents of arguments IJTABt A. Lt lW, and W. Also, 

call RBCGSS or RBCGSD to determine solutions when only the right-side vector B is changed. 

Bibliography 

1) Tsuyako Miyakoda; 8Consideration on solution of linea~ equations, and reduction of iterations 

and quantity of calculation-conjugate gradient method" Osaka University computer center news, 

Vo 1. 12. No. 2t PP. 55-69 (1982) 

<1987. 06. 19) <1987. 08. 08) <1987. 08. 21) 
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TRD S PS I D and TD S PC S I D (Solution of Symmetric Posit ive Def ini te Tridiagonal Equat ions) 

Solution of Symmetric Positive Definite Tridiagonal Equations 

Programm Ichizo Ninomiy~ April 1977 
ed by 

Format Subroutine language: FORTRAN; size: 29. 29. 45. and 46 lines 
respectively 

(1) outl ine 

TRDSPS/D or TDSPCS/D solves simultaneous linear equations with a symmetric positive definite 

tridiagonal matrix as a coefficient matrix. using Cholesky decomposition method that does not use 

square roots. 

TRDSPS/D is used if C(N)=O. and TDSPCS/D handles cyclic type tridiagonal equations. that is. if 

C(N);FO. Both routines process multiple right side columns simultaneously. calculate 

determinants. and can reuse Cholesky decomposition components. 

(2) Directions 

CALL TRDSPS/D(B. C. N. X. KX. M. DET. EPS.IND) 

CALL TDSPCS/D (B. C. D. N. X. KX. Id, DET. EPS. IND) 

Argument Type and Attribut Content 
kind (*1) e 

B Real type Input/ou If coefficient matrix diagonal elements are input. Cholesky 
one-dimens tput decomposition diagonal elements are output. 
ional 
'array 

C Real type Input/ou If coefficient matrix sub-dialonal elements are input. 
one-dimens tput Cholesky decomposition sub-diagonal elements are output. The 
ional numbering of sub-diagonal elements is as shown in the figure. 
array 

0 Real type Output The Cholesky decomposition elements of a coefficient matrix 
one-dimens are output. 
ional 
array 

N Integer Input Order of equat ion. It is also the number of elements in the 
type arrays B. C. and D. N~3 
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Argument Type and Attribut Content 
kind (*1) e 

X Real type Input/ou If M right side columns are input in the form a matrix X, the 
Two-dimens tput solution vectors are output in the corresponding place~ 

KX 

M 

ional 
array 

Integer 
type 

Integer 
type 

Input 

Input 

Value of the first subscript in the array declaration of X. 
KX~N 

Number of columns in X. If M = 0, only Cholesky 
decomposition of a coefficient matrix is executed •• 

OET Real type Input/ou If OET~O is input, the value of coefficient matrix 

EPS 

INO 

Real type 

Integer 
type 

tput determinant is output. 

Input 

Input/ou 
tput 

If OET=O is input, OET=O is oatput. 

Constant for determining the non-positivity of coefficient 
matrix. If the value of a pivot element is smaller than this 
constant, the input matrix is decided to be non positive 
definite, and the calculation is interrupted. EPS>O 

This argument has the following meaning as an input. 
INO=O: Solve an equation by newly executing Cholesky 

decompos i t ion. 
INO~O: Solve an equation, reusing the Cholesky , 

decomposition elements previously calculated., and stored in 
B. C, and O. 
This argument has the follo~ing meaning as an output. 

INO=O: Calculation terminated normally. 
I NO=30000: Limits on input arguments are violated. 
INO=I: Calculation is interrupted at the I-th stage of non 

pos i t i vi ty. 

1* For double precision subroutines. all real types are changed to double precision real 

types. 

(3) Performance 

Generally, computation time is only proportional to the order of equation. If the same problem 

is solved with a general simultaneous linear equation routine (LEOLUS. CIIOLFS. GAUELS. etc.). it 

takes very long time because computation time becomes proportional to the cubic power of the 

order of equations. 
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( <-I 

BI Cl a ! a Cn 
Cl B2 C2 i. a 0 
0 C2 B3 i 0 0 

i i i 
i i i ! I 

0 0 0 Bn-I Cn-l 
Cn 0 0 Cn-l Bn 

(4) Remarks 
~.~~:t 

1. TRIDGS/D is prepared for tridiagonal equations where coefficients are not symmetric positive 

def in i tee 

~ When the same equation is to be repeatedly solved with the right side column changed. the 

calculation time can be saved by using the facility for reusing the Cholesky decomposition 

components of this routine. 

~ (1987.06.17) 

~ 
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TRIDGS/D (Solution of Tridiagonal Bquations) 

Solution of Tridiagonal Bquations 

Programm Ichizo Ninomiya. April 1977 
ed by 

Format Subroutine language: FORTRAN; size: 39 and 40 lines respectively 

(1) Outline 

TRIDGS/D solves a tridiagonal equation or a system of linear equations with a tridiagonal 

matrix as a coefficient matrix. using the Gauss' elimination accompanied by row interchange for 

pivot selection. 

BI Cl 0 0 0 0 0 XI DI 
Al B2 C2 0 0 0 0 X2 D2 
0 A2 B3 C3 0 0 0 X3 D:3 
I I I i I i : I = I 

0 0 0 0 Bn-2 Cn-2 0 Xn-2 Dn-2 
0 0 0 0 An-2 Bn-I Cn-l Xn-I Dn-l 
0 0 0 0 0 An-I Bn Xn Dn 

(2) Directions 

CALL TRI DGS/D (A, B. C. D. N. BPS. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input Input N-l lower diagonal elements of a coefficient matrix in 
One-dimens the order of the upper left to the lower right. Destroyed. 
ional 
array 

B Real type Input Input N diagonal elements of a coefficient matrix in the 
One-dimens order of the upper left to the lower right. Destroyed. 
ional 
array 

C Real type Input Input N-lupper diagonal elements of a coefficient matrix in 
One-dimens the order of the upper left to the lower right. Destroyed. 
ional 
array 
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I<-J 

Argument Type and Attr ibut Content 
kind (*l) e 

0 Real type Input/ou If the right side column of the equation is input, the 
One-dimens tput solution vector calculated by this routine is output. 
ional 
array 

N Integer Input Order of equation. N~3 
type 

BPS Real type Input Criterion constant for singularity. If the absolute value of 
a pivot element is smaller than this constant, the equation 
is decided to be singular and the calculation is interrupted. 
Stored. BPS>O 

ILL Integer Output ILL=O: Normal termination. 
type ILL=30000: When limits on Nand BPS are violated. 

If an equation is decided to be singular, its pivot element 
number is output. 

1* For double precision subroutines, all real types are changed to be double precision real 

types. 

(3) Performance 

Because precision depends on" problems, nothing can be said generally. Computation time is only 

proportional to the order of equation. If the same problem is solved using a general 

simultaneous linear equation subroutine (LBQLUS, CHOLFS, GAUBLS, etc.), it takes very long time 
" " 

because the computation time is proportional to the cubic power of the order of equations. 

(4) Remarks 

1. Tridiagonal equations can be solved even with a general simultaneous equation routine. 

Howeve~ it is reasonable to use this routine from the standpoint of computation tim~ 

2. If the typical absolute value of elements in a coefficient matrix is a, 

ax lO-6(ax 10-16) is adequate for the standard value of BPS for TR"IDGS (TRIDGO). 

3. It is more advantageous for a symmetric positive definite tridiagonal equation to use the 

special-purpose routines TRDSPS and TRDSPD or TDSPCS and TDSPCD. 

(1987. 06. 17) 
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GINVS/D (Generalized inverse matrix by singular value decomposition) 

Generalized Inverses (Pseudo-inverses) by Singular Value Decomposition 

Making Ichizo Ninomiya; March 1979 

Form Subroutine language; PORTRAN, Size; 30 lines' each 

(1) Out! ine 

Matrix X with II rows III columns which satisfies the following relations is called the 

generalized inverse to matrix A with III rows n columns. 

AXA=A 

XAX=X 

(AX)T=AX 

(XA)T=XA 

Por a given A, such X is determined uniquely. This X is denoted by A+. Suppose that 

singular value decomposition 

of A is given, where U is a matrix with III rows and n columns, E and V each are a matrix with II 

rows and II columns. and the following relation holds: 

UTU=VTV=WT =]n(n-dimensional unit matrix) 

ql e;q2e; • • • ~qne;O 

and qi.i=1.2 .•••. n are singular values of A (positive square root of eigenvalue of ATA). 

Then, A+ is given by: 

Where, 

and 
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is assumed to be satisfied. 

The purpose of this subroutine is to determine A+ by singular value decomposition when A is 

given. 

(2) Direct ions 

CALL GINVS/D(A, KA, M, N. Q, V. KV. BPS. w. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input/ou When A is input. transposed matrix (A+)T of the 

Two-dimens tput generalized inverse matrix is generated. 

ional 

array 

KA Integer Input Value of the first subscript in array declaration of AKA~M 

type 

M Integer Input Number of rows in AM~l 

type 

N Integer Input Number of columns in AN~l 

type 

Q Real type Output Singular values of A are generated in descending order. 
: 

One:-dimens One-dimensional array of size. 

ional 

array 

V Real type Output Orthogonal transformation matrix V for singular value 

Two-dimens decomposition is generated. Two-dimensional array with N 

ional rows and N columns. 

array ~ 

KV Integer Input Value of the first subscript in array declaration of VKV~N 

type 
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Argument Type and Attribut 

EPS 

ILL 

Real type Input 

Real type Work 

One-dimens area 

ional 

array 

Integer 

type 

Output 

Content 

Constant e used for convergence and 0 test 11 J 11 CD 

determined. when A is once converted into d~uble diagonal 

matrix J by bilateral Householder transformation is used to 

make Ell J 11 CD+U a threshold of convergence test for 

singular value decomposition and 0 test of singular values. 

Wher~ u denotes the unit of round-off errors. u is used as 

e when BPS~O. 0 is input. 

One-dimensional array of size N. 

ILL=O: Normal end. 

ILL=30000: The argument violates the limit. 

ILL=20000: Singular vaolue decomposition of A does not 

converge even after iteration of 30N times. 

*1 For double precision subroutines. all real types should be changed to double precision real 

types. 

(3) Per f ormance 

The following is described on page 418 of bibliography I): For a problem having matrix B 

with 8 rows and 3 columns at the right-hand side and using matrix A of rank 3 having 8 rows and 5 

columns and singular values Jl248 ,20, J384 ,0,0 as a coefficient. A+ is first 

determined by GINVS. and A+LJ is then used to calculate the least squares minimal norm 

solution. When EPS=lO-6. the accuracy for singular value 0. transformation matrix V. general 

matrix A+. and solution vector A+LJ was about six decimal digits. 

(4) Example 

A program to examine the above description is shown below. 
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1 DIMENSION AC8,S),B(8,3),VCS,S),QCS),W(8),RCS) 
2 M=8 
3 N=S 
4 NB=3 
5 KA=8 
6 KV=S 
7 EPS=1.E-6 
8 R(1)=SQRTC1248.) 
9 R(2)=20. 

10 R(3)=SQRTC384.) 
11 R(4)=0. 
12 RCS)=O. 
13 READCS,SOO) CCACI,J),J=l,N),I=l,M) 
14 500 FORMATC5F4.0) 
15 READC5,510) CCBCI,J),J=l,NB),I=l,M) 
16 510 FORMATC3F4.0) 
17 WRITEC6,600) M,N,NB,CCACI,J),J=l,N),I=l,M) 

*,CCBCI,J),J=l,NB),I=l,M) 
18 600 FORMATC1HlII110X,'M =',I2,2X,'N =',I2,2X,'NB =', 

*I2118Cl0X,lP5E13.S/)/C10X,3E13.S» 
19 CALL GINVSCA,KA,M,N,Q,V,KV,EPS,W,ICON) 
20 DO 30 J=l,NB 
21 DO 10 I=l,M 
22 10 WCI)=BCI,J) 
23 DO 30 I=l,N 
24 S=O. 
2S DO 20· K=l,M 
26 20 S=ACK,I)*WCK)+S 
27 30 BCI,J)=S 
28 WRITE(6,610) EPS,ICON,CQ(J),RCJ),J=l,N) 

*,C(VCI,J),J=l,N),I=l,N),CCA(I,J),I=l,M),J=l,N) 
*,C(B(I,J),J~l~NB),I=l,N) 

29 610 FORMATClll0X,'EPS =',lPE10.2,2X,'ICON =',161/ 
*5(10X,2E13.S/)/S(10X,SE13.S/)/SC10X,8E13.5/) 
*/(10X,3E13.S» 

30 STOP 
31 END 

(5) Notes 

1. The constant BPS used for the convergence test of singular value decomposition and the 0 

test of singular values must be specified carefully. If the BPS is too small for the accuracy of 

data A. unnecessarily and wastefully precise calculation may be done and a singular value which 

should normally be discarded as 0 may be taken for a significant valu~ On the contrary. if the 

BPS is too large. a singular value which is small but significant may be discarded as O. 

2. If the least squares minimal norm solution is calculated only once for a given coefficient. 

matrix A. it is not wise to use this routine GINVS or GINVD to determine A+ except when A+ 

itself is required. This is because the routine requires large quantity of calculation. LSMNS 

or LSMND should be used for this case. 
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MINVS/D/Q/C/B/Z (Inversion of Matrices) 

Inversion of Matrices 

Programm Ichizo Ninomiy~ April 1977 
ed by 

Format. Subroutine language: FORTRAN; size: 96. 97. 96. 95. 96. and 96 lines 
respectively 

(1) OutI ine 

MINVS/D/QlC/B/Z generates an inverse matrix 9f a given matrix in place of the given matrix. 

using the LU-decomposition method. The rows are interchanged if necessary for pivot selection. 

(2) D i reet ions 

CALL MI NVS/D/oic/B/Z (A. KA. N. EPS. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input/ou If a matrix is input. its inverse matrix is output. 

KA 

N 

EPS 

ILL 

Two-dimens tput 
ional 
array 

Integer Input 
type 

Integer Input 
type 

Real type Input 

Integer Output 

type 

Value of the first subscript in the array-A declaration. 
KA~N 

Order of A. 2~N~1000 

Criterion constant for matrix singularity. If the absolute 

value of a pivot element is smaller than this constant. the 

input matrix is decided to be singular. and the calculation 

is interrupted. EPS>O 

ILL=O: Normal termination. 

ILL=30000: Limits on KA. N. and EPS are violated. 

The number of the pivot element whose absolute value is 

smaller than EPS. 

*1 For MINVD (MINV~ MINV~ MINVB. MINVZ). A is a double precision real type (quadruple 

130



~ 

~ 

precision real type, complex type. double precision complex type, and quadruple precision complex 

type). 

For MINVD (MINV~ MINV~ MINVB. MINVZ), EPS is a double precision real type (quadruple 

precision real typ~ real type, double precision real type, and quadruple precision real 

type) . 

(3) Calculation method 

1. The permutation matrix J> corresponding to row interchanges accompanying to pivoting is 

applied to A and then J>A is decomposed into a lower unit triangular matrix L and an upper 

triangular matrix. J>A=W 

2. Generates L -I in place of L. 

3. Generates cri in place of U. 

4. Generates A-l=u-IL-IJ> in place of A. 

In case of MINVS, all the necessary inner sum computation are done by partial double precision 

arithmetic operation. 

(4) Remarks 

1. If the absolute values of matrix elements differs significantly, it is desirable to 

normalize the matrix iD advance by MNORMS and MNORMD to insure precision in the result. For the 

required post-processing, see the explanation of MNORMS. 

2." If the typical value of matrix elements is a, ax 10:...o(ax 10-16 ,ax 10-3°) is adequate 

as the standard value of EPS for MINVS and (MINVD, MINVQ). 

3. It is very disadvantageous from the standpoint of computation time and precision to 

calculate the inverse matrix of A for the calculation of matrix product of the form of A- J13. 

By all means, the simultaneous linear equation routines LBQLUS and LEQLUD should be used. 

4. When the inverse matrix of a symmetric positive definite matrix is to be found. it is wise 

to use the special-purpose routines MINVSP and MINVDP. 

(1987. 06. 17) (1987. 08. 07) 

/J; 
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MINVSP/MINVDP/MINVQP (Inversion of Symmetric Positive Definite Matrices) 

Inversion of Symmetric Positive Definite Matrices 

Programm Ichizo Ninomiya. April 1977 
ed by 

Format Subroutine language: FORTRAN; size: 41. 41. and 41 lines respectively 

(l) Out line 

MINVSP/MINVDP/MINVQP generates the inverse matrix of a symmetric positive definite matrix A in 

place of the input matrix using the Cholesky decomposition method. 

(2) Directions 

CALL MINVSP/MINVDP/MINVQP{~~N.EPS, ILL) 

Argument Type and Attribut Content 
kind (*l) e 

A Real type Input/ou If a symmetric positive definite matrix is input, its inverse 
Two-dimens tput matrix is output. This argument processes only the upper 
ional right half including the diagonal lines because of symmetry. 
array The lower left half is preserved. 

KA Integer Input Value of the first subscript in the array-A declaration. 
type KA~N 

. 
N Integer Input Order of A. N~2 

type 

EPS Real type Input Constant for determining the positivity of matrix A. If the 
value of a pivot element is smaller than this constant, the 
input matrix is decided to be non positive definite, and the 
calculation is interrupted. HPS>O 

ILL Integer Output ILL=O: Normal termination. 
type ILL=30000: Limits on KA. N. and EPS are violated. The number 

of the pivot element whose absolute value is smaller than EPS 

*1 For MINVDP (MINVQP), all real types are changed to double (quadruple) precision real types. 

(3) Calculation method 

1 Generates the Cholesky decomposition element U of A. that is. the upper triangular matrix II 

such that A={jTlI in the upper right triangular part of A. 

2. Generates the inverse matrix ~1 of lI. that is, the upper triangular matrix V such that 
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UV=I in place of U. 

3. Genera!es the upper right half of the inverse matrix A-1=WT of A in place of V. 

In case of MINVSP. execute all necessary inner sum calculations by partial double precision 

arithmetic operation. 

(4) Remarks 

1. If the typical absolute value of matrix elements is a. ax 1 0-6(ax 10-16 ,ax 10-3°) is 

adequate as the standard value of BPS for MINVSP, MINVDP, and MINSQP. 

2. It is very disadvantageous from the standpoint of computation time and precision to 

calculate the inverse matrix of A for the calculation of matrix product of the form of A-1LJ • 

By all means. the simultaneous linear equation routines CHOLPS and CHOLPD should be used. 

(1987.06.16) 

ls3 
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MINVV/W/X/Y (Inversion of Matrix - Vector Version -) 

Inversion of Matrix -Vector Version-

Programm Ichizo Ninomiya and Yasuyo Hatano. March 1985 

ed by 

Format Subroutine language: FORTRAN77; size: 112. 113. 111. and 113 lines 

respectively 

(1) Outl ine 

MINVV/W/X/Y obtains an inverse matrix using the Gauss-Jordan elimination. It is for single 

precision (double precision. single precision complex type. or double precision complex type). 

(2) Direct ions 

CALL MINVV/W/X/Y (A. ](A, N. EPS. LIST. w. IND) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input/ou The input matrix is processed with this routine. and its 

Two-dimens tput inverse is generated. 

ional 

array 

KA Integer Input Value of the first subscript in the array-A declaration. 

type KA~N 

N Integer Input Order of A. N~2 

type 

EPS Real type Input Matrix singularity criterion. If the absolute value of pivot 

elements is smaller than this constant. it is determined to 

be, singular. and the computation is interrupted. 

BPS>O 
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Argument Type and Attribut Content 

kind (*1) e 

LIST Integer Work One-dimensional array containing N elements. 

type area 

one-dimens 

ional 

array 

W Real type Work One-dimensional array of size 2N. 

one-dimens area 

iona! 

array 

IND Integer Output The value 0 is assumed if computation terminates normally. 

type and 30000 is assumed if computation is not executed at all 

because limits on the argument are exceeded. 

Value of K is assumed if computation is stopped at the K-th 

step because of singularity. 
--

*1 For MINVW(X. V). A and Ware changed to double precision real types {complex type or double 
precision complex type}. 

For MINVW/Y. BPS is changed to a double precision real type. 

(3) Calculation method 

The Gauss-Jordan elimination accompanied by row exchange for partial pivoting is used. 

(4) Note 

1. If the typical absolute value of matrix elements is a. ax 10-6(ax 10-16) is adequate as 

the standard value of BPS for MINVV(W}. 

I 

I 
I 

I 

I 

I 

(1987. 06. 19) (1987. 08. 07) 
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4. Eigenvalue analysis 

[Method of choice of eigenvalue analysis routines] 

NUMPAC provides a variety of effective eigenvalue analysis routines that you can select 

depending on the type, characteristics, and structure of each target matrix. By carefully 

selecting them based on the guideline shown below, you can enjoy much of their superiority in all 

aspects of precision, speeds, and storage capacities. To make the following explanation simple, 

the name of each recommended routine is represented by the one for single precision. In addition 

to the routines below, the high-speed eigenvalue analysis package NICER is also available. 

1 Non-symmetry: 

2. Symmetry 

(1) Dense matr ix 

HEORVS 

(a) To obtain all eigenvalues and eigenvectors: HOORVS 

(b) To obtain all eigenvalues and all or part of eigenvectors: HORIIS 

(c) To obtain part of eigenvalues and eigenvectors: HOBSVS 

(d) To obtain a limited part of eigenvalues and eigenvectors: JENNFS 

(2) Band matr ix 

(a) To obtain all eigenvalues: RIIORVS 

(b) To ~btain a limited part of eigenvalues and eigenvectors: JENNBS 

3. General problems of symmetric matrices 

(1) Dense matr ix 

(a) To obtain all eigenvalues and eigenvectors: 

(b) To obtain all eigenvaloes and part of eigenvectors: 

(c) To obtain part of eigenvalues and eigenvectors: 

(2) Band ma tr i x 

GIIORVS 

GHORIS 

GHBSVS 

(a) To obtain a limited part of eigenvalues and eigenvectors: GJENBS 

( Singular value decomposition: SVDS 
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CGHBSS/D/Q (Eigenvalue analysis of the type Ax=ilBx by Householder-bisection Method 

(Hermitian matrices» 

Eigenvalue Analysis of the Type ~=Altr by Householder-Bisection Method (Hermitian Matrices) 

Programm Ichizo Ninomiya; December 1983 

ed by 

Format Subroutine language; FORTRAN. Size; 54. 55. and 55 lines respectively 

(1) Outl ine 

When Hermitian symmetric matrix A and Hermitian symmetry positive definite matrix 13 are 

given. CGHBSS/D/Q obtains a specified number of eigenvalues and eigenvectors of an eigenvalue 

problem ~=AEkr by Householder bisection method. CGHBSS/D/Q is a single (double. quadruple) 

precision subroutine. 

(2) Direct ions 

CALL CGHBSS/D/Q(A. B. KA. N. E. NE. V. NV. EPS. W. z. ILL) 

Argument Type and Attribut Content 

Complex Input 

type 

Two-dimens 

ional lower left half is preserved. 

array 

B Complex Input The upper right half of the Hermitian symmetric positive 

type definite matrix including the diagonal is input. After 

Two-dimens processing by this routine. Cholesky decomposition component 

ional U is generated (see the calculation method). The lower left 

array half is preserved. 
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Argument Type and Attribut Content 

KA 

N 

B 

NB 

y. 

NY 

BPS 

kind (*1) e 

Integer 

type 

Input Adjustable dimension of A. B. and Y (value of the first 

subscript in array declaration)KA~N 

Integer 

type 

Input. Order of A and BThis is also the number of rows of Y. N~2 

Real type Output 

Two-dimens 

ional 

array 

Integer 

type 

Input 

Bigenvalues are generated and arranged. In descending order 

if NB > O. and in ascending order if NB < 0 

The number of the eigenvalue to be obtained is specified by 

the absolute value. The largest (smallest) INBI eigenvalues 

are obtained if NB > 0 (NB < 0). NB~O 

Complex 

type 

Two-dimens 

ional 

array 

Output The eigenvector corresponding to eigenvalue B (I) is 

Integer 

type 

Input 

Real type Input 

Real type Work 

one-dimens area 

ional 

array 

normalized in the meaning of x*Bx=l and output in the 

column I. 

The number of eigenvectors to be obtained is specified by the 

absolute value. The eigenvectors corresponding to the first 

INYI eigenvalues in the order determined by NB are obtained. 

O~ INYI ~ INBI 

Convergence criterion constant of bisection methodWhen the 

tridiagonal matrix generated from A is denoted by T. 

" T " -I EPS lis used for con ver gence test. Cho 1 esky 

decomposition for B is omitted when EPS < O. EPS~O 

One-dimensional array with the size of 3N or more 
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Argument Type and Attribut Content 

kind (*1) e 

Z Complex Work One-dimensional array with the size of 5N or more 

type area 

One-dimens 

ional 

array 

ILL Integer Output ILL = 0: Normal end 

type ILL = 1: B is decided to be non-positive definite. 

ILL = 30000: The input arguments violated the limit. 

*1 For double or quadruple precision subroutines, all single precision types are changed to 

double or quadruple precision types. 

(3) Calculation method 

Positive definite matrix 13 is Cholesky-decomposed by an upper triangular matrix lJ as 

I3=U*lJ. When A=(lJ*)-IAU-1 is formed from A using lJ, the generalized eigenvalue problem 

Ax=itBr becomes a standard eigenvalue problem Ai .... it x. This problem is solved by 

Householder-bisection method and eigenvector x is determinE:d by x=lTl x. 

(4) Notes 

1. When all eigenvalues are to be determined, it is more advantageous to use subroutine 

CGHQRS/D/Q or CGHQIS/D/Q which uses Householder-QR method~ 

2. For repeated calculation with 13 fixed .and with only A changed from time to time, it is 

better to reuse the Cholesky-decomposed components of 13. Refer to the description of EPS in 

the argument table. 

Bibliography 

1) Yoshitaka Beppu and Ichizo Ninomiya; DComparisons of Matrix Solutions for Standard Eigenvalue 

Problems, D Nagoya University Computer Center News, Vol. 11, No. 3. and PP. 265-274 (1980) 

<1987. 08. 07) 
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CGHQIS/D/Q (Eigenvalue Analysis of the Type Ax::ABx by Householder-OR-Inverse Iteration 

Method (Hermitian Matrices» 

Eigenvalue Analysis of the Type ~=Alir by Householder-OR-Inverse Iteration Method 

(Hermitian Matrices) 

Programm Ichizo Ninomiy~ December 1983 

ed by 

Pormat Subroutine language: PORTRAN;·size: 5~ 53, and 53 lines 

respect i ve ly. 

(1) Outline 

CGHOIS/O/O obtains all of the eigenvalues and a part of the eigenvectors of the eigenvalue 

prob~em ~=Alir using Householder-OR-inverse iteration method if a Hermitian matrix A and a 

Hermitian positive definite matrix B are given. It is for single (double or quadruple) 

precision. 

(2) 0 i rect ions 

CALL CGHOI S/O/O (A, B, KA, N, E, V, NV, EPS, W, Z, ILL) 

Argument Type and Attr ibut Content 

kind (*1) e 

A Complex Input/ou The upper right half containing the diagonal lines of a 

type tput Hermitian matrix is input. It is processed and converted to 

Two-dimens A in this routine. The lower left half is retained. 

ional 

array 
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Argument Type and Attribut 

B 

KA 

N 

8 

v 

NV 

8PS 

kind (*1) e 

Complex 

type 

Two-dimens 

ional 

array 

Integer 

type 

Integer 

type 

Input 

Input 

Input 

Real type Output 

One-dimens 

ional 

array 

Complex Output 

type 

Two-dimens 

ional 

array 

Integer 

type 

Input 

Real type Input 

Content 

The upper right half contain:ng the diagonal of a Hermitian 

positive definite matrix is input. It is processed and 

converted to the Cholesky decomposition element U (see the 

calculation method). The lower left half is retained. 

Adjustable dimensions of A, D, and V (value of the first 

subscript in the array declaration). KA~N 

Order of A and l It also represents the number of rows of 

V. N~2 

8igenvalues are output in the order of size. If NV~O. 

eigenvalues are arranged in descending order. If NV<O. 

eigenvalues are arranged in ascending order. 

8igenvectors corresponding to the eigenvalue 8(1) are output 

to the I-th column. They are normalized in the sense of 

~*B.r=1. 

.1 NV 1 represents the number of eigenvectors to be obtained. 

If NV>O (NV<O). eigenvectors are numbered in algebraically 

descending (ascending) order from the maximum (minimum). 

1 NV I ;:;!;N 

Convergence criterion of OR method. If the tridiagonalized 

matrix is den.oted by T. 11 T 11 • 1 8PS I is used for the 

criterion. If EPS<O. the Cholesky decomposition of B is 

omitted. EPS:#:O 

14-\ 
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Argument Type and Attribut Content 

kind (*1) e 

W Real type Work One-dimensional array of size N. 

one-dimens area 

ional 

array 

Z Complex Work One-dimensional array of size 5N., 

type area 

One-dimens 

ional 

array 

ILL Integer Output ILL=O: Normal termination. 

type . ILL=1: B is decided to be not positive definite. 

ILL=30000: The input argument exceeded the limit. 

1* Por double (quadruple) precision subroutines, all single precision types are cahnged to 

double (quadruple) precision types. 

(3) Calculation method 

The Hermitian positive definite matrix 13 is Cholesky-decomposed to 13=trU with the upper 

triangular matrix U. If A=(U*)-lAU-J is generated from A using this U. the generalized 

eigenvalue probl~m.Ax=itBr becomes the standard eigenvalue problem Ai .... it i. If this 

problem is solved using Householder-OR-Inverse iteration method, the eigenvector X is 

obtained with x=U- J i. 

(4) Notes 

1. When up to about one-fourth of the entire eigenvalues is to be obtained, it is more 

advantageous to use the subroutine CGIIBSS based on Householder bisection method. 

2. When the calculation is to be repeated with 13 kept constant and only A changed, it is 

better to reuse the Cholesky decomposition elements of 13. See the explanation for BPS in 

the I ist of arguments. 
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'CGHGRS/D/G (Bigenvalue Analysis ofAx=ADx by Householder-OR Method (Hermitian Matrices» 

Bigenvalue Analysis ~Allr by Householder-OR Method (Hermitian Matrices) 

Programm Ichizo Ninomiya, December 1983 

ed by 

Format Subroutine language: FORTRAN; size: 53, 54, and 54 lines respectively 

(1) Outline 

CGHORS/D/O obtains the entire eigenvalues and, if required, the entire eigenvectors of the 

eigenvalue problem Ax=ABx if a Hermitian matrix A and a Hermitian positive definite matrix B 

are given. It converts A to A=(U*)-IAu- l by executing Cholesky decomposition with B=U*u, 

and so Ives the standard e i genva I ue prob I em AY=AY us i ng Househo I der-OR method. If 

eigenvectors are required. it converts the eigenvector Y of A by x=lTly. 

(2) Directions 

CALL CGHORS/D/O(A, Dt KK, N. B, F, HPS, IND) 

Argument Type and Attribut Content 

kind (*1) e 

A Complex Input/ou Only the upper right half of a Hermitian matrix is input. It 

type tput js processed in this routine. and A' is generated in the 

Two-dimens upper right half. ' If eigenvectors are obtained, they are 

ional entered in each column. The vectors are normalized in the 

array sense of x· Br= 1 . 

B Complex I nput/ou Only the upper right half of a Hermitian positive definite 

type tput matr ix is input. It is processed in this routine, and the 

Two-dimens C~olesky decomposition element U of B is entered in the upper 

iona) right half. The lower left half is retained. 

array 

KK Integer Input Value of the first subscript in the declaration of arrays A 

type and B: KK~N 
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Argument 

N 

B 

F 

BPS 

IND 

Type and 

kind (*1) 

Integer 

type 

Real type 

One-dimens 

ional 

array 

Complex 

type 

One-dimens 

ional 

array 

Real type 

Integer 

type 

Attribut 

e 

Input 

Input 

Work 

area 

Input 

Content 

Order of arrays A and B. N~2 

o. 

One-dimensional array containing N elements. Bigenvalues are 

arranged in algebraically descending order. 

One-dimensional array containing N elements. 

I BPS I is the convergence criterion of the OR method. It is 

also the positivity criterion for Cholesky decomposition of 

B. If this routine is called with BPS<O. the Cholesky 

decomposi.tion elements of B are reused. BPS=#O 

Input/ou This argument has has the following meaning as an input 

tput argument. IND=O: Only eigenvalues are calculated. IND=#O: 

Bigenvectors are also calculated. This argument has the 

following meaning as an output argument. 

IND=O: Calculation is normally executed. IND=I: B is decided 

to be not positive definite. 

IND=30000: limits on the input argument were exceeded. 

Because this argument is both input and output. constants 

must not be uset 

1* For double (quadruple) precision subroutines. all single precision types are changed to 

double (quadruple) precision types. 

(3) Calculation method 

-
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The Hermitian positive definite matrix 13 is Cholesky-decomposed to ~1I with the upper 

triangular matrix 1I. If A=(lJ*)-tA{Tt is generated from A using this 1I, the generalized 

eigenvalue problem Ax=Al3x becomes the standard eigenvalue problem Ai .... Ai. This problem 

is solved using Householder QR method. and the eigenvector x is obtained with ~~tx. 

(C ~~s 

1 If only selected eigenvectors are to be obtained, it may often be advantageous to use 

Householder-QR-inverse iteration method (CGHQIS). 

2. If calculation is iterated with 13 kept constant and only A changed, it is better to 

reuse the Cholesky decomposition elements of 13. See the explanation for the argument EPS. 

<1987.06.22) (1987.08.07) 
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CGKLZS/D/Q (Bigenvalue Analysis of the Type Ax=ABx by LZ Method (Complex Matrices» 

Bigenvalue Analysis of the Type )lr=Altt by LZ Method(Complex Matrices) 

Programm Ichizo Ninomiya. July 1984 

ed by 

Format Subroutine language: FORTRAN; size: 256 and 256 lines respectively 

(1) Outline 

CGKLZS/D/Q obtains all the eignevalues of the eigenvalue problem )lr=Altt using the LZ method 

for given complex matrices A and 13. -and obtains specified eigenvectors using the inverse 

iterat ion. It is for single (double or quadruple) precision. 

(2) 0 i rect ions 

CALL CGKLZS/D/Q (A. B. KA. N. E. I E. V. NV. EPS. W. Z. ILL) 

Argument Type and Attribut Content-

kind (*1) e 

A Complex Input Complex matrix k It is processed with this routin~ and 

type transformed to A (see the calculation method). 

Two-dimens 

ional 

array 

B Complex Input Complex matr ix B. It is processed with this routine. and 

type transformed to 13 (see the calculation method). 

Two-dimens 

ional 

array 

KA Integer Input Adjustable dimensions of A. B. and V (value of the first 

type subscript in the array declaration). KA~N 

( 4-1 
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14-3 

Argument Type and Attribut 

N 

B 

IB 

v 

NV 

BPS 

kind (*I) e 

Integer 

type 

Complex 

type 

One-dimens 

ional 

array 

Integer 

type 

one-dimens 

ional 

array 

Complex 

type 

Two-dimens 

ional 

array 

Integer 

type 

Input 

Output 

Output 

Output 

Input 

Real type Input 

Complex Work 

type area 

one-dimens 

ional 

array 

Content 

Order of A and 1 It also represents the number of rows of 

V. N~2 

Bigenvalues are output in the order of absolute values. If 

NV~O, eigenvalues are arranged in descending order. If 

NV<O, eigenvalue~ are arranged in ascending order. 

The condition code of the I-th eigenvalue is input in IB{I). 

IB=O: Normal. IB=1: Bigenvalues do not exist. 

IB=2: Bigenvalues are indeterminate. 

An eigenvector to the eigenvalue B(I) is normalized to a 

length of 1 and placed to the I-th column. 

The number of eigenvectors to be obtained is represented by 

the absolute value, and how to arrange eigenvalues is 

represented by the sign. (See the item of B.) 

O;$; I NV I ~ I N I 
Convergence criterion of bisection method. 

max{ 11 All, 11 B 11)* I BPS I is used as the criterion. 

One-dimensional array of size N*N. 
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Argument Type and Attribut Content 

kind (*1) e 

Z Complex Work One-dimensional array of size N. 

type area 

one-dimens 

ional 

array 

ILL . Integer Output ILL=O: Normal termination . 

type ILL=K: K:Number of abnormal eigenvalues. 

ILL=20000: LZ method does not result in convergenc~ 

ILL=30000: The input argument exceeded the limit. 

1* For double (quadruple) precision subroutines. all single precision types are changed to 

double (quadruple) precision types. 

(3) Calculation method 

1. The matrix A and B are transformed to upper Hessenberg matrix A=LAM and B=LBM 

respectively using the stabilized elementary row transformation L. and the stabilized elementary 

column transformat ion M. 

2. All the eigenvalues of the eigenvalue problem AY=ABy are obtained using the LZ method with 

origin shift. and the specified eigenvectors y are obtained using the inverse iteration. 

3. Bigenvectors are obtained by x=My. and normalized to length 1. 

(4) Note 

1. If A is Hermitian. and B is Hermitian positive definite. it is more advantageous to use 

CGHBSS. CGHQIS. and CGHQRS. 

Bibliography 

1) Kaufman L; ~The LZ Algorithms to Solve the Generalized Bigenvalue Problem~.Stanford Computer 
Science Report PB-222099. P. 103 (1973) 

(1987.08.07) (1988.04. 22) 

1Lt-9 
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CHEQIS/D/Q (Bigenvalue Analysis for Complex Matrices by OR and Inverse Iteration Method) 

Bigenvalue Analysis for Complex Matrices by OR and Inverse Iteration Method 

Programm Ichizo Ninomiya, October 1983 

ed by 

Pormat Subroutine language: PORTRAN; size: 207 and 208 lines respectively 

(l) Outline 

CHBOIS/D/D transformed a complex matrix to an upper Hessenberg matrix using the stabilized 

elementary transformation, obtains all the eigenvalues using the OR method. and calculates the 

eigenvectors as many as requested using the inverse iteration method. It is a single (double or 

quadruple) precision subroutin~ 

(2) 0 i rect ions 

CALL CHBDIS/D/D{A, KA. N. B. V. NV. BPS. IW. W. z. ILL) 

Argument Type and Attribut Content 

kind (*l) e 

A Complex Input Matrix whose eignevalue analysis is to be executed. It is 

type processed with this routine. and transformed to an upper 

Two-dimens Hessenberg type. 

ional 

array 

KA Integer Input Adjustable dimensions of A and V (value of the first 

type subscript in the array declaration). KA~N 

N Integer Input Order of A. Number of rows of V. It also represents the 

type size of B. N~l 
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Argument Type and Attribut Content 

kind (*1) e 

8 Complex Output 8igenvalues. The I-th eigenvalue is 8(1). 

type 

one-dimens 
I 

. ~ :: 
ional 

array 

V Complex Output The I-th eigenvector is output to the I-th column of V. The 

type length is normal ized to 1. 

Two-dimens 

~ ional 

array 

NV Integer Input The number of eigenvectors is represented by the absolute 

type value. If NV~O. eigenvalues are arranged in the descending 

order of absolute values. If NV<O. eigenvalues are arranged 

in the ascending order of absolute values. Then. vectors to 

the first INVI eigenvalues are obtained. 

BPS Real type Input IIAII ·BPS is used as the convergence criterion of Ol BPS>O 

IW Integer Work One-dimensional array of size N. 

type area 

~ one-dimens 

ional 

array 

W Real type Work One-dimensional array of size 3N. 

one-dimens area 

ional 

array . 
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Argument Type and Attribut Content 

kind (*1) e 

Z Complex Work One-dimensional array of size ,~2. 

type area 

One-dimens 

ional . 

array 

ILL Integer Output Cond i t i on code. 

type I NO::O: Norma 1. 

INO::1: N=l or the elements in A are all O. 

INO=2: The OR method or the inverse iteration does not 

result in convergence . 
.. 

INO=30000: The input argument fxceeded the limit. 

*1 For double precision subroutines. all real types are changed to double precision real types. 

and all complex types to double precision complex types. For quadruple precision subroutines. 

all real types are changed to quadruple precision real types. and all complex types to quadruple 

precision complex types. 

(3) Calculation method 

The complex matrix A is transformed to an upper Hessenberg matrix II=~I~ using the 

stabil ized elementary transformation S.· that is. Gauss's el imination accompanied by row 

exchange. 

All the eigenvalues of 11 are obtained using the. OR method with origin shift. 

A specified number of eigenvectors of 11 are obtained using the inverse iteration. These 

eigenvectors are placed in U Eigenvectors of A are calculated as V=S!J from U. 

(4) Notes 

1. It is reasonable to process the Hermitian matrix with the special-purpose routine. 

t If an eigenvector is not to be obtained (NV=O). the area to V and Z is not used. and thus 

need not be prepared. Anything can be written for these arguments. 
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CHEQRS/D/Q (Eigenvalue Analysis for Complex Matrices by OR Method) 

Eigenvalue Analysis for Complex Matrices by OR Method 

Programm Ichizo Hinomiya, October 1983 

ed by 

Format Subroutine language: FORTRAN; size: 191 and 192 lines respectively 

(1) Outline 

CnEOIS/D/O transforms a complex matrix to an upper Hessenberg matrix using the stabilized 

elementary transformation, obtains all the eigenvalues using the OR method, and, if required, 

calculates all the corresponding eigenvectors. Th,s subroutine is for single (double or 

quadruple) precision. 

(2) Directions 

CALL CHEORS/D/O{A, KA, H, E. V, EPS, lW, IND) 

Argument Type and Attribut Content 

kind (*l) e 

A Complex Input Matrix whose eigenvalue analysis is to be executed. It is 

type processed ,with this routine. and transformed to a Hessenberg 

Two-d ime,ns type. 

ional 

array 

KA Integer Input Adjustable dimensions of A and V (value of the first 

type subscript in the array declaration). KA~N 

H Integer Input Order of A. Number of rows of V. It also represents the 

type size of E. N~l 
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Argument Type and Attrihut Content 

kind (*1) e 

B Complex Output Bigenvalue. The I-th eigenvalue is B(I). 

type 

One-dimens 

ional 

array 

V Complex Output The I-th eigenvector is output to the I-th column of V. The 

type length is normalized to 1 

Two-dimens 

ional 

array 

BPS Real type Input IIAII ·BPS is used ~s the convergence criterion of Ql BPS>O 

IW Integer Work One-dimensional array of size N. 

type area 

one-dimens 

. ional 

array 

IND Integer Input/ou Input: Whether to calculate eigenvectors and how to array 

type tput eigenvalues are specified. 

~. IND;O: Bigenvectors are not calculated. 

IND~O: Bigenv~ctors are calculated. 
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Argument Type and Attribut Content 

kind (*1) e 

. IND~O: Bigenvalues are arranged in the descending order of 

absolute values. 

IND<O: Bigenvalues are arranged in the ascending order of 

absolute values. 

Output: Condition code. 

I ND=O: Norma 1. 

IND=l: N=l or the elements of A is all. O. 

IND=2: The OR met.hod does not result in convergence. 

IND=30000: The input argument exceeded the limit. 

1* For double (quadruple) precision subroutines, all single precision types are changed to 

double (quadruple) precision types. 

(3) Calculation method 

The real matrix Al is transformed to an upper Hessenberg matrix 1I=~1~ using stabilized 

elementary transformation~, that is, Gauss' elimination accompanied by row exchange. 11 is 

converted into an upper triangular matrix using OR method with origin shift. Eigenvalues are 

given as the diagonal elements. Bigenvectors are obtained from the eigenvectors of the upper 

triangular matrix using the inverse transformation of the stabilized elementary and OR 

transf orma t ions. 

(4) Notes 

1. It is reasonable to process the Hermitian matrix with the special-purpose routine. 

2. If eigenvector are not to be obtained (I ND=O) , the area for V is not used, and thus need 

not be prepared. Anything can be written for it. 

(1987. 06. 19) <1987. 08~ 07) 
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CHOBSS/D/Q (Bigenvalue Analysis for Hermitian Matrix by Householder-Bisection Method) 

Bigenvalue Analysis for Hermitian Matrices by Householder-Bisection Method 

Programm Ichizo Ninomiya. October 1983 

ed by 
.. :-, 

Format Subroutine language: FORTRAN; size: 188 and 189 lines respectively 

(1) Outline 

CHOBSS/D/Q tridiagonalizes a Hermitian matrix using Householder's reflexion transformation. 

obtains the eigenvalues of the tridiagonalized matrix using the bisection method based on Sturm 

.~ sequence. and calculates the eigenvectors using the inverse iteration. It is for single (double 

or quadruple) precision. 

(2) Directions 

CALL CHOBSS/D/Q(A.KA.N.B.NE. V.NV.EPS.W.Z. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

A Complex Input The upper right half containing the diagonal of a Hermitian 

type matrix is input. It is prpcessed with this routine. The 

Two-dimens left lower half is retained. 

ional 

array 
~ / '. 

. " . ~ 

KA Integer Input Adjustable dimensions of A and V (value of the first 

type subscript in the array declaration). KA~N 

N Integer Input Order of A. It also represents the number of rows of V. N~l 

type 
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Argument Type and Attribut 

E 

NE 

v 

NV 

EPS 

z 

Real type Output 

One-dimens 

ional 

array 

Integer 

type 

Complex 

type 

Two-dimens 

ional 

array 

Integer 

type 

Input 

Output 

Input 

Real type Input 

Real type Work 

One-dimens area 

ional 

array 

Complex Work 

type area 

One-dimens 

ional 

array 

Content 

Eigenvalues are output in the order of size. If NE>O. 

eigenvalues are arranged in descending order. If NE<O. 

eigenvalues are arranget in ascending orde~ 

The number of eigenvalues to be obtained is represented by 

the absolute value. If NE>O (NE<O). eigenvalues are numbered 

in algebraically descending (ascending) order from the 

maximum (minimum). NE~O 

Eigenvectors to the eigenvalue E(I) are normalized to length 

1. and placed to the I -th co I umn. 

The number of eigcnvectors to be obtained is represented by 

the absolute vaJue. Eigenvalues are numbered from the end in 

the order defined by N~ O~INVI~INEI 

Convergence criterion of bisection method. If the 

tr idiagonaIized matrix is denoted by.T. 11 T 11 ·EPS is used as 

the criterion. EPS>O 

One-dimensional array of size 3N. 

One-dimensional array of size 5N. 
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Argument Type and Attribut Content 

kind (*1) e 

ILL Integer Output ILL=O: Normal termination. 

type ILL=30000: The input argument exceeded the limit. 

1* Por double precision subroutines, all real types are changed to double precision real types, 

and all complex types to double precision complex types. Por quadruple precision subroutines, 

all real types are changed to quadruple precision real types, and all complex types to quadruple 

precision complex types. 

(3) Calculation method 

The matrix A is transformed to a tridiagonal matrix T=H*AH using the Householder 

transformat ion H. 

The eigenvalues of T are obtained by the bisection method based on Sturm sequence. They are 

numbered as many as specified from the end in a specified order. The eigenvectors corresponding 

to the eigenvalues specified as counted from the end are obtained using the inverse iteration. 

The matrix containing these eigenvectors in columns is denoted by ll. then the eigenvector V of A 

can be obtained by V=Hl1. 

(4) Note 

When all the eigenvalues of a Hermitian matrix are to be obtained. it is better to use the 

routine CHOQRS/D based on the OR method than this routine. When all of the eigenvalues and all 

or part of the corresponding eigenvectors are to be obtained, it is more reasonable to use the 

routine CHORIS/D based on the OR-inverse iteration. 

<1987. 06. 22) 
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C HOQR S I D I Q (Higenvalue Analysis for Hermitian Matrices by Householder-OR Method) 

Higenvalue Analysis for Hermitian Matrices by 1I0useholder-OR Method 

Programm Ichizo Ninomiy~ October 1983 

ed by 

Format Subroutine language: FORTRAN; size: 133, 134. and 134 lines 

respectively 

(1) Outline 

CHOORS/D/O obtains all the eigenvalues and, if required, all the corresponding eigenvectors of 

an Hermitian matrix, using the Householder's tridiagonalization and OR method with origin shift. 

(2) Directions 

CALL CHOORS/D/O (A, KA. N, H, F, HPS, ILL) 

Argument Type and Attribut Content 

kind (*1) e 

A Complex Input/ou The upper right half containing the diagonal lines of a 

type tput Hermitian matrix is input. Anything can be input in the 

Two-dimens lower left half. If .eigenveclors are t~ be obtained, 

ional eigenvectors are output in A. That is, eigenvectors to the 

array eigenvalues H(I) are normalized to length I, and is placed in 

the I-th column Qf A. 

KA Integer Input Value of the first subscript in the array-A declaration. 

type KA~N 

N Integer Input Order of A. N~2 

type 
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Argument Type and Attribut 

E 

F 

EPS 

Real type Output 

One-dimens 

ional 

array 

Complex Work 

type area 

One-dimens 

ional 

array 

Real type Input 

Content 

One-dimensional array containing N elements. Eigenvalues are 

arranged in algebraically descending order. 

One-dimensional array containing N elements. 

Convergence criterion for OR method. If all the non-diagonal 

elements become Gmaller than 11 All ·EPS in magnitude, 

convergence is judged to have occurred. EPS>O 

ILL Integer 

type 

Input/ou If ILL=O is given, only eigenvalues are calculated. If 

tput ILL~O is given, both eigenvalues and eigenvectors are 

calculated. If calculation terminates normally, 0 is 

output. If limits on the input argument are exceeded, 3000 

is output. Constants must not be used for the actual 

argument. 

*1 For double precision subroutines, all real types are changed to double precision real types, 

and all complex t,pes are changed to double precision complex types. For quadruple precision 

subroutines, all real types are changed to quadruple precision real types, and all complex types 

are changed to quadruple precision complex types. 

(3) Performance 

As with real symmetric matrices, this routine i~ high in speed. It can be used without 

troubles even for the case of multiple or close eigenvalues. 

(4) Notes 

l b 1 
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1. This routine is optimum when all eigenvalues (and corresponding eigenvectors) are to be 

obtained with a small storage requirement. 

2. If only part of eigenvalues or eigenvectors is to be obtained. Householder-:Givens' method 

(bisection method) is desirable. Subroutines that are currently registered are CHDBSS/D. 

<1987.06.22) <1987.08.07) 

~ 

~ 
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CHQRIS/D/Q (Bigenvalue Analysis of Hermitian Matrices by Householder-OR-Inverse Iteration 

Method) 

Bigenvalue Analysis of Hermitian Matrices by Householder-OR-Inverse Iteration Method 

Programm Ichizo Ninomiya, October 1983 

ed by 

Format Subroutine language: FORTRAN; size: 188 and 189 lines respectively 

(1) Out] ine 

CHORIS/D/O obtains all the eigenvalues of a Hermitian matrix using Householder-OR method, and 

calculates specified eigenvectors using the inverse iteration. 

(2) Direct ions 

CALL CHORIS/D/O(~K~N,B, V,NV,BPS,W,Z, ILL) 

Argument Type and Attribut 

A 

KA 

N 

kind (*1) e 

Complex 

type 

Two-dimens 

ional 

array 

Integer 

type 

Integer 

type 

Input 

Input 

Input 

Content 

The upper right half containing the diagonal of a Hermitian 

matrix is input It is processed with this routine. The 

lower left half is retained. 

Adjustable dimensions of A and V (value of the first 

subscript in the array declaration). KA~N 

Order of A. It also represents the number of rows of V. N~2 

B Real type Output All eigenvalues are output in the order of size. If NV~O, 

One-dimens 

ional 

array 

eigenvalues are arranged in descending order. If NV<O, 

eigenvalues are arranged in ascending order. 

I b 3 
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Argument Type and Attribut Content 

v 

NV 

Complex 

type 

Two-dimens 

ional 

array 

Integer 

type 

Output 

Input 

Eigenvectors to the eigenvalue E(I) are normalized to length 

1. and placed to the I-th column. 

INVI represents the number of eigenvectors to be obtained. 

If NV>O (NV<O). eigen~ectors are numbered in algebraically 

desc~nding (ascending) order from the maximum (minimum). 

INVI~N 

EPS Real type Input Convergence criterion of QR method. If the tridiagonalized 

z 

ILL 

Real type Work 

One-dimens area 

ional 

array 

Complex Work 

type area 

One-dim~ns 

ional 

array 

Integer 

type 

Output 

• matrix is denoted by t. "TII ·EPS is used as the criterion. 

EPS>O 

One-dimensional array of size N. 

One-dimensional array of size 5N. 

ILL=O: Normal termination. 

ILL=30000: The input argument exceeded the limit. 

*1 For double precision subroutines. all real types are changed to be double precision real 

types, and all complex types to double precision complex types. For quadruple precision 

subroutines. all real types are changed to quadruple precision real types, and all complex types 

to quadruple precision complex types. 

164



~. 

(3) Calculation method 

The Hermitian matrix A is transformed to a tridiagonal matrix jf=lI*AJI using the Householder 

transformation H. 

All the eigenvalues of jf are calculated using the OR method. A specified number of 

eigenvectors of jf are obtained using the inverse iteration. They are gathered in the matrix li. 

The eigenvectors of A are calculated by V=1Rl. 

(4) Notes 

1. The routine is adequate when all the eigenvalues are obtained quickly. and all or part of the 

eigenvectors are obtained. 

~ If up to about one-fourth of the eigenvalues is to be obtained. it is more advantageous to 

use CHOBSS/D based on Householder-bisection method. 

(1987. 06. 22) 

165



166 

GHBSVS/D (Higenvalue analysis of the type Ax=ilBx by Householder-bisection method) 

Higenvalue Analysis of the Type ~AEkr by Householder-Bisection Method 

Programm Ichizo Ninomiya; April 1981 
.. 

ed by 

Format Subroutine language; FORTRAN Size; 230 lines each 

(1) Out} ine 

When a real symmetric matrix Jl and a real symmetric positive definite matrix 13 are given. 

GHBSVS/D determines the specified number of eigenvalues and eigenvectors of eigenvalue problem 

)tr=AEkr by using the Householder-bisection method. GHBSYS(D) is for single (double) precision. 

(2) Directions 

CALL GHBSYS/D(A. B. KK. N. E. Y. NY. EPS. w. ILL) 

Argument Type and Attribut 

A Real type Input 

Two-dimens 

ional 

array 

B Real type Input 

Two-dimens 

ional 

array 

KK Integer Input 

type 

Content 

The upper right half of the real symmetric' matrix including 

the diagonal is input. After processing by this routine. A 
is generated (see the calculation method). The lower left 

half is preserved. 

The upper right upper of the real symmetry positive definite 

matrix including the diagonal is input. The matrix is 

p(ocessed by this routine to become Cholesky decomposition 

component U (see the calculation method). The lower left 

half is preserved. 

Adjustable dimensions of A. B. and V (value of the first 

subscript in array declaration)KK~N 
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Argument Type and Attribut 

N 

NB 

v 

NV 

w 

ILL 

Integer Input 

type 

Real type Output 

Two-dimens 

ional 

array 

Integer 

type 

Input 

Real type Output 

Two-dimens 

ional 

array 

Integer Input 

type 

Real type Input 

Real type Work 

one-dimens area 

ional 

array 

Integer 

type 

Output 

Content 

Order of A and BThis is also the number of rows of V. N~2 

Bigenvalues are generated and arranged. In descending order 

if NB > O. and in ascending order if NB < 0 

The number of eigenvalues to be obtained is specified by the 

absolute value. The largest (smallest) INBI eigenvalues are 

obtained if NB > 0 (NB < 0). NB~O 

The eigenvector corresponding to eigenvalue B(I) is 

normal ized in the meaning of xTBx=l and output in the 

column I. 

The number of eigenvectors to be determ'ined is specified by 

the absolute values. The eigenvectors corresponding to the 

first INVI eigenvalues in the order determined by NB are 

obtained. O~INVI~INBI 

Convergence criterion con~tant for bisection methodWhen the 

.tridiagonal matrix generated from A is denoted by T. 

IITII ·IEPSI is used for convergence test. Cholesky 

decomposition for B is omitted if BPS < O. BPS~O 

One-dimensional array with the size of 6N or more 

ILL = 0: Normal end 

ILL = 1: B is decided to be non-positive definite. 

ILL = 30000: The input arguments violated the limit. 
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*1 Por double precision subroutines, all real types are changed to double precision real types. 

(3) Calculation method 

Positive definite matrix 13 is Cholesky-decomposed by an upper triangular matrix U as 

B=l]TU. When A=U-TAlT1 is from A using U, the general ized eigenvalue problem Ax=Alh 

becomes a standard eigenvalue problem A x -AX. This problem is solved by 

Householder-bisection method and eigenvector X is determined by ~~li. 

(4) Notes 

1. When all eigenvalues are to be determined, it is more advantageous to use subroutine 

CGHQRS/D/Q or CGHQIS/D/Q which uses Householder-QR method. 

2.Por repeated calculation with B fixed and with only A changed from time to time. it is 

better to reuse the Cholesky-decomposed components of B. Refer to the description of BPS in 

the argument table. 

Bibl iography 

1) Yoshitaka Beppu and Ichizo Ninomiya; »Comparisons of Matrix Solutions for Standard Bigenvalue 

Problems.» Nagoya University Computer Center News, Vol.ll. No. 3. and PP. 265-274 (1980) 

(1987.08. 10) (1988.04. 04) 

..,) 

..) 
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GHBSVV/W (Eigenvalue Analysis of the Type Ax=ABx by Householder-Bisection Method: Vector 

Version) 

Bigenvalue Analysis of the Type Jtr=Allr by Householder-Bisection Method: Vector Version 
, " 

Programm Ichizo Ninomiy~ March 1988 

ed by 

Pormat Subroutine Language: FORTRAN; Size: 156 lines 

(1) Outline 

GHBSVV/W obtains the specified number of eigenvalues and corresponding eigenvectors of the 

eigenvalue problem Jtr=Allr by the Householder-Bisection method when a real symmetric matrix A 

and a real symmetric positive definite matrix 13 are given. GHBSVV(W) is for single (double) 

precision. 

(2) Directions 

CALL GHBSVV/W (A. B. KK. N. B. V. NV. BPS, W. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

~, A Real type Input The upper right half containing the diagonal of a real 

Two-dimens symmetric matrix is input. This routine turns it into A 

ional (see DCalculation methodD). ' The lower 1 eft ha If shou 1 d be 

array used as a work area. 

B Real type Input The upper right half containing the diagonal of a real 

Two-dimens symmetric positive definite matrix is input. This routine 

ional decomposes it into Cholesky component U (see DCalculation 

array method D) • The lower left half is retained. 

KK Integer Input Adjustable dimensions of ~ B. and V (value of the first 

type subscript in the array declaration). KK~N 
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Argument Type and Attribut 

N Integer Input 

type 

B Real type Output 

Two-dimens 

ional 

array' 

NB Integer Input 

type 

v Real type Output 

Two-dimens 

ional 

array 

NV Integer Input 

type 

BPS Real type Input 

Real type Work 

one-dimens area 

ional 

array 

ILL Integer Output 

type 

Content 

Order of A and B or the number of rows of V. N~2 

Bigenvalues are output in the order of size. If NB>O. they 

are arranged in decreasing order. If NB<O. they are arranged 

in increasing order. 

Represents the number of eigenvalues to be obtained by the 

absolute valu~ If NB>O(NB<O). they are numbered from the 

maximum (minimum) in algebraically decreasing (increasing) 

order. NE#=O 

Eigenvectors to eigenvalues B(I) are normalized and placed to 

the I-th column in the sense of xT1tr=l. 

Represents the number of eigenvectors to be obtained by the 

absolute value. Bigenvalues are numbered from the end in the 

order def ined by NE. O;$; 1 NV 1 ~ 1 NE 1 

Convergence criterion of bisection method. If the 

tridiagonalized matrix is denoted by T. IITII-I EPS 1 is used 

as the criterion. If EPS<O. the Cholesky decomposition of B 

is omi tted. EPS#=O 

One-dimensional array of size 6N. 

ILL=O: Normal termination. 

ILL=1: B is decided to be not a positive definite. 

ILL=30000: Input argument exceeded the limit. 
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*1 For double precision subroutines. all real types should be changed to double precision real 

types. 

(3) Calculation method 

This routine decomposes the symmetric positive definite matrix B into ~TlJ with an 

upper triangular matrix lJ by Cholesky decomposition method. ... T I 
If A =l..T Al..T is generated 

from A by using this U. the general ized eigenvalue problem Ax=ABx turns into the standard 

eigenvalue problem Ai .... Ai. By solving this problem by the Householder-bisection method. 

the eigenvector x is obtained by x=u- I i. 

(4) Note 

1. When all eigenvalues are to be obtained. it is more advantageous to use the subroutine 

GHQRVV!W or GHQRIV/W based on the Householder-QR method. 

2. When calculation is to be repeated with only B kept constant and A changed. it is more 

advantageous to reuse the Cholesky decomposition elements of B.· See the explanation for 

DBPSD in the argument list. 

Bibliography 

1) Yoshitaka Beppu and Ichizo Ninomiya; DComparison of Matrix Methods for Standard Bigenvalue 

ProblemsD• Nagoya University Computer Center News. Vol. 11. No. 3. pp.265-274~1980). 

(1987.08.10) (1988.04. 08) 
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GHQRIS/D (Eigenvalue Analysi$ of the Type Ax=ABx by Householder-OR-Inverse Method) 

Eigenvalue Analysis of the Type ~AEtr by Householder-OR-Inverse Iteration Method 

Programm Ichizo Ninomiya. April 1981 

ed by 

Format Subroutine language: FORTRAN; size: 250 lines 

(1) Outl ine 

GHORIS/D obtains all of the eigenvalues and a part of the corresponding eigenvectors of the 

eigenvalue problem }t[=AEtr using the Householder-O~-Inverse iteration method when a real 

symmetric matrix A and a real symmetric positive definite matrix 13 are given. It is for single 

(double) precision. 

(2) 0 i rect ions 

CALL GHQRIS/D (A. B. KK. N. E. V. NV. EPS. w. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input/ou Only the upper right half containing the diagonal lines of a 

Two-dimens tput real symmetric matrix is input. It is processed with this ~ 

ional routine. and converted to A (see DCalculation method D
). The 

} 

array lower left half is retained. 

B Real type Input Only the upper right half containing the diagonal lines of a 

Two-dimens real symmetric positive definite matrix need be input. It is 

ional processed with this routine. and converted to the Cholesky 

array decomposition element U (see DCalculation method D
). The 

left lower half is retained. 

KK Integer Input Adjustable dimensions of ~ B. and V (value of the first 

type subscript in the array declaration). KK~N 

. 
I; 
( 

i 
~ " 

.. " .. 
" . 

: 
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Argument Type and Attribut 

N 

B 

v 

NV 

BPS 

ILL 

kind (*1) e 

Integer 

type 

Input 

Real type Output 

One-dimens 

ional 

array 

Real type Output 

Two-dimens 

ional 

array 

Integer­

type 

Input 

Real type Input 

Real type Work 

one-dimens area 

ional 

array 

Integer 

type 

Output 

Content 

Order of A and B. It also represents the number of rows of 

v. N~2 

Bigenvalues are output in the order of size. If NV~O, 

eigenvalues are 6lrranged in descending order. If NV<O, 

eigenvalues are arranged in ascending order. 

Bigenvectors corresponding to the eigenvalue B(I) are output 

to the-I-th column. They have been normalized in the meaning 

of xTBx=l. 

I NV I represents the number of eigenvectors to be obtained. 

If NV>O (NV<O), eigenvectors are counted in algebraically 

descending (ascending) order from the maximum (minimum). 

Convergence criterion of OR method. If a tridiagonalized 

matr ix is denoted by T, 11 T 11 • I BPS I is used as the 

criterion. IF BPS<O, Cholesky decomposition of B is omitted. 

BPS=FO 

One-dimensional array of size 6N. 

ILL=O: Normal termination. 

ILL=!: B is decided to be not definite positive. 

ILL=30000: The input argument exceeded the limit. 

*1 For double precision subroutines, all real types should be changed to double precision real 

types. 
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(3) Calculation method 

The symmetric positive definite matrix B is Cholesky-decomposed to B=uTU using the upper 

triangular matrix U. If A=lTT A{T! is made from A by using this U. the general ized 

eigenvalue problem Ax=.tBx becomes the standard eigenvalue problem A X -.t i . By solving 

this problem using Householder-OR-inverse iteration method. the eigenvector X· is obtained 

with x~!i 

• 

(4) Note 

1 If up to about one-fourth of the entire eigenvalues is to be obtained. it is better to use 

the subroutine GHBSVS based on Householder bisection method. 

2. If calculation is to be iterated with B kept constant and only A changed. it is desirable 

to reuse the Cholesky decomposition elements of B. See the explanation for BPS in the list 

of arguments. 

Bibliography 

1) Yoshitaka Beppu and Ichizo Ninomiya; DComparison of Matrix Solutions of Standard Eigenvalue 

Problems. D Nagoya University Computer Center News. Vol. 11. No. 3. PP.265-274 (1980) 

0987. 08. 10) 0988. 04. 04) 
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GHQRIV/W (Bigenvalue Analysis of the Type AX=ABx by Householder-OR-Inverse Iteration 

Method: Vector Version) 

Bigenvalue Analysis of the Type )tr=A~ by Householder-OR-Inverse Iteration Method : Vector 

Version 

Programm Ichizo Ninomiy~ March 1988 

ed by 

Format Subroutine Language: FORTRAN; Size: 153 lines 

(1) Out line 

GHORIV/W obtains all of eigenvalues and part of the correspon~ing eigenv,ectors of the 

eigenvalue problem AX=ABx when a real symmetric matrix A and a real symmetric positive 

definite matrix 13 are given. GHORIV(W) is for single (double) precision. 

(2) Direct ions 

CALL GHORIV/W(A. B. KK. N. E. V. NV. EPS. w. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input/ou The upper right half containing the diagonal of a real 

'Two-dimens tput symmetric matrix is input. This routine turns it into A 
ional (see -Calculation MethodD). The lower left half is used as a 

array work area. 

B Real type . Input The upper right half containing the diagonal of a real 

Two-dimens symmetric positive definite matrix is input. This routine 

ional turns it into the Cholesky decomposition component U (see 

array DCalculation method-). The left lower half is retained. 
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Argument Type and Attribut 

KK 

N 

B 

v 

NV 

BPS 

ILL 

kind (*l) e 

Integer 

type 

Integer 

type 

Input 

Input 

Real type Output 

One-dimens 

ional 

. array 

Real type Output 

Two-dimens 

ional 

array 

Integer Input 

type 

Real type Input 

Real type Work 

one-dimens area 

ional 

array 

Integer 

type 

Output 

Cont~nt 

Adjustable dimensions of ~ B. and V (value of the first 

subscript in declaration of array). KK~N 

Order of A and B or the number of rows of V. N~2 

Bigenvalues are output in the order of size. If NV~O. they 

are arranged in decreasing order. If NV<O. they are arranged 

in increasing order. 

Bigenvectors to eigenvalues B{I) are output to the I-th 

column. They are normalized in the sense of xTllr=l . 

I NV I represents the number of eigenvectors to be obtained. 

If NV>O{NV<O). they are numbered in algebraically decreasing 

(increasing) order from the maximum (minimum). I NV I ~N 
Convergence criterion of OR method. If the tridiagonalized 

matrix is denoted by T. 11 T 11 • I ~PS I is used as the 

criterion. If EPS<O. Cholesky decomposition of B is omitted. 

BPS=I=O 

One-dimensional array of size 6N. 

ILL=O: Normal termination. 

ILL=!: B is decided to be not a positive definite. 

ILL=30000: Input argument exceeded the limit. 

*1 Por double precision subroutines. all real types should be changed to double precision real 

types. 
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(3) Calculation method 

This routine decomposes the symmetric positive definite matrix B into B={JTU with an 

upper tr iangular matrix U .by Cholesky decomposit ion. If A::{TT AV-I is generated from A 

using U. a generalized eigenvalue problem )lr=AEkr is handled as a standard eigenvalue' 

problem A i-Ai. By solving this problem with the Householder-OR-iteration method. the 

eigenvector x is obtained with x=frl i . 

(4) Note 

1 When.up to one-fourth of all eigenvalues are to be obtained. it is more advantageous to 

use the subroutine GHBSVS/W based on the Householder bisection method. 

~ When calculation is to be repeated with only B kept constant and A changed. the Cholesky 

decomposition elements of B should be reused. See the explanation for DBPSD in the argument 

1 ist. 

Bibliography 

1) Yoshitaka Beppu and Ichizo Ninomiya; DComparison of Matrix Methods· for Standard Bigenvalue 

Problems. D Nagoya University Computer Center News. Vol.II. No. 3. pp.265-274(1980) 

<1987. 08. 10) <1988. 04. 08) 
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GHQRVS/D and GHQRUS/D (Eigenvalue Analysis Ax=ABx by Householder-OR Method) 

Eigenvalue Analysis ~Allr by Householder-OR Method 

Programm Ichizo Ninomiya. April 1977 

ed by 

Format Subroutine language: FORTRAN; size: 60. 60. 60. and 60 lines 

respectively 

(1) Outline 

GHORVS/D and GHORUS/D obtain the entire eigenvalues and. if required. the entire eigenvectors 

of the eigenvalue problem Ax=ABy if a real symmetric matrix A and a real symmetric positive 

definite matrix B are given. It converts A to A=lTTAU-1 by Cholesky decomposition with 

B=l)TU. and solves the standard eigenvalue problem AY=AY using Householder OR method. If 

eigenvectors are required. the eigenvector y of A is converted as x=lTly. 

(2) Directions 

CALL GHORVS/D (A, B. KK. N. E. F, EPS. I NO) 

CALL GHORUS/D (A. B, KK, N. E, F, BPS. I NO) 

Argument TYp~ and Attribut Content 

kind (*1) e 

A Real type Input/ou The entire real symmetric matrix (not the upper right half) 

Two-dimens tput is input. I t is processed if' this routine, and A is 

ional generated in the upper right half. If eigenvectors are 

array obtained, they are input in each column. The vectors are 

normalized in the sense of xTBx=l. 

B Real type Input/ou Only the upper right half of a symmetric positive definite 

Two-dimens tput matr ix is input. It is processed in this routine, and the 

ional upper right half contains the Cholesky decomposition element 

array U of B. The lower left half is retained. 
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Argument Type and AUr ibut Content 

kind (*1) e 

KK Integer Input Value of the first subscript in the declaration of arrays A 

type and B. KK~N 

N Integer Input Order of arrays A and B. N~2 

type 

E Real type Output One-dimensional array containing N elements. In ~HQRVS/D. 

·One-dimens eigenvalues are arranged in algebraically descending order. 

ional In GHQRUS/D. they are arranged in descending order of the 

array absolute value. 

p Real type Work One-dimensional array containing N elements. 

One-dimens area 

ional 

array 

EPS Real type Input I EPS I is the convergence criterion of the QR method. It is 

also the positivity criterion for the Cholesky decomposition 

of B. If this routine is called with EPS<O. it reuses the 

Cholesky decomposition elements of B. 

EPS=#=O 

IND Integer Input/ou This argument has the following meaning as an input argument. 

type tput 

IND=O: Only eigenvalues are calculated. 

IND=#=O: Eigenvectors are also calculated. 

This argument has the following meaning as an output 

argument. 

IND=O: Calculation is normally executed. 

IND=l: B is decided to be not a positive definite. 

IND=30000: Limits on the input argument are exceeded. 

Because this argument is both input and output. constants 

must not be used as an actual argument. 
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*1 For double precision subroutines. all real types are changed to double precision real types. 

(3) Calculation method 

The symmetric positive definite matrix 13 is Cholesky-decomposed to ~TlI using an upper 

triangular matrix 1I. If A=lTTA~l is generated from A by using this 1I. the generalized 

eigenvalue problem Ax=ABr becomes the standard eigenvalue problem A i-Ai. By solving 

this problem using Householder-OR method. the eigenvector X is obtained with x~li 

(4) Notes 

1. If only selected eigenvectors are obtained. Householder-OR-inverse iteration (GHaRIS/D) 

may be advantageous. 

2. If calculation is iterated with B kept constant and only A changed. it is better to reuse 

the Cholesky decomposition elements of a See the explanation for EPS in the list of 

arguments. 

0987. 08. 10) (1988. 04. 04) 
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GHQRVV/W (Eigenvalue Analysis Ax=ABx by Householder-OR Method: Vector Version) 

Eigenvalue Analysis AX=ABr by Householder-OR Method: Vector Version 

Programm Ichizo Ninomiy~ March 1988 

ed by 

Format Subroutine language: FORTRAN; size: 155 lines· 

(1) Out] ine 

GHORVV/W obtains all of the eigenvalues and. as required. all of the corresponding eigenvectors 

of the eigenvalue problem Ax=ABr when a real symmetric matrix A and a symmetric positive 

definite matrix 13 are given. It executes Cholesky decomposition with ~TlJ. and solves the 

standard eigenvalue problem Ay=ity using Householder-OR method by converting A to A~TAU-I. 

If e i genvectors are requ i red. the e i genvector y of A is conver ted us i ng x~ I y . 

(2) Direct ions 

CALL GHORVV/W (A. B. KK. N. E. EPS. W. I NO) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input/ou Only the upper right half of a real symmetric matrix is . 

Two-dimens tput 

ional 

array 

entered. It is processed in this routine, and A is 

generated in the upper right half. The lower left half is 

used as a work area. If eigenvectors are obtained. they are 

entered in each column. The vectors are normalized in the 

mean i ng of xT &= t . 

B Real type Input/ou Only the upper right half of a symmetric positive definite 

Two-dimens tput 

ional 

array 

matrix is inpul It is processed in this routine. and the 

Cholesky decomposition element U of B is entered in the upper 

right half. The lower left half is retained. 
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Argument Type and 

KK 

N 

Integer 

type 

Integer 

type 

Attribut 

Input 

Input 

Content 

Value of the first subscript in the declaration of arrays A 

and B. KK~N 

Order of arrays A and B. N~2 

B Real type Output .One-dimensional array containing N elements. In GHQRVV/W. 

BPS 

nm 

One-dimens 

ional 

array 

Real type Input 

Real type Work 

One-dimens area 

ional 

array 

eigenvalues are arranged in algebraically descending order. 

I BPS I is the convergence criterion of the OR method. It is 

also the positivity criterion at the Cholesky decomposition 

of B. If this routine is called with BPS<O. the Cholesky 

decomposition elements of B are reused. 

BPS:I=O 

One-dimensional array containing 2N elements. 

Integer Input/ou This argument has the following meaning as an input argument. 

type tput 

IND=O: Only eigenvalues are calculated. 

IND:I=O: Bigenvectors are calculated. 

This argument has the following meaning as an output 

argument. 

IND=O: Calculation was normally executed. 

IND=!: B is decided to be not positive definite. 

IND=30000: Limits on the input argument are exceeded. 

Because this argument is used for both input and output. 

constants must not be used as real arguments. 

182



~ 

'~ 

*1 Por single precision subroutines. all real types should be changed to double precision real 

~pe~ 

(3) Calculation method 

The symmetric positive definite matrix B' is Cholesky-decomposed to B=UTU using the upper 

triangular matrix U. If A=lTT ArT! is made from A by using this U. the general ized 

eigenvalue problem Ax=ABx becomes the standard eigenvalue problem A X =Ax. By solving 

this problem using Householder QR method, the eigenvector X is obtained with x~lx . 

(4) Note 

1. If only a part of eigenvectors is to be obtained, it may be advantageous to use 

Householder-QR-inverse iteration'method (GHQRIVIW). 

2. If calculation is to be iterated with B kept constant and only A changed, it is desirable 

to reuse the Cholesky decomposition elements of B. See the explanation for argument EPS. 

<1987. 08. 10) <1988. 04. 04) 
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HEQRVS/D/Q (Bigenvalue analysis for real nonsymmetric matrices by double OR method) 

Bigenvalue Analysis for Real Nonsymmetric Matrices by Double OR Method 

Programlll Ichizo Ninomiya; Revised in April 1977. Apr~1 1981 

ed by 

Format Subroutine language; FORTRAN Size; 391 lines each 

(1) Outl ine 

A real non-symmetric matrix is transformed into an upper Hessenberg matrix by stabilized 

elementary transformation. The double OR method· is then applied to this to determine all 

eigenvalues. and a specified number of corresponding eigenvectors are determined by the inverse 

iteration method. The HBORVS/D/O subroutine is used for single (doubl~ quadruple) precision. 

(2) Directions 

CALL HBORVS/D(A, KA. N. B. F. G. H. NV. BPS. IW. w. IND) 

Argument Type and Attribut 

A 

KA 

N 

B 

kind (*1) e 

Real type Input 

Two-dimens 

ional 

array 

Integer Input 

type 

Integer Input 

type 

Real type Output 

one-dimens 

ional 

array 

Content 

Matrix subjected to eigenvalue analysis. This matrix is 

transformed by this routine into an upper lIessenberg type. 

Adjustable dimensions of A. G. and H (value of the first 

subscript in array declaration). KA~N 

Order of A. Number of rows of G andH. It is also the size of 

Band F. N~3 

Real part of eigenvalues. The Ith eigenvalue is given by 

B(I) + iF(I). 
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Argument Type and Attribut 

F 

G 

H 

NV 

BPS 

IW 

Real type Output 

one-dimens 

ional 

array 

Real type Output 

two-dimens 

ional 

array 

Real type Output 

two-dimens 

ional 

array 

Integer 

type 

Input 

Real type Input 

Integer 

type 

one-dimens 

. ional 

array 

Work 

area 

Real type Work 

one-dimens area 

ional 

array 

Content 

Imaginary part of eigenvalues. The Ith eigenvalue is given by 

B(I} + iF(I). 

The real part of the Ith eigenvector is output in the Ith 

column of G. It must have the area for NV+1 columns. 

The imaginary part of the Ith eigenvector is output in the 

Ith column of H. Moreover, it is necessary to prepare the 

region of the size with N rows and N+1 columns for use as a 

work area. 

Number of eigenvectors t9 be determinedBecause conjugate 

eigenvectors are generated in pairs, number of actually 

generated vectors can be NV+1. O~NV~N 

IIAII -BPS/N is used as a convergence criterion constant for 

OR method. EPS>O 

One-dimensional array with the size of 2N or more. 

One-dimensional array with the size of 2N or more. 

/J:r 
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Argument Type and Attribut Content 

kind (*1) e 

INO Integer Input/ou Input: A mode for arrangement of eigenvalues is specified. 

type tput INO = 0: Eigenvalues are arranged as they are calculated. 

INO > 0: Eigenvalues are trranged in descending order of 

the absolute value~ 

INO < 0: Eigenvalues are arranged in ascending order of 

the absolute value~ 

Output: Condition code 

INO = 0: Normal 

INO = 1: All elements of A are O. 

INO = 2: Convergence did not occur even if the OR method 

was repeated lOON times. 

INO = 30000: The input argument violated the limit. 

*1 For double precision subroutines, all real types are changed to double precision real types. 

(3) Calculation method 

Real matrix A is transformed into an upper Hessenberg matrix H=S-lAS by stabilized 

elementary transformation~, that is, Gaussian elimination involving row exchange. All 

eigenvalues of JI are determined by the double OR method with origin shift. 

The specified number of eigenvectors of 11 is determined by the inverse iteration method. Let 

they be grouped into a matr ix U. Eigenvectors of A are calculated by V=S/J using U. 

(4) Note 

1. It is reasonable to process symmetric matrices by special routines nOORVS/D, HORIIS/D, and 

HOBSVS/D. 

2. If no eigenvectors are to be determined (NV=O), the areas for G and H are not used and need 

not be prepared, and anything can be written for them. 

(1987. 07. 20) 
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HEQRVV IW (Eigenvalue Analysis for Real Nonsymmetric Matrices by Double OR Method - Vector 

Version -) 

Eigenvalue Analysis for Real Nonsymmetric Matrices by Double OR Method -Vector Version-

Programm Ichizo Ninomiy~ December 1984 

ed by 

Format Subroutine language: FORTRAN77; size: 485 and 486 lines respectively 

(1) Outl ine 

HEQRVV/W transforms a real nonsymmetric matrix to an upper Hessenberg matrix using the 

stabi lized elementary transformation. obtains all the eigenvalues using the double OR method, and 

calculates the eigenvectors as many as requested using the inverse iteration. It is a single 

(double) precision subroutine. 

(2) Direct ions 

CALL IIEORVV IW (A. KA. N. E. F. G. H. NV. EPS. I W. W. I ND) 

Argument Type and Attribut 

A 

KA 

N 

Real type Input 

Two-dimens 

ional 

array 

Integer 

type 

Integer 

type 

Input 

Input 

Content 

Matrix whose eigenvalue an~lysis is to be executed. The 

matrix is processed with this routine. and transformed to a 

Hessenberg type. 

Adjustable dimen~ions of A. G. and H (value of the first 

subscript in the array declaration). KA~N 

Order of A. Number of rows in G and H. I tal so represents 

the size of E and F. N~3 
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Argument Type and Attribut Content 

B Real type Output Real part of eigenvalues. The I-th eigenvalue is B(I)+iP(I). 

one-d.imens 

ional 

array 

P Real type Output Imaginary part of eigenvalues. The I-th eigenvalue is 

one-dimens B(I)+iF(I). 

ional 

array 

G Real type Output Real part of the I-th eigenvector is output to the I-th 

two-dimens column of G. Space for NV+l columns must be provided. 

ional 

array 

H Real type Output The imaginary part of the I-th eigenvector is output to the 

two-dimens I-th column of H. Because this argument is used as a work 

ional area. the area of size NX (N+!) must be provided. 

array 

NV Integer Input Number of eigenvectors to be obtained. Because conjugate 

typ~ eigenvectors are output as a pair. th~ number of vectors that 

are actually.output may be NV+l. Q~NV~N 

BPS Real type Input IIAII ·BPS/N is used as the convergence criterion of Q~ BPS>Q 

IW Integer Work One-dimensional array of size 2N. 

type area 

one-dimens 

ional 

array 
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Argument Type and Attribut Content 

kind (*l) e 

W Real type Work One-dimensional array of size 2N. 

one-dimens area 

ional 

array 

IND Integer Input/ou Input: Arrangement of .eigenvalues is specified. 

type tput IND=O: Bigenvalues are kept in the state as calculated. 

IND>O: Bigenvalues are arranged in the descending order of 

absolute values. 

IND<O: Bigenvalues are put in the ascending order of 

absolute values. 

Output: Condition code. 

IND=O: Normal. 

IND=l: The elements in A are all zeros. 

IND=2: Convergence may not occur even if the OR method is 

iterated lOON times. 

IND=30000: The input argument exceeded the limit. 

*1 Por double precision subroutines. all real types are changed to double precision real types. 

(3) Calculation method 

The real matrix }\ is transformed to the upper Hessenberg matrix 1l=~I~ using the stabilized 

elementary transformation~. that is. Gauss' elimination accompanied by row exchange. All the 

eigenvalues of Il are obtained using the double OR method with origin shift. 

Specified number of eigenvectors of Il are obtained using the inverse iteration and are placed 

in the matrix U. The eigenvectors of }\ are calculated by V=SU from U. 

(4) Notes 

1. It is reasonable to process symmetric matrices with the special-purpose routines HOORVV/W. 

nORIIV/W. and nOBSVV/W. 
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", 

~ If eigenvectors are not to be obtained (NV=O). the area to G and H is not used. and thus 

need not be prepared. Anything can be written' for these argument~ 

<1987.06.19) 

~ 

~ 
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HOBSVS/D/Q (Bigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method) 

Eigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method 

Programm Ichizo Ninomiya, April 1977. revised in April 1981 

ed by 

Format Subroutine language: FORTRAN; size: 173 and 171 lines respectively 

(1) Outl ine 

HOBSVS/D/Q tridiagonalizes a real symmetric matrix using Householder's reflexion 

transformation. obtains the eigenvalues of the tridiagonalized matrix using the bisection method 

based on Sturm sequence. and calculates the eigenvectors using the inverse iteration. It is for 

single (double) precision. 

(2) Directions 

CALL HOBSVS/D/Q(A. KA. N. E. NB. V. NV. EPS. w. ILL) 

Argument Type and Attribut 

A 

KA 

N 

E 

kind (*1) e 

Real type Input 

Two-dimens 

ional 

array 

Integer 

type 

Integer 

type 

Input 

Input 

Real type Output 

One-dimens 

ional 

array 

Content 

Only the upper right half containing the diagonal lines of a 

real symmetric matrix is input. It is processed with this 

routine. The lower left half is retained. 

Adjustable dimensions of A and V (value of the first 

subscript in the array declaration). KA~N 

Order of A. It also represents the number of rows of V. N~1 

Eigenvalues are output in the order of size. If NB>O. 

eigenvalues are arranged in descending order. If NE<O. 

eigenvalues are arranged in ascending order. 

! ?( 
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Argument Type and Attribut 

NB 

v 

NV 

BPS 

ILL 

kind (*l) e 

Integer 

type 

Input 

Real type Output 

two-dimens 

ional 

array 

Integer 

type 

Input 

Real type Input 

Real type Work 

One-dimens area 

ional 

array 

Integer 

type 

Output 

.. 
Content 

The number of eigenvalues to be obtained is represented by 

the absolute value. If NB>O (NB<O). eigenvalues are numbered 

in algebraically descending (ascending) order from the 

maximum (minimum). NB#:O 

Bigenvectors corresponding to the eigenvalue B{I) are 

normalized to a length of 1 and output to the I-th column. 

The number of eigenvectors to be obtained is represented by 

the absolute valu~ Bigenvalues are numbered from the end in 

the order defined by Na O~INVI~INBI 

Convergence criterion of bisection method. If a 

tridiagonalized matrix is delloted by T. ," T" -BPS is used for 

the criterion. BPS>O 

One-dimensional array of size 6N. 

ILL=O: Normal termination. 

ILL=30000: The input argument exceeded the limit. 

1* For double precision subroutines. all real types are changed to double precision real types. 

(3) Calculation method 

. The matrix A is transformed to the tridiagonal matrix T=HT All using the Householder 

transformat ion H. 

The eigenvalues of T are obtained by the bisection method based on Sturm sequence. They are 

numbered as many as specified from the end in a specified order. The eigenvectors correspondiOng 

to the eigenvalues are obtained by the inverse iteration. The matrix containing these 
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eigenvectors in columns is denoted by lI. Because II is the eigenvector of jf, it is converted to 

the eigenvector V of A by V=Hl1. 

(4) Note 

When all the eigenvalues of a symmetric matrix are to be obtained, it is better to use the 

routine HOORVS/D based on the OR method. When all of the eigenvalues and all or a part of the 

eigenvectors are to be obtained. it is more reasonable to use the routine HORIIS/D based on the 

OR-inverse iteration method. 

Bibliography 

1) Yoshitaka Beppu and Ichizo Ninorniya: DCornparison of Matrix Solutions of Standard Bigenvalue 

Problems. D Nagoya University Computer Center News. Vol. 11, No. 3. pp.265-274 (1980). 

(1987. 08. 10) (1987. 08. 21) 
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HOBSVV IW (Bigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method -

Vector Version -) 

Bigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method -Vector Version-

• 
Programm Ichizo Ninomiy~ December 1984 

ed by 

Format Subroutine language: FORTRAN77; size: 345 and 346 lines respectively 

(l) Outl ine 

HOBSVV/W tridiagonalizes a real symmetric matr-ix using Householder's reflexion transformation, 

obtains the eigenvalue of the resultant tridiagona.J matrix using the bisection method based on 

Sturm sequence, and calculates the eigenvectors using the inverse iteration. It is for single 

(double) precision. 

(2) Direct ions 

CALL HOBSVV/W(A, KA, N, B, NB, V, NV, BPS, w. ILL) 

Argument Type and Attribut Content 

kind (*l) e 

A Real type Input Whole of a real symmetric matrix is input. It is processed 

Two-d ime,ns with this routin~ 

ional 

array 

KA Integer Input Adjustable dimensions of A and V (value of the first 

type subscript in the array declaration). KA~N 

N . Integer Input Order of A. It also represents the number of rows of V. N~2 

type 
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Argument Type and Attribut Content 

B Real type . Output One-dimensional array of size N. 

one-dimens Eigenvalues are output in the order of size. If NE>O, 

ional eigenvalues are arranged in descending order. If NE<O, 

array eigenvalues are arranged in ascending order. 

NB Integer Input The number of eigenvaIues to be obtained is represented by 

type the absolute value. If NB>O (NE<O), eigenvalues are numbered 

in algebraically descending order (ascending order) from the 

maximum (minimum). NBiFO 

v Real type Output Bigenvectors to the eigenvalue B(I) are normalized to length 

two-dimens 1 and placed to the I-th column. 

ional 

array 

NV Integer Input The number of eigenvectors to be obtained is represented by 

type the absolute value. Bigenvalues are numbered from the end in 

the order specified by N~ O~INVI~INEI 

BPS Real type Input Convergence criterion of bisection method. If a 

tridiagonalized matrix is denoted by T. liT 11 ·BPS is used as 

the criterion. BPS>O 

Real type Work One-dimensional array of size 6N. 

one-dimens area 

ional 

array 

ILL Integer Output ILL=O: Normal termination. 

type ILL=30000: The input argument exceeded the limit. 

*1 For double precision subroutines, all real types are changed to double precision real types. 

(3) Calculation method 

The matrix A is transformed to a tridiagonal matrix T=IIT~ using Householder's 
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/96 
transformation 11. 

The eigenvalues of jf are obtained using the bisection method based on Sturm sequence. They 

are numbered as many as specified from the end in a specified order. The eigenvectors 

corresponding to the specified number of eigenvalues numbered from the end are obtained using the 

inverse iteration. A matrix containing these eigenvectors in its columns is denoted by ll. then 

the eigenvector l' of ;\ can be obtained by 1'=lR1. 

(4) Notes 

When all the eigenvalues of a symmetric matrix are to be obtained. it is better to use the 

routine HOQRVV/W based on the OR method than this routine. When all of eignevalues and all or 

part of eigenvectors are to be obtained. it is more reasonable to use the routine HORIIV!W based 

on the OR inverse iteration. 

Bibliography 

1) Yoshitaka Beppu and Ichizo Ninomiya; ~Comparison of Matrix Solutions of Standard Bigenvalue 

Problems. • Nagoya University Computer Center News. Vol. 11. No. 3. PP. 265-274 (1980) 
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HOQRVS/D/Q and HOQRUS/D/Q (Bigenvalue analysis for real symmetric matrix by 

Householder-OR method) 

Bigenvalue Analysis for Real Symmetric Matrices by Householder-OR Method 

Programm Ichizo Ninomiya April. 1977 

ed 

Format Subroutine Language; FORTRAN Size; 142. 141.142. 141 1 ines 

(1) Out} ine 

All eigenvalues of the real symmetric matrix and all eigenvectors. if necessary. are calculated 

by Householder's tridiagonalization and OR method with origin shift. 

(2) Directions 

CALL HOORVS/D/Q (A. KA. N. H. F. HPS. ILL) 

CALL HOORUS/D/O(A;KA. N. H. F. HPS. ILL) 

Argument Type and Attribut Content 

A 

KA 

N 

Kind * e 

Real type Input 

Two-dimens 

ional 

array 

Only the right upper half which contains the diagonal of th~ 

real symmetric matrix need. be input. Anything can be input 

in the left lower half. When eigenvectors are calculated. 

they are stored in each column of A. Precisely. the 

eigenvector normalized to the unit length corresponding to 

the eigenvalue H(I) is stored in the Ith column. 

Integer 

type 

Input/Ou Value of the first subscript in the array declaration of A. 

Integer 

type 

tput 

Input 

KA~N 

Order of A. N~2 
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Argument Type and Attribut Content 

Kind * e 

E 

F 

EPS 

ILL 

Real type 

One-dimens 

ional 

array 

Real type 

One-dimens 

ional 

array 

Real type 

Integer 

type 

Output 

Work 

area 

Input 

One-dimensional array name with N elements. In HOORVS/D, 

eigenvalues are arranged in the decreasing algebraic order, 

and in HOQRUS/D, they are arranged in the decreasing order of 

absolute value. 

One-dimensional array name with N elements. 

Convergence criterion for OR method. When a nondiagonal 

element becomes smaller than IIAII ·EPS, it is regarded to 

have converged to O. EPS>O 

Input/Du If ILL=O is input, only eigenvalues are calculated. If ILL:#=O 

tput is input, eigenvalues and eigenvectors are calculated. 0 is 

output for normal end. 30000 is output if the input argument 

limit is exceeded. Constants should not be used for the 

actual argument corresponding to this argument. 

* All real types should be changed to double precision real types in the case of the subroutine 

for double precision. 

(3) Performance 

Compared with Jacobi method, this subroutine has high speed and can be used for the multiple or 

close eigenvalues without any trouble. 

(4) Note 

1. This subroutine is optimal to calculate all eigenvalues (and eigenvectors) using small memory 

space. 

~ Householder and Givens' method (bisection) are better in case of calculating only a part of 

eigenvalues and eigenvectors. The appropriate subroutine is HOBSVS/D. 

198



'!J?-

3. SubroutineGHQRVS/D is recommended to solv~generalized eigenvalueproblems Ax=ilBx. 

Bibliography 

1) Hayato Togawa; DNumerical calculation of matrix"~· Ohm-sha {1971L 

(1987. 08. 10) (I987. 08. 21) 
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HOQRVV IW (Eigenvalue Analysis for Real Symmetric Matrices by Householder-OR Method - Vector 

Version -) 

Eigenvalue Analysis for Real Symmetric Matrices by Householder-OR Method -Vector Version-

Programm Ichizo Ninomiya. December 1984 

ed by 

Format Subroutine language: FORTRAN77; size: 233 and 234 lines respectively 

(1) Outl ine 

HOORVV/W obtains all the eigenvalues and. if required. all the corresponding eigenvector of a 

real symmetric matrix. using the Householder's tridiagonalizati~n and the OR method with origin 

shift. I t is for single (double) precision. 

(2) Direct ions 

CALL HOORVV /W (A. KAt N. E. EPS. Wt ILL) 

Argument Type and Attribut 

A 

kind (*1) e 

Real type Input 

Two-dimens 

ional 

array 

Content 

Whole of a real symmetric matrix is input. If eigenvectors 

are obtained. they are entered to columns of A. That is. 

eig~nvectors corresponding to the eigenvalue B(I) is 

normalized to length 1 and placed to the I-th column. 

KA Integer 

type 

Input/ou Value of the first subscript in the array-A declaration. 

N 

E 

Integer 

type 

tput 

Input 

Real type Output 

One-dimens 

ional 

array 

KA~N 

Order of A. N~2 

One-dimensional array containing N elements. Eigenvalues are 

arranged in algebraically descen~ing order. 
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Argument 

EPS 

W 

ILL 

Type and 

kind (*1) 

Real type 

Real type 

One-dimens 

ional 

array 

Integer 

type 

Attribut Content 

e 

Input Convergence criterion for OR method. If all the non-diagonal 

elements become smaller. than IIAII ·EPS in magnitude, 

convergence is judged to have occurred. EPS>O 

Work One-dimensional array with 2N elements. 

area 

Input/ou If ILL=O is given, only eigenvalues are calculated. If 

tput ILL~O, eigenvalues and corresponding eigenvectors are 

calculated. If calculation terminates normally, 0 is 

output. If limits on input arguments are exceeded, 30000 is 

output. Constants must not be used for actual arguments for 

th is argument. 

*1 Por double precision subroutines, all real types are assumed to be double precision real 

types. 

(3) Calculation method 

The symmetric matrix A is transformed to a tridiagonaI matrix T=HT All using the Householder 

transformation H. The matrix T is diagonalized to 1>~TT'l using the OR transformation. The 

eigenvectors of A ·are calculated as V=H'l. 

(4) Notes 

1 This routine is optimum if all eigenvalues (and corresponding eigenvectors) are to be 

obtained with a small size of storage. 

~ If only part of eigenvalues and eigenvectors is to be obtained, Householder-Givens' method 

(bisection) is better. HOBSVV/W is a suitable subroutine. 

Bibliography 
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HQRIIS/D/Q (Bigenvalue Analysis of Symmetric Matrices by Householder-OR-Inverse Iteration 

Method) 

Bigenvalue Analysis of Symmetric Matrices by Householder-OR-In.erse Iteration Method 

Programm Ichizo Ninomiya. April 1981 

ed by 

Format Subroutine Language: FORTRAN; Size: 198 and 196 lines respectively 

(1) Outline 

HORIIS/D/O obtains all eigenvalues of real symmetric matrices by Householder-OR-method. and 

calculates specified eigenvectors by the inverse iteration method. 

(2) Direct ions 

CALL HORI I S/D/O (A. KA. N. B. V. NV. BPS. W. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input The right upper half containing the diagonal of a real 

Two-dimens symmetric matrices is input. It is processed by this 

ional rout ine. The lower left half is retained. 

array 

KA Integer Input Adjustable dimensions of A and V (value of the first 

type subscr ipt in the array dec1ar"at ion). KA~N 

N Integer Input Order of A or the number of rows of V. N~2 

type 

B Real type Output All eigenvalues are output in the order of size. If NV~O. 

One-dimens they are arranged in decreasing order. If NV<O. they are 

ional arranged in increasing order. 

array 
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Argument Type and Attribut 

v 

NV 

BPS 

ILL 

kind (*1) e 

Real type Output 

Two-dimens 

ional 

array 

Integer 

type 

Input 

Real type Input 

Real type Work 

one-dimens area 

ional 

array 

Integer 

type 

Output 

Content 

E.igenvectors to eigenvalues E (I) are normalized to 1. and . 

placed to the I-th colum~ 

INVI represents the number of eigenvectors to be obtained. 

If NV>O (NV<O). the eigenvectors are numbered in 

algebraically decreasing (or increasing) order from the 

maximum (or minimum). INVI ~N 

Convergence criterion of OR method. If the tridiagonalized 

matrix is denoted by T. IITII·BPS is used as the criterion. 

EPS>O 

One-dimensional array of size 6N. 

ILL=O: Normal termination. 

ILL=30000: Input argument exceeded the limit. 

*1 Por double precision subroutines. all real types should be changed to double precision real 

types. 

(3) Calculation method 

Transform the symmetric matrix A to a tridiagonal matrix T=HT All by 1I0useholder 

transformation 11. 

Obtain all eigenvalues of T by the OR method without square root. Obtain a specified number 

of eigenvectors of T by the inverse iteration method. Put these eigenvectors into the matrix lJ 

. The eigenvectors of A are calculated by V=IIU. 

(4) Note 
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1. It is best tOluse ~his routine to obtain.all of eigenvdues and all or part of the 

corresponding eigenvectors quickly. 

2. It is better to use HOBSVS/D based on the 1I0useholder bisection method to obtain up to 

:.:: . .'.: 
one-fourth of all eigenvalues. 

,,: :';.;: 
Bibliography 

• • ;,! \:; .~ , . 1) Parlett and B .. N;"The S~mmetric Bigenvalue Problem" Prentice-Hall <1980> • 

<1987. 08.10) <1987. 08. 21) <1988. 02. 22) 
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HQR I I V IW (Bigenvalue Analysis of Symmetric Matrices by Householder-Inverse-OR Iteration 

Method - Vector Version -

Bigenvalue Analysis of Symmetric Matrices by Householder-OR-Inverse Iteration Method 

-Vector Version-

Programm Ichizo Ninomiya. December 1984 

ed by 

Format Subroutine language: FORTRAN77; size: 345 and 346 lines respectively 

(1) Out} ine 

HORIIV!W obtains all the eigenvalues of real symmetric matrices using the Householder-OR 

method. and calculates the specified eigenvectors based on the inverse iteration. It is for 

single (double) precision. 

(2) Directions 

CALL HQRIIV/W(A. KA. N. B. V. NV. BPS. w. ILL) 

Argument Type and Attribut Content 

kind. (*1) e 

A Real type Input Whole of a real symmetric matrix is input. It is processed 

Two-dimens with this routin~ 

ional 

array 

KA Integer Input Adjustable dimensions of A and V (value of the first 

type subscript in the array declaration). KA~N 

N Integer Input Order of A. It also represents the number of rows of V. N~2 

type 
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Argument Type and Attribut 

H 

v 

NV 

HPS 

ILL 

Real type Output 

One-dimens 

ional 

array 

Real type Output 

Two-dimens 

ional 

array 

Integer 

type. 

Input 

Real type Input 

Real type Work 

One-dimens area 

ional 

array 

Integer 

type 

Output 

Content 

All eigenvalues are output in the order of size. If NV~O. 

eigenvalues are arranged in descending order. If NV<O. 

eigenvalues are arranged in ascending order. 

Higenvectors to the eigenvalue H{I) are normalized to length 

1 and placed to the I-th column. 

INVI represents the number of eigenvectors to be obtained. 

If NV>O (NV<O). eigenvectors are numbered in algebraically 

descending (ascending) order from the maximum (minimum) 

value. INVI~N 

Convergence criterion constant of OR method. If a 

tridiagonalized matrix 'is denoted by t IITII ·HPS is used as 

the convergence criterion. HPS>O 

One-dimensional array of size 6N. 

ILL=O: Normal·termination. 

ILL=30000: Input arguments exceeded the limit. 

*1 For double precision subroutines. all real types are changed to double precision real types. 
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(3) Calculation method 

The symmetric matrix A is transformed to a tridiagonal matrix T=HT All using the Householder 

transformation H. 

All the eigenvalues of T are calculated using the square-root-Iess OR method. A specified 

number of eigenvectors of T are obtained using the inverse iteration and are placed in a matrix 

U. The eigenvectors of A are calculated by V=f.RJ. 

(4) Notes 

1. This routine is optimum when all of eigenvalues are obtained quickly, and all or part of 

corresponding eigenvectors are obtained. 

~ When up to about one-fourth of the entire eigenvalues is to be obtained, it is more 

advantageous to use HOBSVV/W based on Householder-bisection method. 

Bibliography 

1) Parlett, B. N; DThe Symmetric Bigenvalue ProblemD Prentice-Hall (1980). 

0987. 06. 19) 0987. 08. 07) 0988. 02. 22) 
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JACOBS/D (Eigenvalue Analysis for a Real Symmetric Matrix by Threshold Jacohi Method) 

Eigenvalue Analysis for a Real Symmetric Matrix by Threshold Jacobi Method 

Programm Ichizo Ninomiya. April 1977 
ed by 

Format Subroutine language: FORTRAN; size: 88 and 88 lines respectively 

(1) Outl ine 

JACOB/D calculates all the eigenvalues and eigenvectors of a given real symmetric matrix using 

the threshold Jacobi method. 

(2) 0 i rect ions 

CALL JACOBS/D (A. KA. N. EPS, V. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input/ou Real symmetric matrix. Only the upper right half including 
Two-dimens tput the diagonal lines need be given. Eigenvalues are output on 
ional the diagonal. The lower left half is preserved. 
array 

KA Integer Input Value of the first subscript in the array-A declaration. 
type KA~N 

N Integer Input Order of A and "V. N~2 
type 

~" 
EPS Real type Input Convergence criterion constant. The average absolute value 

of nondiagonal elements of the input matrix A is assumed as 
standard. This value multiplied by EPS is used as the 
standard of convergence decision. EPS>O 

V "Real type Output Each column stores an eigenvector for the corresponding 
Two-dimens diagonal element ~ 
ional 
array 

ILL Integer Output ILL=O: Normal termination. 
type ILL=30000: Limits on t t and EPS are violated. 

*1 For double precision subroutines. all real types are changed to double precision real 

types. 

(3) Performance 

209



This routine was believed to be advantageous for multiple or close eigenvalues as a method of 

finding all the eigenvalues and engenvectors of a symmetric matrix. However. since Householder 

OR method with the same advantage for the same purpose appeared. this routine became obsolete 

recentl~ 

(4) Remarks 

1 Bigenvalues are arranged in descending order along the diagonal of ~ 

2. A value of 10.-6(10-16) is adequate as the standard value of BPS for JACOBS (JACOBD). 

3. Bxcept for small-size problems of about 10. it is advantag'!ous to use the subroutines HOOR 

and VS using Householder OR method for the same purpose because computation time is significantly 

saved. 

<1987. 06. 17} <1987. 08. 07} 

<-f (;) 

~ 

...) 
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J ENNFS/D, J ENNBS/D, and GJ ENBS/D (Eigenvalue analysis of real symmetric 

matric~s by Jennings' simultaneous iteration method)' 

Bigenvalue Analysis for Real Symmetric Matrices by Jenning~ Simultaneous Iteration Method 

(Bigenvalue analysis of real symmetric matrices by Jennings' simultaneous iteration method) 

Programm Ichizo Ninomiya; April 1981 
ed by 

Format Subroutine language: FORTRAN. Size; 141. 142. 151. 152. 184. and 
185 lines respectively 

(1) Outl ine 

A part of eigenvalues and corresponding eigenvectors of real symmetric matrices are determined 

by the Jennings' simultaneous iteration method accompanying the Jennings' vector acceleration 

method. JBNNFS/D is used to solve standard eigenvalue problem (A-itI)x=O where A is a dense 

matrix, and JBNNBS/D is used to solve the same problem where A is a band matrix. GJENBS/D is 

used to solve general ized eigenvalue problem (A-itB)x=O where A is a band matrix and B is a 

positive definite band matrix. JENNFS, JBNNBS, and GJENBS are single precision subroutines and 

JBNNFD. JENNBD. and GJBNBD are double precision subroutines. 

(2) Directions 

CALL JENNFS/D(A, KA. N, L, M, V. E, C, W, EPS. ITER, ILL) 

.. ~ 
CALL JENNBS/D(A, KA. N, NB. L. M. V. KV, E, C. W. EPS. ITER. ILL) 

CALL GJENBS/D(A, B. KA. N. NB, L. M, V, .KV. E, C. W. EPS. ITER. ILL) 
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Argument Type and Attribut Content 

A Real type Input 

Two-dimens 

ional 

array 

B Real type Input 

Two-dimens 

ional 

array 

KA Integer Input 

type 

N Integer Input 

type 

NB Integer Input 

type 

L Integer. Input 

type 

M Integer Input 

type 

The entire symmetric matrix is input for JENNPS/D. For 

JENNBS/D and GJENBS/D. the lower left half which contains the 

diagonal of band matrix is input after it is made to a 

rectangle as shown in the figur~ That is. elements I and J 

of the matrix are put in A(I-J+l.J). When eigenvalues are 

determined in ascending order of their absolute values. 

Cholesky decomposition is done by this routine. 

A band matrix is input in the same way as for ~ When 

eigenvalues are determined in descending order of their 

absolute values. Cholesky decomposition is done by this 

. routine. 

Adjustable dimension of A and V in case of JENNFS/DKA~N 

Adjustable dimension of A in case of JENNBS/D J 
KA~NB 

Adjustable dimension of A and B in 'case of GJENBS/ 

Order of A and B. N~2 

Half band width of A and B. NB~2 

ILl indicates the number of eigenvalues and eigenvectors to 

be obtained. L>O (L<O) indicates that they should be 

arranged in the descending (ascending) order of absolute 

values. 1~ ILl ~N 

Number of trial vectorsILI~M~N 

V Real type Input/ou The M initial eigenvectors are input. Eigenvectors are 

Two-dimens tput generated to the first ILl columns. 

ional 

array 
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Argument Type and Attribut Content 

kind (*1) e 

KV Integer Input Adjustable dimension of V. KV~N 

type 

B Real type Output Bigenvalues are generated in the order specified by L. 

One-dimens 

ional 

" array 

C Real type Work One-dimensional array with a size of M2 or more 

One-dimens area 

ional 

array 

W Real type Work One-dimensional array with a size of 3N or more for JBNNFS/D 

One-dimens area and JBNNBS/D and 4N or more fer GJBNBS/D. 

ional 

array 

BPS Real type Input Convergence criterion constant. BPS>O 

ITBR Integer Input/ou Input: Upper bound of repetition number When it is less than 

type tput N. it is put to 1000. 

Output: Actual repetition number 

ILL Integer Output I LL=O: Norma 1. 

type ILL=l: The repetition number exceeded the upper bound. 

I LL=2: Cho I esky' s decompos"i t i on was imposs i b I e. 

ILL=30000: The input argument violated the limit. 

*1 For double precision subroutines. all real types are changed to double precision real types. 

(3) Calculation method 

To simplify description. a standard type proble~ is abbreviated as T and a general type problem 

is abbreviated as G. Similarly. L indicates the case of determining an eigenvalue with a large 

absolute value. and S indicates the case of determining an eigenvalue with a small absolute 
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value. 

1 The initial eigenvectors are grouped into a matri"x. V with n rows and m columns, that is, 

the m vectors are put together into the matrix. Select m such that 1 ~m~n where 1 is the 

number of eigenvalues to be obtained (see the notes for selection of initial vectors). 

(T, S) A is processed by the modified Cholesky's decomposition to produce A=RTDR 

(G, 5) A is processed by the Cholesky's decomposition to produce A=AT A 

generated and overwritten on V. 

AV is 

(G, L) B is processed by the Cholesky's decomposition to produce B=BTB. BV is 

generated and overwritten on V. 

2. (T, S) Compute U=R-ID-IR-TV (=A-IV) . 
(T, L) Compute U=AV • 

(G, S) Compute U=A-TBA-IV 

(G, L) Compute U=B-TAB-IV 

3. Form G=VTU. G is a symmetric matrix with m rows and m columns. 

t G is diagonalized into JlTGJl~, where Q is a diagonal matrix with diagonal element 

III t1l2- - - - -11.( 1111 I ~ 11121 ~ -----i: Ill. I) which is the eigenvalue of G, and P is an 

orthogonal matrix having eigenvectors as rows: 

5. Compute W=UJl . 

6. Compute WTW and process it by the Cholesky's decomposition to obtain WTW=STS. 5 is 

an mxm upper triangular matrix; 

7. V=WS- l is formed. V is an orthogonal matrix in the sense of VTV=I. (unit matrix of 

the order m ) • 

8. Convergence test is made (see the notes below). If convergence has not been attained, 

Jennings' vector acceleration is applied. The result is used a~ new V and processing returns to 

step 2. 

9. If convergence has been completed: 

(S) tllll t t/1l2t - - - t tllll are assumed to be eigenvalues. 

(L) III tll2t - - - till are assumed to be eigenvalues. 

(T) The first 1 columns of V are assumed to be eigenvectors. 
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(G. S) The first l columns of A -IV are assumed to be eigenvectors. 

(G. L) The first l columns of j3- tv are assumed to be eigenvectors. 

'-" 

N 
(4) Notes 

L It is desirable that the initial vectors are ~losed to true eigenvectora If there is no 

information available for the initial value. however. a common way is to use a fragment of the 

unit matr ix. For select ion of m. it should be as close to l as possible and also sat isfy 

I All I / I AlII+I I »1 (or I A.I / I A.+I I «1) when eigenvalues are arranged as 

AJ,A2,··· ,An in order of their absolute values. The quantity of calculation for each . 

'-" iteration is generally proportional to m. 

2. A convergence test is made for the components of eigenvectors. In general, eigenvalues 

converge in much better precision than eigenvectors. Especially, when separation of eigenvalues 

is good. precision is about twice as good as that for eigenvectors. From this reason, therefore, 

it is safer to select a little larger value than usual for criterion constant EPS. 

3. A standard value of ITER indicating the upper limit of the repetition number is a few 

hundreds. Do not write a constant as an actual argument for this variable because this variable 

is used for both input and output. 

Bibliography 

1) A. Jennings; »Matrix Computation for Engineers and Scientists», John Wiley, London, (1977) 
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NGHOUS/D (Analysis of Av=ABv type eigenvalue by bi-triangular decomposition. Householder. 

bisection-Q~ and inverse iteration methods) 

Nicer for Generalized Bigenvalue-Problem by Householder Method 

Programm Yoshitaka Beppu and Ichizo Ninomiya; December 1981 
ed by 

Format Subroutine language; FORTRAN Size; lQ4 and 105 respectively 

(1) Out line 

NGHOUS and NGHOUD solve generalized eigenvalue problem concerning real symmetric dense matrix A 

and real symmetric positive definite dense matrix B by the semi-direct method. 

(2) Directions 

CALL NGOOUS/D(AB.NMAX.N.NB.NV.EPS. lORD. ICOO.BD.E.V. ILL.Wl.W2.W3.W4.W5.W6.W7) 

Argument Type and Attribut Content 

kind (*1) e 

AB Real type Input/ou Aij(i~j) is input to the upper right half including 

Two-dimens tput diagonal elements. The upper right half changes. If ICHO=O. 

~ ional Bij(i>j) is input to the lower left half. If ICOO=I. 

array non-diagonal element Lij( i> j) of Cholesky decomposition 

component L o f B i s input t 0 

the lower left half. Lij is output to the lower left 

half. 

NMAX Integer Input Adjustable dimensions of AB and V. N~NMAX 

type 

N Integer Input Order of A and B. 2~N 

type 
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Argument Type and Attribut 

NB Integer Input 

type 

NV Integer Input 

type 

EPS Real type Input 

lORD Integer Input 

type 

ICHO Integer Input 

type 

Content 

Number of eigenvalues to be determined. O<NB~N 

Number of eigenvectors to be determined. O~NV~NB~N 

To 1 erance for convergence test. The def au I t va I ue is 10-6 

(NGHDUS) or 10-10 (N-GHDUD). 

The output order of eigenvalues is specified. If IORD>O, 

they are output in algebraically descending order. If 

10RD<O, they are output in algebraically ascending order. 

The input mode of real symmetric positive definite matrix B 

is specified. Refer to the descriptions of AB and BD. 

BD Real type Input/ou If ICHO=O, diagonal element Bii 

One-dimens tput of B is input to BOO}. If ICHO=1. the inverse number of 

ional L's diagonal element Lii is input to it. 

array Lii-I is output to BD(I}. 

E Real type Output The Ith eigenvalue is output to BO)' If lORD is positive, 

One-dimens 

ional 

array 

then E(1»B(2»······>B(NB). If lORD is negative, then 

E (l) <E (2) <······<B (NB). 

V Real type Output The eigenvector which corresponds to B(I} is normalized as 

Two-dimens 

ional 

array 

ILL Integer 

type 

Output 

vTBv=l and output to column l. 

ILL=O: Normal termination 

ILL=100: B is a non-positive definite. 

ILL=300: The argument is abnormal. 
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Argument Type and Attribut Content 

kind (*1) e 

Wl",W7 Real type Work The size must be N or more. 

One-dimens area 

ional 

array 

(3) Calculation method 

First of all. general ized eige~value problem (AV=ABv) is transformed into standard 

eigenvalue problem C AU=AU) by the bi-tr iangular decomposition method. 

That is. matrix A is decomposed to the sum of upper right triangular matrix R and lower left 

triangular matrix RT CA=R+RT). and matrix B is decomposed to the product of lower left 

triangular matrix L and upper right triangular matrix LT CB=U}). A=L-1 (R+RT)L-T can 

thus be calculated efficiently. Because A is a real symmetric matrix. A and ortho-normal 

vector U are determined by NSHOUS/D. and generalized orthogonal vector v is determined by 

v=L-Tu. 

«() Notes 

1. NGIfOUS or NGHOUD is 1. 05 times as fast as GHQRID and GHBSVD of NUMPAC. If 1 is specified 

for ICHO when L is known. it becomes about 5% faster. 

2. NGHOUS and NGHOUD are useful when approximate solutions are unknown. 

3. These routines are also components of NICEl 

(1987.06.16) 
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1..:20 

NGJ ENS/D (Analysis of Av= A Bv. type eigenvalues by bi-triangular decomposition and Jennings 

method) 

Nicer for Generalized Eigenvalue-Problem by Jennings Method 

Programm Yoshitaka Beppu and Ichizo Ninomiya; December 1981 
ed by .. 

Pormat Subroutine language; PORTRAN Size; 89 and 90 lines respectively 

(1) Out line 

NGJENS and NGJEND solve generalized eigenvalue problems concerning real symmetric dense matrix 

A and real symmetric positive definite dense matrix B by the simultaneous iteration method. 

(2) Directions 

CALL NGJENS/D(AB. NUAX. N. NE. NV. EPS. BD. JUV. ITER. ESHIPT. E. V. U. ILL. W1. (2) 

Argument Type and Attribut Content 

AB Real type Input/ou Aij(i:ij) is input to the upper right half including 

Two-dimens tput diagonal elements. 

ional The upper right half changes. 

array Off d i agona 1 element LO ( i > j) of B' s Cho 1 esky-decomposed 

component L is input to the lower left half. The lower left 

half does not change. 

NMAX Integer Input Adjustable dimensions of AB, V, and U. N~NMAX 

type 

N Integer Input Order of A and B. 2~N 

type 
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Argument Type and Attribut 

NB 

NV 

EPS 

BD 

IUV 

kind (*1) e 

Integer 

type 

Integer 

type 

Input 

Input 

Real type Input 

Real type Input 

One-dimens 

ional 

array 

Integer 

type 

Input 

Content 

Number of eigenvalues to be determined. They are counted in 

absolutely descending order. 

O<NB<N 

Number of eigenvectors to be determined. O<NB~NV<N 

Tolerance for convergence test. The default value is 10-6 

(NSJENS) or 10-10 (NSJEND). 

Reciprocal Lii -1 of L's diagonal element Lii is input to 

BD (I). 

The initial-vector reference mode is specified. If IUV=O, 

approximate generalized 

orthogona I vector VO input to array V is used as the 

initial vector for the simultaneous iteration method. If 

IUV=1. approximate 

ortho-normal vector uo input to array U is used likewise. 

The content of array U wh~n IUV=O is not referred, and the 

content of· array V at JUV=l is not referred .. 

ITER Integer 

type 

Input/ou The upper limit for the number of Jennings iterations 

tput 

ESHIFT Real type Input 

(standard value ranges from 1 to 10) is input. The number of 

actual iterations is output. 

Origin shift o. In these routines, the simultaneous 

iteration method is applied 

not to .4 but to .4'=.4-0-1. Therefore, eigenvalues 

which are close to 0 are rapidly diminished and the other 

eigenvalues are rapidly enhanced. The standard value is an 

approximate value of 0.5* (B(NV+1)+B(N». 
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) "l. 2 

Argument I Type and I Attribut I Content 

kind (*l) e 

B I Real type Input/ou The approximate value of the eigenvalue whose absolute value 

One-dimens tput is the Ith largest of ~II in absolute form is input to B{I). 

ional The eigenvalue whose absolute value is the Ith largest of all 

array I is output to B (I). 

I E (l) I> I E (2) I>······ > I E (NE) I 

V I Real type Input/ou If IUV=O. approximate generalized orthogonal vectors Vo by 

Two-dimens tput the number specified by NV is input. If IUV=l. an arbitrary 

ional quant ity is input. The generalized orthogonal vector which 

array I corresponds to EO) is normalized to vT Bv= t and output to 

the Ith column. 

U I Real type I Input/ou·11f IUV=O. an arbitrary- quantity is input. If IUV=l. 

Two-dimens tput approximation ortho-normal vectors Uo by the number 

ional specified by NV is input. Th~ ortho-normal vector which 

array I corresponds to E (I) is normal ized to uTu=l and output to 

the I th co I umn. 

ILL I Integer Output ILL=O: Normal termination 

type ILL=lOO: Lij input error 

ILL=200: Convergence does not occur because of poor 

precision of approximation vectors. 

ILL=300: The argument is abnormal. 

Wl ... W2 Real type Work The size must be N or more. 

One-dimens area 

ional 

array 

(3) Calculation method: Approximate solutions are iteratively improved according to the 

following procedure: 

1. A=L-1 (R+RT)L-T is generated by the bi-triangular decomposition method 

(A=R+RT ,B=UT). and Av=ilBv is transformed into Au=ilu. 

~ 

~ 
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~ Initial ortho-normal vector uo is prepared. If IUV=O. approximation wide-sense orthogonal 

vector VO input to array V is pre-multiplied by LT to determine uo. If IUV=!. UO input to 

array U is used without modification. 

3. AU=AU is so lved by NSJENS or NSJEND by us i ng uo as an in it i a I vector. 

4. v=L-Tu is calculated. 

5. The NB number of A is output to array B, the NV number of v is output to array V, and 

the NV number of U is output to array V. 

(4) Notes 

1 NGJBND is faster than NGHOUD when (ITER x NV/N) <0. 4. If IUV=! when initial ortho-normal 

vector uo is known, it becomes faster about 5%. 

2. NGJENS and NGJEND are suitable for use if good approximate solutions are known, that is, to 

diagonalize a lot of similar real symmetric matrices. 

<Example of using NICER> The program which solves generalized eigenvalue problem AV=ABv, 10 

times, with B fixed and A varied is shown below. This example indicates the calculation 

procedure of the wave function by the sequential approximation method. 

C 

C 

C 

ITERATIVE COMPUTATION OF A*V=B*V*E BY NICER 
IMPLICIT REAL*8CA-H,0-Z) 
DIMENSION AB(10,10),BDC10) 
DIMENSION E(10),V(10,10) 
DIMENSION W1(10),W2(10),W3(10),W4(10),WS(10),W6(10),W7 

*(10) 
DIMENSION U(10,10) 
NMAX=10 
N=8 
EPS=1.E-10 

DO 10 I=1,N 
AB(I,I)=7.2 
BD(I)=N+1-I 
DO 10 J=1,N 
IF(J.GT.I) AB(I,J)=3.0 1 (FLOAT(I-J»**2 
IF(I.GT.J) AB(I,J)=N+1-MAX(I,J) 

10 CONTINUE 
CALL NGHOUDCAB,NMAX,N,N,N,EPS,1,0,BD,E,V,ILL,W1,W2,W3, 

*W4,WS,W6,W7) 
WRITEC6,100) ILL 

100 FORMAT(1H1 1120X,4HILL=I7) 
WRITE(6,200) ( E(I),I=1,N ) 

200 FORMAT(1H 1 10(2X,10E12.3 I) ) 
WRITE(6,300) ( (V(I,J),J=1,N ),I=1,N ) 

300 FORMAT(1H 1 10C 8F12.3/) ) 

DO 1000 K=2,10 
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FK=O.S*FLOATCK-1) 
DO 20 !=1,N 
ABCI,I)=7.2 + FK 
DO 20 J=1,N 
IFCJ.GT.I) ABCI,J)=C3.0+FK) / (FLOATCI-J»**2 

20 CONTINUE 
NE=N/2 
NV=N/2 
ESHIFT=O.S*C ECNV+1)+E(N) ) 
ITER=10 
CALL NGJENO(AB,NMAX,N,NE,NV,EPS,BO,O,ITER,ESHIFT,E,V,U, 

*ILL,W1,W2) 
WRITE(6,400) K, ITER, ILL 

400 FORMATC1H /10X,3H K=,I2,3X,5HITER=,I5,6H ILL=,I5) 
WRITEC6,200) C ECI),I=1,NE) 
WRITEC6,SOO) C C V(I,J),J=1,NV ),I=1,N ) 

500 FORMAT(1H / 10e 4F12.3/) ) 
1000 CONTINUE 

STOP 
END 

<Part of result of NICER> 

0.1260+02 

0.057 
0.005 

-0.266 
0.169 
0.448 

-0.567 
-0.511 

1.225 

0.9520+01 

-0.260 
0.708 

-0.816 
0.828 

-0.978 
0.786 

-0.440 
0.295 

PACKAGE-NAME 

REFERENCE 

ILL= 0 

0.1160+02 0.1090+02 0.1020+02 

0.355 -0.040 -0.595 
-0.723 -0.464 0.838 

0.049 1.083 0.061 
0.941 -0.398 -0.209 

-0.632 -0.617 -0.069 
-0.450 0.562 -0.664 

0.652 -0.420 0.837 
-0.156 0.584 -0.006 

0.7290+01 0.3450+01 0.4650+00 

0.545 0.364 0.131 
-0.216 0.083 0.067 
-0.277 0.017 0.076 
-0.420 -0.133 0.062 
-0.087 -0.218 0.052 

0.197 -0.247 0.039 
0.440 -0.217 0.027 
0.204 -0.083 0.007 

NICER(NAGOYA ITERATIVE COMPUTATION EIGENVALUE 
ROUTINE~)CVERSION-1,LEVEL-3) MODIFIED ON MARCH 
1981 
Y.BEPPU AND I.NINOMIYA;QUANTUM CHEMISTRY 
PROGRAM EXCHANGE,NO.409(1980) 

K= 2 ITER= 4 ILL= 0 

0.1310+02 0.1170+02 0.1120+02 0.9880+Q1 

0.099 0.203 -0.456 -0.444 
-0.124 -0.663 0.340 0.973 . 

,.J 
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:«s 

-0.202 0.399 0.808 -0.616 
0.328 0.718 -0.665 0.094 
0.281 -0.856 -0.399 0.183 

-0.666 -0.245 0.281 -0.790 
-0.323 0.718 -0.104 0.946 

1.184 -0.266 0.532 -0.339 

K= 3 ITER= 3 ILL= 0 

0.1360+02 0.1200+02 0.1150+02 0.9350+01 

0~093 -0.151 -0.511 "-0.297 
-0.172 -0.235 0.773 0.897 
-0.119 0.740 0.311 -0.800 

0.383 0.190 -0.922 0.192 
0.151 -0.952 0.158 0.173 

-0.697 -0.013 0.279 -0.742 
-0.199 0.647 -0.371 0.966 

1.156 -0.118 0.592 -0.404 

~ K= 4 ITER= 6 ILL= 0 

0.1430+02 0.1260+02 0.1170+02 0.9180+01 

0.067 0.322 0.395 0.126 
-0.180 -0.077 -0.829 0.498 
-0.041 -0.770 0.024 -0.884 

0.392 0.137 0.923 0.164 
0.046 0.866 -0.425 -0.054 

-0.701 -0.128 -0.245 -0.393 
-0.108 -0.555 0.471 0.969 
1.135 0.074 -0.620 -0.288 

0987.06.16) 0987.08. 07) 

~ 
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NSHOUS/D (Bigenvalue analysis of Av=Av type by Householder's bisection OR and inverse 

iteration method) 

Nicer for Standard Bigenvalue-Problem by Householder Method 

Programm Yoshitaka Beppu and Ichizo Ninorniya; December 1981 
ed by 

Pormat Subroutine language; PORTRAN Size; 271 and 272 lines respectively 

,(1) Out! ine 

NSHOUS and NSHOUD solve standard eigenvalue problems concerning real symmetric dense matrix A 

by using the semi-direct method. 

(2) Directions 

CALL NSHOUS/D (A, NMAX. N. NB. NV. BPS. lORD. B. V. ILL. W1. W2. W3. W4. W5. W6. W7) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input Aij(i:aj) is input to the upper right half including 

Two":dimens diagonal elements. The lower left half is preserved although 

ional the upper right half changes. 

array 

NMAX Integer Input Adjustable dimensions of A and V. N~NMAX 

type. 
" 

N Integer .Input Order of A. 2~N 

type 

NB Integer Input Number of eigenvalues to be obtained. O<NB~N 

type 

NV Integer Input Number of eigenvectors to be obtained. O~NV~NB~N 

type 
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Argument Type and Attribut 

BPS 

lORD 

kind (*1) e 

Real type Input 

Integer 

type 

Input 

Content 

Tolerance for convergence test. The default value is 10-6 

(NSHOUS) or 10-10 (NSHOUD). 

The output order of eigenvalues is specified. When IORD>O, 

they are output in algebraically descending order. When 

IORD<O, they are output in algebraically ascending order. 

H Real type Output The Ith eigenvalue is output to B(I). When lORD is positive, 

v 

ILL 

W1 ... W7 

One-dimens 

ional 

array 

Real type Output 

Two-dimeris 

ional 

array 

Integer 

type 

Output 

Real type Work 

one-dimens area 

ional 

array 

(3) Calculation method 

B (1) >B (2) > ..... >B (NB). When lORD is negat i ve, 

H (1) <B (2) <······<B (NB). 

The eigenvector corresponding 

to H (I) is· normal ized as l v=1 and output to column I. 

ILL=O: Normal termination 

ILL=300: Argument error. 

The size must be N or more. 

Matrix A is transformed into tridiagonal matrix T by Householder conversion. If (NE/N)<O.l~ 

eigenvalues by the number specified by NB are determined by the bisection method. If 

(NE/N)~O. 12, the N number of eigenvalues are determined by the square root-free OR method. 

Then, eigenvectors by the number specified by NV are determined by the inverse iteration method. 

(4) Notes 

1. This routine is useful when an approximate solution is unknown. 
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2. As shown in the figure below. NSHOUS/D together with NGHOUS/D. NSJENS/D. and NGJENS/D form 

the fast eigenvalue routine package NICER (Nagoya Iterative Computation Eigenvalue Routines). 

3. The user of NICER should quote the documents listed in the bibliography below. 

<Configuration of NICER> 

The element enclosed by broken lines is used for calling • 

...................................................... ------.- ........................................... , . . 
M A I N . . .................. , .................................................................... , ................. . 

! ! 
................................................... ~ ................................................................... .. . . 

T E s T s T E s T D . . ............ , ............................... 1' ............ . ............ 1' .............................. 1' ........... . 

! ! ! ! 

INGHOUSI iNGJENSI 
, I 

iNGHOUOi iNGJENOI 
I I 

! ! ! ! ! ! !! 

iNSHOUsl iNSJENSi INSHOUol iNSJENOI 

Bibliography 

1) t Beppu and I. Ninomiya; DManuaI of NICERD• Quantum Chemistry Program Exchange (Indiana 
University). No.409 (1980) . 

2) Y. Beppu and I. Ninomiya; DNICER-Past Eigenvalue RoutinesD• Computer Physics Communications. 
Vol. 23. PP. 123-126 <1981> 

3) Y. Beppu and I. Ninomiya; DHQRII-A Past Diagonalization SubroutineD• Computers and Chemistry. 
Vol. 6. No. 2. pp.87-91 (1982) 

<1987. 06. 16) (1987. 08. 08) 
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NSJENS/D (Amllysis of Av=)"v type eigenvalue by Jennings method) 

Nicer for Standard Eigenvalue-Problem by Jennings Method 

Programm Yoshitaka Beppu and Ichizo Ninomiya; December 1981 
ed by 

Pormat Subroutine language; PORTRAN Size; 334 and 335 lines respectively 

(1) Outline 

NSJENS and NSJEND solve standard eigenvalue problems concerning real symmetric dense matrix A 

by the simultaneous iteration method. 

(2) Direct ions 

CALL NSJENS/D(~NMAX,N,NE,NV.EPS, ITER,ESHIFT,E, V, ILL.Wl,W2,U) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type- Input Aij (i:i j) is input to the upper right half including 

Two-dimens diagonal elements. 

ional The upper right half is referred to but not changed. The 

array lower left half is neither referred to nor changed. 

NMAX Integer Input Adjustable dimensions of A. V. and U. N~N~fAX 

type 

N Integer Input Order of A. 2~N 

( 

type 

NE Integer Input Number of eigenvalues to be determined. They are counted in 

type absolutely descending order. 

O<NE<N 

NV Integer Input Number of eigenvectors to be determined. O<NE~NV<N 

type 
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Argument Type and Attribut Content 

EPS Real type Input Tolerance for convergence test. The default value is 10-6 

(NSJBNS) or 10-10 (NSJBND). 
, 

ITER Integer Input/ou The upper limit of the number of Jennings iterations 

type tput (standard value ranges from 1 to 10) is input. The number of 

actual iterations is output. 

BSHIPT Real type Input Quantity of origin shift o. In these routines, the 

simultaneous iteration method is'applied not to A but to 

Therefore, 

eigenvalues which are close to a are rapidly diminished 

and the other eigenvalues are rapidly enhanced. The standard 

value is an approximate value of 0.5* (E (NV+l) +B (N». 

E Real type Input/ou The approximate value of the eigenvalue whose absolute value 

One-dimens tput is the Ith largest of all is input to E(I). The eigenvalue 

ional whose absolute value is the Ith largest of all is output to 

array E(I). 

IEU) 1>IE(2) I>······>IE(NE) I 

V Real type Input/ou Approximate ortho-normal vectors by the number specified by 

Two-dimens tput 

ional 

array 

ILL Integer Output 

type 

Real type Work 

One-dimens area 

ional 

array 

NV is input. The eigenvector which corresponds to E(I) is 

normalized to vT v=1 and output. 

ILL=O: Normal termination 

ILL=200: Conversion doe~ not occur because of poor precision 

of approximate vectors. 

ILL=300: The argument is abnormal. 

The size must be N or more. 
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Argument Type an'd Attribut Content 

kind (*1) e 

U Real type Work The row size must be NMAX or more and the column size must be 

Two-dimens area NV or more. 

ional 

array 

(3) Calculation method 

An approximate solution is iteratively improved according to the following procedure: 

1. Approximate eigenvector matrix Vo is prepared. 

2. Vo is pre-multipl ied by A' =A-oI to generate X. At this time, the absolutely dominant 

eigenpairs of A' are enhanced by the principle of the power method. X=A'Vo=(A-oI)Vo 

3. G=VOTX is generated. 

4. Bigenvector matrix X and eigenvalue matrix E'o of G are determined. WTGW=E'o 

5. Y=XJi is generated~ 

6. S=yTy is generated. 

7. S is Cholesky-decomposed. S=ZTZ 

8. V' o=yr1 is generated. V' ° is nearer V than Vo. 

9. If permissible accuracy is reached, the calculation is finished with V=V'o, E=E'o. 

Conversely, if convergence does not occur, processing return~ to 2. with Vo=Vo. Here, I is a 

unit matrix with N rows and N columns, Vo,X,}', V'o are matrOices each with N rows and NV 

columns, and G, W;S,Z are matr ices each wi th NV rows and NV columns. 

(4) Notes 

1. NSJBND.is faster than NSHOUD when (ITERXNV/N) <0. 5. 

~ Like JENNFS and JENNFD of NUMPAC, these routines are also suitable for use when good 

approximate solutions are known. 

3. These routines are also components of NICEl 

Bibliography 
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RHBSVS/D (Bigenvalue analysis of symmetric band matrices by Lutishauser-Bisection method) 

Eigenvalue Analysis for Symmetric Band Matrices by Lutishauser-Bisection Method 

Programm Ichizo Ninomiya; Revised in April 1977; April 1981 
ed by 

Pormat Subroutine language; PORTRAN Size; 250 lines each 

(1) Out} ine 

RHBSVS or RHBSVD reduces a symmetric band matrix into a tridiagonal from using the 

Lutishauser-Schwarz method. and applies the bisection and inverse iteration methods to it to 

perform eigenvalue analysis. 

(2) Direct ions 

CALL RItBSVS/D (A. leA. N. NB. E. NE. V. KV. NV. VW. EPS. W. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input The lower left half including the diagonal of the symmetric 
Two-dimens band matrix is turned to a rectangle as shown in the figure. 
ional That is. elements I and J of the matrix are put in 
array AO-J+1. J). 

KA Integer Input Adjustable dimension of A (value of the first subscript in 
type array declaration). KA~NB 

N Integer Input Order of A. N~3 
type 

NB Integer Input Italf band width of A. NB~2 
type 

B Real type Output Bigenvalues are output in the order of size. If NE>O. in 
One-dimens descending order, and in ascending order otherwise. 
ional 
array 

NB Integer Input The number of eigenvalues to be determined is indicated by 
type the absolute value. When NB>O (NB<O), they are counted in 

algebraically descending (ascending) order from the maximum 
value (minimum value). NB =1=0 
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.2-':>/f 

Argument Type and Attribut Content 
kind (*l) e 

V Real type Output The eigenvector for the eigenvalue E(I) is normalized to 
Two-dimens length 1 and output to column I. 
ional 
array 

KV Integer Input Adjustable dimensions of V and VW. KV~N 
type 

NV Integer Input The number of eigenvectors to be determined is indicated by 
type the absolute value. They are counted starting with an 

eigenvalue from either side in the order determined by NE. 
O~ INYI ~ INEI 

VW Real type Work Two-dimensional array of size N x N. This argument is not 
Two-dimens area needed if no eigenvectors are calculated (NY = 0). 
ional 
array 

J ...) 
EPS Real type Input Tolerance for can vergence test by bisection method. I 

liT 11 ·EPS, where T is a tridiagonal matrix, is used for test. 
I 

EPS>O 

W Real type Work One-dimensional array of size 6N or more. 
One-dimens area 

I 

ional I 

array I 

ILL Integer Output ILL=O: Normal termination 
type ILL=30000: The input argument violated the limit. I 

*1 Por double precision subroutines, real types are all changed to double precision real 

types. 

(3) Calculation method -.J 
Symmetric band matrix A is transformed into the tridiagonal matrix ~=l?T~ by 

Lutishauser-Schwarz orthogonal transformation R. The eigenvalue problem ~U=AU for ~ is 

solved by the bisection and inverse iteration methods. The eigenvector of A is determined as 

v=l?u from the eigenvector U of ~. 

The Lutishauser-Schwarz method ha~ the advantage that the calculation can be performed within 

the interior of a band matrix. 

On the other hand, however, it has the disadvantage that when band width expands, quantity of 

calculation will increase. Purthermore, to determine eigenvectors, transformation matrix l? must 

be saved. This requires a square matr"ix of NxN where N is the order. Prom the above 

viewpoint, the significance of the existence of this routine is to calculate only eigenvalues of 
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~ 

~ 

2:l;5 

high dimensional matrices with small band width . 

A 

N 

(4) Notes 

1. If no eigenvectors need to be calculated, any value can be assigned to V and VW as far as 

the condition KV~N is satisfied. 

2. If it is desired to save st~rage capacity when eigenvectors are calculated, A and V can be 

connected by an equivalence statement. This is because A and V are not used· at the same time. 

(1987. 06.16) (1987.08.08) 
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RHQRVS/D (eigenvalue analysis of real symmetric band matrices by Rutishauser-QR method) 

Eigenvalue Analysis for Real Symmetric Band Matrices by Rutishauser-QR Method • 

Programm Ichizo Ninomiya; April 1977 
ed by 

Format Subroutine language; FORTRAN Size; 150 and 152 lir.es respectively 

(1) Out line 

RHQRVS or RHQRVD reduces real symmetric band matrix B to a tridiagonal matrix by using the 

Lutishauser-Schwarz method. and applies the QR method to this to perform eigenvalue analysis. 

(2) Directions 

CALL RHQRVS/D (B. KB. Nt. NB. V. KV. E. F. EPS. I ND) 

Argument Type and Attribut Content 
kind (*1) e 

B Real type Input The lower left half including the diagonal of the real 
Two-dimens symmetric band matrix is reduced to a rectangle shown in the 
ional figure. It is not preserved. 
array 

KB Integer Input . Value of the first subscript in array declaration of B . 
type KB~NB 

N Integer Input Order of B (number of columns). This is also the sizes of E 
type and F. 3~N 

NB Integer Input· Half band width of B (number of rows). 3~NB~N 
type 

V Real type Output The eigenvector which corresponds to the eigenvalue (J) is 
Two-dimens normalized to length 1 and output to column J. 
ional 
array 

KV Integer Input Value of the first subscript in array declaration of ~ KV~N 
type 

E Real type Output Eigenvalues are arranged in algebraically descending order 
One-dimens from the maximum one and output sequentially. 
ional 
array 
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Argument Type and Attribut 
kind (*1) e 

P Real type Work 
One-dimens area 
ional 
array 

BPS Real type Input 

Content 

One dimensional array with N elements. 

Tolerance for convergence test. When B is turned to 
tridiagonal T, this argument is used in the form of 

11 T 11 -BPS/N. EPS>O 

Integer 
type 

Input/ou When used for input, this argument has the following meanings: 
IND tput IND=O: Eigenvectors are not calculated. 

INo~O: All eigenvectors are calculated. 
When used for output, this argument has the following 
meanings: 

INo=O: The calculation ended normally. 
INo=30000: The limits on the input argument are violated. 

Note: Do not use a constant as the actual argument for this 
argument. 

*1 Por double precision subroutines, real types are all changed to double precision real 

types. 

(3) Performance 

Tridiagonalization by Householder's mirror image transformation is a very excellent method. 

However, it has one problem: even if a real symmetric band matrix is given, it is expanded to a 

" full matrix during transformation. The Lutishauser-Schwarz method can solve the above problem 

because it reduces a band matrix to a tridiagonal without expanding it from the original 

position. However, it requires "more quantity of calculation as band width is increased. 

Purthermore, to determine eigenvectors, it is necessary to calculate an orthogonal matrix which 

represents transformation from a band matrix to a tridiagonal matrix. This requires an 

additional square matrix of N x N where N is the order. Prom the viewpoint of the above, the 

significance of the existence of this routine is to calculate eigenvalues of big matrices with 

relatively small band width. 
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(4) Note 

If no eigenvectors need to be determined, any value can be assigned to V as far as KV~N is 

satisfied. 

<1987.06.17) 

-2.~8 

~ 

~ 
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SVDS/D/Q (Singular value decomposition) 

Singular Value Decomposition 

Programm Ichizo Ninomiya; March 1979 
ed by 

Pormat Subroutine language; FORTRAN Size; 205 lines each 

(1) Outl ine 

SVDS. SVDD. or SVDQ uses mxn orthogonaI matrix U. nxn orthogonaI matrix V. and nxn 

diagonal matrix I: to decompose mxn matrix A (m~n~1) into 

U consists of n orthogonal eigenvectors corresponding to the firstlargest n eigenvalues of 

AAT. and V is made up of the orthonormal eigenvectors of ATA. The diagonal elements of i 
are the positive square root of the eigenvalues of ATA and arranged such that 

The rank of A is given by the number of qi which are not Q 

(2) 0 i rect ions 

CALL SVDS/D/Q(A. KA. M. N. ISW. 0. U. KU, V. KV. w. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type Input . Matrix subjected to singular value decomposition. The value 
Two-dimens is preserved unless this argument is used as a U or V storage 
ional area. 
array 

KA Integer Input Value of the first subscript in array declaration of ~ KA~M 
type 

M Integer Input Number of rows of ~ M~N 
type 
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Argument Type and Attribut Content 
kind (*1) e 

N Integer Input Number of columns of ~ N~1 
type 

ISW Integer Input O~ISW~3 
type ISW=O: Neither U nor V is calculated. 

ISW=I: Only V is calculated. 
ISW=2: Only U is calculated. 
ISW=3: Both U and V are calculated. 

Q Real type Output Singular values are output in descending order from the 
One-dimens largest one. One-dimensional array of size N. 
ional 
array 

U Real type Output Transformation matrix U. This can be written over ~ 
Two-dimens Array with M rows and N columns. 
ional " 

array 

KU Integer Input Value of the first subscript in array declaration of U. KU~M 
type 

V Real type Output Transformation matrix V. This can be written over A. 
Two-dimens Array with N rows and N columns. 
ional 
array 

KV Integer Input Value of the first subscript in array declaration of V. KV~N 
type 

W Real ~ype Work One-dimensional array of size N. 
One-dimens area 
ional 
array 

ILL Integer Output ILL=O: Normal'termination 
type ILL=20000: Singular value decomposition does not converge in 

30N or more iterations. 
ILL=30000: The argument exceeded the limit. 

*1 For double precision subroutines. real types are all changed to double precision real types. 

(3) Performance 

We experimented with an 8 x 5 matrix of rank 3 with singular values Jl2A8 ,2O,.J384 ,0,0 

given on page 418 in the bibliography 1). The precision of the singular value Q and . 

transformation matrix V (the two last columns are two independent solution vectors of homogeneous 

linear equation Ax=O) obtained by SVDS was about six decimal digits. 

(4) Bxample 
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The program to examine the above test is as follows. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

17 

18 
19 

(5) Notes 

DIMENSION AC8,S),UC8,S),VCS,S),QCS),WCS),RCS) 
M=8 
N=S 
KA=8 
KU=8 
KV=S 
ISW=3 
R(1)=SQRT(1248,) 
R(2)=20, . 
R(3)=SQRT(384,) 
R(4)=0, 
R(S)=O, 
READCS,SOO) «A(I,J),J=1,N),I=1,M) 

500 FORMAT(SF4,0) 
CALL SVDS(A,KA,M,N,ISW,Q,U,KU,V,KV,W,ICON) 
WRITE(6,600) M,N,ISW,EPS,ICON,CCA(I,J),J=1,N),I=1,M) 

*,(QCJ),R(J),J=1,N),CCU(I,J),J=1,N),I=1,M) 
*,«V(I,J),J=1,N),I=1,N) 

600 FORMAT(1H1///10X,'M=',I2,2X,'N=',I2,2X,'ISW =',12 
*,2X,'EPS=',1PE10,2,2X,'ICON=',I6//8(10X,SE13,S/) 
*/SC10X,2E13,S/)/8(10X,SE13,S/)/S(10X,SE13,S/» 

STOP 
END 

1. Even when M<.N, A=lJD!T is also obtained if AT is input instead of A, M is replaced by 

N, U is replaced by V. 

2. Singular value decomposition is a very useful method for matrix A which is of ill condition 

or suffers a rank deficiency. But its weak point is the need for large quantity of calculation. 
. . 

Therefore, it is desirable to avoid calculating U and V unless they are needed. 

3. U or V can be written over A. So, if A need not be retained, it is preferable to write 

the same data as A as U or V to save the storage capacity. 

( Because the special subroutines are prepared for generalized inverse matrices and least 

squares minimal norm solutions, select most suitable one for each case. 

Bibliography 

1) G. H. Goluh. C. Reinsch; »Singular Value Decomposition and Least Squares Solutions", 
Numer i sche Ma thema t i k. 14. PP. 403-420. (1970) 

(1987. 06. 16) (1987. 08. 21) 
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BROYDS/D (Solution of systems of nonlinear equations by Broyden's method) 

Solution of Systems of Nonlinear Bquations by Broyden's Method 

Programm Ichizo Ninomiya; April 1977 
ed by 

Format Subroutine language; FORTRAN Size; 59 and 71 lines respectively 

(1) Outl ine 

BROYDS and BROYDD are subroutine subprograms to solve non-linear equations 

Ji (Xt t··· tXn)=Q (i=l t2 t ••• tn) using the Broyden's iteration method when an initial 

solution vector is given. 

(2) Directions 

CALL BROYDS/D (X, N, H, KH, FN, LF, NP, BPS, PM, ILL) 

Argument Type and Attribut Content 
kind (*1) e 

X Real type Input/ou When an initial vector is input, the solution vector is 
One-dimens tput generated. 
ional 
array 

N Integer Input Number of unknowns of equation. O<N~1000 
type 

H Real type Work The size of KHxN is require(f. 
Two-dimens area 
ional 
array 

KH Integer Input Value of the first subscript in array declaration of H. KH~N 
type 

PN Subroutine Input PN (X. Y) type subroutine used to calculate vector Y which 
consisting of values of N equations when position vector X is 
given. The actual argument for this argument needs an 
EXTERNAL declaration in the program unit which calls this 
rout ine. 

LP Integer Input Upper bound of the number of function calls. LF>N+1 
type 
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Argument Type and Attribut Content 
kind (*1) e 

NF Integer Output Number of funct ion calls. 
type 

EPS Real type Input Convergence criterion. EPS>O 

FM Real type Output Square root of mean square residuals of equations. 

ILL Integer Output ILL=O: Normal end. 
type ILL=l: No convergence even when NF>LF 

ILL=30000: The input argument does not satisfy the 
requ i rements. 

*1 For double precision subroutines, all real types are changed to double precision real types. 

(3) Calculation method 

Refer to bibliography t). 

(4) Example 

The main part of a program to solve the Freudenstein-Roth's problem is shown below. 

(S) Notes 

DIMENSION HC2,2),XC2) 
EXTERNAL FREUDE 
KH=2 
N=2 
LF=1000 
EPS=1.E-S 
X(1)=1S.0 
X(2)= 3.0 
CALL BROYDSCX,N,H,KH,FREUDE,LF,NF,EPS,FM,ILL) 

END 

SUBROUTINE FREUDECX,F) 
DIMENSION X(2),FC2) 
F(1)=XC1)-13.+CCS.-XC2»*XC2)-2.)*XC2) 
F(2)=XC1)-29.+CCXC2)+1.)*XC2)-14.)*XC2) 
RETURN 
END 

1. Because non-linear equations generally have a lot of solutions, it must be checked to see if 

the obtained solution is really the desired one. Good initial values must be selected to ensure 
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convergence to the target solution. 

2. The minimization problem when the minimum value (or the maximum value) is an extremum 

becomes non-linear equations concerning the gradient vector. On the contrary. non-linear 

equations fi=O (i=l t··· tn) become a minimization problem if EtT is considered. This 

must be taken into consideration to select a calculation method and program depending on the 

case. 

3. This routine internally calls inverse matrix routine MINVS or MINVD. 

Bibliography 

1) C.G.Broyden; DA Class of Methods for Solving Nonlinear Simultaneous EquationsD• Math. 
Comp.. Vol. 19. PP. 577-593 (1965) 

<1987. 06. 16) <1987. 08. 07) 
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BROYDV IW (Solution of systems of nonlinear equations by Broyden's method - vector version-) 

Solution of Systems of Nonlinear Equations by Broyderrs Method -Vector Version -

Programm Ichizo Ninomiya and Yasuyo Hatano; March 1985 

ed by 

Pormat Subroutine language; PORTRAN Size; 153 and 154 lines respectively 

(1) Outl ine 

BROYDV and BROYDW are the subroutine subprograms used to solve non-linear simultaneous 

equations fi (Xt,··· ,xn)=O(i=l ,2,··· ,n) by the Broyden's iteration method when an initial 

value is given. BROYDV is for single precision and BROYDW is for double precision. 

(2) 0 i rect ions 

CALL BROYDVIW(X,N,H,KH,PN,LP,NP.EPS.PM, IW.W. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

X Real type Input/ou When an initial vector is input, the solution vector is 

One-dimens tput output. 

io.nal 

array 

N Integer Input Number of unknowns of equation. O<N~1000 

type 

H Real type Work Size NxN is required. 

Two-dimens area 

ional 

array 

KO Integer Input Value of the first subscript in array declaration of H. KII~N 

type 
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Argument Type and Attribut Content 

kind (*1) e 

FN Subroutine Input Subroutine in the form of FN(X, V), which calculates vector Y 

consisting of N equation values when position vector X is 

given. The real argument for this argument needs to be 

declared under EXTERNAL in each program that calls this 

rout ine. 

LF Integer Input Upper limit of the number of times the function subroutine is 

type called. LF>N+1 

NF Integer Output Number of times the function subroutine is called. 

type 

EPS Real type Input Tolerance for convergence test. EPS>O 

FM Real type Output Square root of mean square residuals of equations. 

IW Integer Work One-dimensional array with N elements. 

type area 

one-dimens 

ional 

array 

W Real type Work Size 4:a:N is required. 

One-dimens area 

ional 

array 

ILL Integer Output ILL=O: Normal termination. 

type ILL=1: Convergence does not occur even when NF>LF. 

ILL=30000: The input arguments violate the limits for them. 

*1 For double precision subroutines, real types are all changed to double precision real types. 

(3) Calculation method See the bibliography 1). 

(4) Example 
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The major part of a program that solves the Preudenstein-Roth problem (solution: X{l) = 5.0, 

x (2) = 4. 0) is shown be I ow : 

DIMENSION H(2,2),X(2),IW(2),W(4,2) 
EXTERNAL FREUDE . 
KH=2 
N=2 
LF=1000 
EPS=1.E-S 
X(1)=15.0 
X(2)= 3.0 
CALL BROYDV(X,N,H,KH,FREUDE,LF,NF,EPS,FM,IW,W,ILL) . . 
END 

SUBROUTINE FREUDE(X,F) 
DIMENSION X(2),F(2) 
F(1)=XC1)-13.+CCS.-XC2»*XC2)-2.)*XC2) 
F(2)=XC1)-29.+«XC2)+1.)*XC2)-14.)*XC2) 
RETURN 
END 

(5) Notes 

1. Because non-linear simultaneous equations usually have a lot of solutions, it is needed to 

check to see if the ~btained solution is ~he target solution. A proper initial value must be 

given to make calculation converge to the target solution. 

2. A minimization problem for a minimum value that is an extremal value (not a boundary value) 

amounts to non-linear simultaneous equations for gradient vectors. On the contrary, non-linear 

simultaneous equations fi=O( i=t , .. • ,n) amount to a minimizat ion problem in terms of Ett. 
This should be considered to select a calculation method and program most appropriate to the case 

in equat ion. 

3. This routine internally calls inverse matrix routine MINVV or MINVW. 

Bibliography 

1) c. G. Broyden; DA Class of Methods for Solving Nonlinear Simultaneous Equations, D 
Math. Comp •• Vol. 19, pP.577-593 (1965) 

(1987. 06. 22) (1987. 08. 07) (1988. 06. 01) 
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F LPOWS I 0 (Minimizat ion of functions by Davidon-Fletcher-Powell method) 

Minimization of Functions by Davidon-Fletcher-Powell Method 

Programm Ichizo Ninomiya; July 1977 
ed by 

Format Subroutine language; FORTRAN Size; 92 and 105 lines respectively 

(1) Out line 

FLPOWS and FLPOWD are subroutine subprograms which determine the minimum point of a 

multivariable function by the Davidon-Fletcher-Powell method when an initial value is given. In 

addition to a function value. a gradient vector value needs to De given. 

(2) Directions 

CALL FLPOWS/D(X.N.B.KB.FUNC.GRAD.LF.NF.FLB.EPS.FM. ILL) 

Argument Type and Attribut Content 
kiod (*1) . e 

X Real type Input When an initial vector is input. the solution vector (minimum 
One-dimens point) is output 
ional 
array 

N Integer Input Number of variables. or number of elements of X. 0<N~1000 
type 

B Real type Work The size of NxN is required. A unit matrix is first set 
Two-dimens area and. through updating by iterations. it converges to the 
ional inverse of the Hessian matrix at the minimum point. 
array 

KB Integer Input Value of the first subscript in array declaration of B. KB~N 
type 

FUNC Real type Input Target function for minimization. The user prepares this as 
Function a function subprogram in the form of FUNC(X). The actual 
subprogram argument name must be declared in an EXTBRNAL statement. 

GRAD Subroutine Input Subroutine used to calculate gradient vector G of function 
FUNC. 
The user prepares this as a subroutine in the form of 
GRAD{X. G). The actual argument name must be declared in an 
EXTERNAL statement. 

LF Integer Input Upper limit of the number of the function calls. LF~N 
type 
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Argument Type and Attribut Content 
kind (*1) e 

NP Integer Output Number of the function calls (The number of calls for PUNC 
type and GRAD are the same.) 

PLO Real type Input Lower limit of minimum value of function. 

EPS Real type Input Tolerance for convergence test. EPS>O 

PM Real type Output Minimum value of function. 

ILL Integer Output ILL=O: Normal termination. 
type ILL=I: Convergence does not occur even when NP becomes 

greater than LP. 
ILL=30000: The input argument does not satisfy the limits for 
them. 

. 
*1 For double precision subroutines, real types are all changed to double precision real types. 

(3) Calculation method 

Refer to bibliography 1),2) 

(4) Example 

The major part of a program for solving the Rosenbrock problem (minimum point: X(I)=1.0, 

X(2)=1.0) is shown below: 

DIMENSION XeZ),BeZ,Z) 
EXTERNAL ROSEN,GROSEN 
N=Z 
KB=Z 
LF=1000 
FLB=O. 
EPS=1.E-S 
X(1)=-1.2 
XeZ)=1.0 
CALL FLPOWSeX,N,B,KB,ROSEN,GROSEN,LF,NF,FLB,EPS,FM,ILL) 

. END 

FUNCTION ROSENex) 
DIMENSION XeZ) 
ROSEN=100.*eX(1)*Xe1)-XeZ»**Z+(Xe1)-1.)**Z 
RETURN 
END 

SUBROUTINE GROSENeX,G) 
DIMENSION XCZ),GeZ) 
GeZ)=zoo.*cxeZ)-Xe1)*X(1» 
G(1)=Z.*eX(1)-1.-GeZ)*X(1» 
RETURN 
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END 

(5) Notes 

1 This routine can generally obtain a local minimum value only. A proper initial value is 

required to secure a true minimum value. 

a If it is impossible or very hard to calculate gradient vectors. a method which does not 

require calculation of gradient vectors should be used. 

Bibliography 

1) R. Pletcher & R J. D. Powell; DA Rapidly Convergent Descent Method for Minimization. D 
Computer Journal. Vol. 6. PP. 163-168 (1963) 

2) P. J. Reddy, H. J. Zimmermann & Asghar Hussain; DNumerical Bxperiments on DPP-Method, A 
Powerful Punction Minimization Technique, D Journal of Computational & Applied Mathematics. 
Vo 1. I, PP. 255-265 (1975) 

(1987. 06. 17) 
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GJMNKS/D/Q (Solution of polynomial equations with real coefficients by Garside-Jarrat-Mack 

method) 

Solution of Polynomial Equations with Real Coefficients by Garside-Jarrat-Mack Method 

Programm Ichizo Ninomiya; April 1977 
ed by 

Format Subroutine language; FORTRAN Size; 128. 130. and 130 lines 
respectively 

(1) Outline 

GJMNKS. GJMNKD, and GJMNKQ are single. double, and quadruple precision subroutines respectively 

used to determine all roots of a polynomial equation with real coefficients. The 

Garside-Jarrat-Mack method l ) is widely acknowledged as an effective method for solution of 

polynomial equations with complex coefficients. These subroutines are created by Ninomiya and 

Kadowaki 2) by improving it as a solver of equations with real coefficients. These subroutines 

combine robustness of the original method and the speeds realized by using real numbers for 

complex calculation. They also incorporate the Cardano's and Ferrari's methods for solutions of 

third- and fourth-degree equations. They can thus be recommended as general-purpose polynomial 

equation routines. 

(2) Direct ions 

CALL GJMNKS/D/Q(A.N.X. Y. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

A Real type . Input Coefficients of a polynomial equation is input in descending 
One-dimens order of degree. Input values are destroyed. 
ional A (1) *0 
array 

N Integer Input Degree of polynomial equation. N~l 
type 
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Argument Type and Attribut Content 
kind (*1) e 

X Real type Output The real parts of roots of a polynomial equation are output. 
One-dimens Roots are generally determined in ascending order of their 
ional absolute values and stored in reverse order like X(N). 
array X (N-l)' .. 

y Real type Output The imaginary parts of roots of a polynomial equation are 
One-dimens output. Order of computation and storage method are same as 
ional with X. 
array 

ILL Integer Output ILL=O: Normal termination. 
·type ILL=30000: N<1 or A(I)=O. 

ILL=K: Convergence does not occur even after 200 iterations 
during processing of a deflated Kth-degree equation. 

*1 For double (quadruple) precision subroutines. real types are all changed to double 

(quadruple) precision real types. 

(3) Calculation method 

These subroutines inherit the advantage of the original method that the convergence rate 

basically does not change even for multiple roots and adjacent roots. This explains why they 

practically never fail to solve equations and provide as accurate roots as the condition of 

equation permits. In this sense. they can be said very robust. 

(4) Notes 

1. Polynomial equations often fall in ill conditions. Therefore. unless they are in very low 

degrees. it is safe to use the double precision routine GJMNKD. 

2. To solve second-. third-. or fourth-degree equations. use of each specific routine is more 

advantageous than these routines. 

Bibliography 

1) G. R. Garside. P. Jarrat and C. Mack; DA New Method for Solving Polynomial Equations. D 

Computer Journal. Vol. 11 (1968) 

2) Ichizo Ninomiya and Kohei Kadowaki; DA solution of polynomial equations with real 
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MINSXS/D Ofinim.ization of Functions by Simplex Method) 

Minimization of Functions by Simplex Method 

Programm Ichizo Ninomiya; July 1977 
ed by 

Form Subroutine language; FORTRAN Size; 98 and 99 lines respectively 

(1) Outl ine 

MINSXS or MINSXD subroutine determines the minimum point of a multivariate function by the 

Nedler-Mead's simplex method when an initial value is given. It requires only function values. 

The function values just need to be continuous but need not be smooth. 

~. 
(2) Directions 

CAl.l. MINSXS/D{X, N, P. KP, FUNC,l.F, NF. EPS, FM, Il.l.) 

Argument Type and Attribut Content 
kind (*1) e 

X Real type Input/ou When an initial value for a minimum point is given. the 
One-dimens tput minimum point is output. 
ional 
array 

N Integer Input Number of variables, or number of elements of X. 0<N~100 
type 

P Real type Work N rows and N+ 1 co 1 umns. The coordinates of the N + I-points 
Two-dimens area which form a simplex are entered in these individual columns. 
ional The initial simplex is made of initial value X and N points 
array in which individual coordinate elements of X are increased by 

10% (increased by 0.1 if the element is 0). Instead of this, 
however, the user can prepare it before calling the routin~ 
The option can be specified by argument NF. 

KP Integer Input Value of the first subscript in array declaration of P. KP~N 
type 

FUNC Real type Input Target function for minimization. The user prepares a 
Function function subprogram in the form of FUNC(X) as the actual 
subprogram argument for it. This function name must be declared in an 

EXTERNAl. statement. 

l.F Integer Input Upper limit of the number of evaluations of function. l.F>N 
type 

255



Argument Type and Attribut Content 
kind (*1) e 

NP Integer Input/ou Input: NP~O means that formation of the initial simplex is 
type tput left to the routine, and NP<O means that the initial simplex 

is prepared by the user. Output: The number of evaluations 
of the function is output. Because this argument is used for 
both input and output, do Dot specify a constant as the 
actual argument. 

EPS Real "type Input Tolerance for convergence test. EPS>O 

PM Real type Output Minimum value of function. 

ILL Integer Output ILL=O: "Normal termination 
type ILL=1: Convergence does not occur even if NF becomes greater 

than LP. 
ILL=30000: The input argument does not satisfy the 
restrictive conditions. 

*1 Por double precision subroutines, real types are all changed to double precision real types. 

(3) Method of calculation Refer to bibliography 1). 

(4) Example 

The major part of a program for solving the Rosenbrock problem (minimum point: X(l) = 1.0, X (2) 

= 10) 'is shown below: 

(5) Notes 

DIMENSION pe2,3),Xe2) 
EXTERNAL ROSEN 
N=2 
°KP=2 
NF=l 
LF=1000 
EPS=l.E-S 
Xel)=-1.2 
X(2)=1.0 ° 
CALL MINSXSeX,N,p,KP,ROSEN,LF,NF,EPS,FM,ILL) 

END 

FUNCTION ROSEN(X) 
DIMENSION X(2) 
ROSEN=100.*(X(1)*X(1)-X(2»**2+el.-Xel»**2 
RETURN 
END 

1 This routine can generally obtain local minimum values only. A proper initial value is 

required to secure a true minimum value. 
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2.15/ 

~ Because of slow convergence, this routine is not suitable for problems of higher dimension. 

3. The function name as the actual argument must be declared in an EXTERNAL statement in each 

program which calls this routine. 

( For a smooth function, the calculation of whose gradient is easy, it is more advantageous to 

use subroutine FLPOWS using the DFP method than to use this routine. 

5. When this routine is used for solving non-linear simultaneous equations 

/1=0,/2=0,··· ,/n=O as a minimization problem, F=L I/i I is preferable rather than 

F=~.l'2 L..JJ l • 

Bibliography 

1) J. l Nedler & l Mead; -A Simplex Method for Function Minimization-, Computer Journal, Vol. 7,. 
pp.308-312 (1965) 

<1987. 06. 17) 
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NOL EQS I D I Q (Solution of Nonlinear Bquations) 

Solution of Nonlinear Equations 

Programmed Ichizo Ninomiy~ March 1983 

by 

Pormat Subroutine language: PORTRAN; size: 55, 56, and 56 lines 

respectively 

(1) Outline 

If an interval of existence is given, a root of a given nonlinear equation in the interval is 

obtained. 

(2) 0 i rect ions 

CALL NOLBOS/D/O(lB,PUN,BPS.NMAX.X,PX,N. ILL) 

Argument Type and Attr Content 

kind (*1) ibut 

e 

A Real type Inpu Left end of an interval of existence. 

t 

B Real type Inpu Right end of an interval of existence. 

t 

PUN Real, type Inpu A function program for computing f(x) if the equation 

function t to be solved is f(x)=O. The user must prepare it as a 

subprogram function subprogram. 

BPS Real type Inpu Precision criterion for root. 

t 

NMAX Integer Inpu Upper limit of number of evaluations of function PUN. 

type t NMAX~3 

X Real type Outp Starting approximation for the root. 

ut 
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Argument Type and Attr Content 

kind (*l) ibut 

e 

PX Real type Outp Value of f{x) for X. 

ut 

N Integer Outp Number of evaluations of function PUN. 

type ut 

ILL Integer Outp ILL;O: Normal termination. 

type ut ILL;20000: When convergence is not attained even if the 

function evaluation count reached NMAX. 

ILL;30000: When no root exists in the interval (A, B), 

or NMAX<3. 

*1 For double (quadruple) precision subroutines, all real types are changed to double (quadruple) 

precision real types. 

(3) Calculation method 

Refer to 1) in Bibliography. 

(4) Bxample of use 

Th is program is used to ca I cu I ate the root in (D. 7r) of the equa t ion f (x) ;cosx-x=O. 

C TEST FOR NOLEQS 
EXTERNAL FUN 
EPS=1.E-5 
NMAX=100 
A=O.O 
B=1.5708 
CALL NOLEQSCA,B,FUN,EPS,NMAX,X,FX,N,ILL) 
WRITEC6,600) A,B,EPS,X,FX,N,ILL 

600 FORMATC1H ,2E13.5,E11.3,E13.5,E11.3,2I6) 
STOP 
END 

C FUNCTION SUBPROGRAM 
FUNCTION FUNCX) 
FUN=COSCX)-X 
RETURN 
END 

(5) Notes 

1. Because the calculation method of this routine is based on the bisection method, convergence 
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is assured. 

~ Because the first or second inverse interpolation'is used as required, convergence is fa~t. 

3. The function f(x) must be continuous, but need not be smooth. 

( It is more advantageous for algebraic equations to use the special-purpose subroutine 

GJMNKS/D. 

Bibliography 

1)D.B.Popovski;»A Note on King's Method for finding a Bracketed Root», Computing 
Vol. 29, pP.355-359 (1982) , 

(1987. OS. 22) (1987. 08. 07) (1987. 08. 08) 
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NOLLS 1 (Subroutine for non-I inear least squares by quasi Newton method) 

Subroutine for Nonlinear Least Squares by a Quasi-Newton Method 

Programm Kunio Tanabe and Sumie Ueda; March 1981 
ed by 

Format Subroutine language; FORTRAN Size; 772 lines 

(1) Outl ine 

NOLLS1 obtains Xi, i=l, - - - ,n, which minimizes 
ID 

Ef/(Xl- - -Xn) 
;=1 

for the function !j(Xl- - -xn ) ,j=l, - - - ,m, which is nonlinear about the n number of 

variables Xi, i=l , - - . ,n,. 

It is specially effective for problems involving a high degree of nonlinearlity. 

The user is only required to prepare a subroutine (MODELF) to calculate the value of 

!j(Xl,·· - ,xn) ,j=l, _ .. ,m,. To obtain more accurate results. however. the user is also 

requested to prepare another subroutine MODELD which calculates the first order derivative 

(2) Direct ions 

CALL NOLLS1 (MAXM, MAXN. M. N. X. ITMAX, NFEMAX, FTOL. XTOL. LDERI V. NPRINT. FF2, F. DF. ITER. 

NFE, NDE. INFORM. XO. DX, FO, DFO. H. st. D. S. Y. R, Wi. W2. W3. W4) 

Argument Type and Attrihut Content 
kind (*1) e 

MAXM Integer Input Adjustable dimension of DF (value of the first subscript in 
type array declaration). MAXM~N 

MAXN Integer Input Adjustable dimension of H. MAXN~N 
type 
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Argument Type and Attribilt Content 
kind (*1) e 

M Integer Input Number of nonlinear functions Ij(x). m 
type 

N Integer Input Number of unknown parameters Xi. n 
type 

X Real type Input/ou When an initial value of unkllown parameter Xi is put. the 
One-dimens tput final value is generated. 
ional (i=1,2,···,n) 
array 

ITMAX Integer Input Upper bound of the number of iterations. 
type 

NFB~fAX Integer Input Upper bound of the number of times function evaluation can be 
type done. 

FTOL Real type Input Convergence criterion concerning function value. If all 
values of Ij (x) become FTOL or less. iteration ends. 
O;i;FTOL 

XTOL Real type Input Convergence criterion concerning unknown parameter Xj. 
O;i;XTOL 

LOBRIV Integer Input Specify whether to prepare subroutine MOOELO which gives the 
type first order derivative for Xi of Ij. 

1: MOOELO is used. 
0: MOOELO is not used. 

Even if LOERIV = O. dummy subroutine MOOBLO must be prepared. 

NPRINT Integer Input Specify what is to be printed by each iterative calculation. 
type 0: Nothing is printed. 

1: Sum of squares and Xi are pr inted. 
2: Sum of square and Xi, Ij are printed. 
3: Sum of squares and Xi, Ij, a/j/Xi are printed. 

FF2 Real type Output Value of sum. of squares. 

F Real type Output Value of residual Ij. 
One-dimens 
ional 
array 

OF Real type Output Value of first order derivative a/j/Xi. OF (MAXM. N) • 
Two-dimens 
ional 
array 

ITER Integer Output Number of actual iterations. 
type 

NFE Integer Output Actual number of function evaluations. 
type 

NOE Integer Output Number of evaluations of actual first order derivative 
type (calling frequency of MODBLO). 
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Argument Type and Attribut Content 
kind (*1) e 

INFORM Integer Output Information on the convergence state is generated. When 
type INFORM = 1. the condition in (2) in item (3), ·Calculation 

method~ is satisfied. Otherwise, INFORM = O. 

XO. Real type Work XO (N). DX (N) 
DX One-dimens area 

ional 
array 

FO Real type Work FO(M) 
One-dimens area 

. ional 
array 

DFO Real type Work DFO (MAXM, N) 
Two-dimens area 
ional 
array 

H. SL Real type Work H (MAXN. N). SL (MAXN, N) 
Two-dimens area 
ional 
array . 

D. S. Y. R. Real type Work D (N). S (N), Y (N). R (N), Wl(N). W2 (N) 
Wl. W2 One-dimens area 

ional 
array 

W3, W4 Real type Work W3 (M). W4 (U) 
One-dimens area 
ional 
array 

(3) Calculation method 

A local minimum value is determined based on the Biggs' quasi-Newton iteration method. The 

convergence test is controlled by the values of arguments XTOL and FTOL. Conversion ends when 

one of the following conditions are met: 

(1) I fj(x) 1< rnax(FTOL,r;) ,j=1 ,2,···,m 

(2) I f(x+) , a jf(x+)) I ~aJ 11 f(x+) 11211 a jf(x+) 112( j=l ,2, .. · , m) 

where 

{
10-3 

at= 10-4/4 
•••• • (1) 
••••• (2) 
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Q2=max (XTOL, /l) 

1 

{
16£2 

/l= 32£ 

a ifj(x)=( afj/aXi) 

••••• (1) 

• •• • • (2) 

(1) is the treatment when f is given, and (2) is the treatment when f and fa are given. 

£ is a constant which depends on the machine, and x+ and x are the values of two continuing 

xs in the iterative calculation. 

(3) The number of iterations exceeds the upper bou~d value. 

(4) The number of operations of function values exceeds the upper bound valu~ 

(5) The value of x does not· show a remarkable change. 

(4) Bxample 

DIMENSION X(20),Fe100),DFe100,20),XOe20),DXe20),FOe100) 
DIMENSION DFOe100,20),He20,20),SLe20,20),De20),Se20) 
DIMENSION y(20),Re20),W1e20),W2e20),W3e100),W4e100) 
MAXM=100 
MAXN=ZO 
M=2 
N=2 
X(1)=-1.2 
X(2)=1.0 
ITMAX=100 
FTOL=1.0E-S 
XTOL=1.0E-S 
NFEMAX=5000 
LDERIV=1 
NPRINT=3 
WRITE(6,6000) MAXM,MAXN,M,N,ITMAX,NFEMAX,FTOL,XTOL, 

1 LDERIV,NPRINT 
WRITE(6,6100) (XeJ),J=1,N) 
CALL NOLLS1( 

-MAXM,MAXN,M,N,X,ITMAX,NFEMAX,FTOL,XTOL,LDERIV,NPRINT 
-,FF,F,DF,ITER,NFE,NDE,INFORM,XO,DX 
-,FO,DFO,H,SL,D,S,Y,R,W1,W2,W3,W4) 

WRITE(6,6200) ITER,NFE,NDE 
6000 FORMAT(1HO,4X,'INITIAL VALUES',/1H ,10X,'MAXM=',I4 

-,' MAXN=',I4,' M=',I2,' N=',I2,' ITMAX=',I4 
-' NFEMAX=',IS/1H ,10X,'FTOL=',1PE16.7,' XTOL=' 
-,E16.7/1H ,10X,'LDERIV=',I2,' NPRINT=',I2) 

6100 FORMAT(1H ,10X,'X=',1PSE16.7/(1H ,10X,5E16.7» 
6200 FORMAT(1HO,10X'ITERATION',I6/1H ,10X,'MODELF-CALL',I4 

-/1H ,10X,'MODELD-CALL',I4) 

269-
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STOP 
END 
SUBROUTINE MODELF(M,N,X,F) 
DIMENSION X(N),F(M) 
F(1)=10.0*(X(1)*X(1)-X(2» 
F(2)=1.0-X(1) 
RETURN 
END 
SUBROUTINE MODELD(MAXM,M,N,X,DF) 
DIMENSION XCN),DFCMAXM,N) 
DFC1,1)=20.0*XC1) 
DF(1,2)=-10.0 
DF(2,1)=-1.0 
DF(2,2)=0.0 
RETURN 
END 

Output result 

INITIAL VALUES 

o 

1 

2 

21 

MAXM= 100 MAXN= 20 M= 2 N= 2 ITMAX= 100 NFEMAX= 5000 
FTOL= 9.9999997E-06 XTOL= 9.9999997E-06 
LDERIV= 1 NPRINT= 3 
X= -1.1999998E+00 1.0000000E+00 

THE SUM OF SQUARES= 2.4199875E+01 
X= -1.1999998E+00 1.0000000E+00 
F= 4.3999863E+00 2.1999998E+00 

DF= -2.3999985E+01 -1.0000000E+01 
-1.0000000E+00 0.0 

THE SUM OF SQUARES= 2.1258163E+01 
X= -1.0189848E+00 6.2381876E-01 
F= 4.1451035E+00 2.0189848E+00 

DF= -2.3999985E+01 -1.0000000E+01 
-1.0000000E+00 0.0 

THE SUM OF SQUARES= 3.9795551E+00 
X= -9.9474800E-01 9.9184918E-01 
F= -2.3256540E-02 1.9947472E+00 

· · · . . 
THE SUM OF SQUARES= 1.3669265E-08 

X= 9.9991751E-01 9.9982673E-01 
F= 8.2850456E-05 8.2492828E-OS 

DF= 1.9940781E+01 -1.0000000E+01 
-1.0000000E+00 0.0 

THE SUM OF SQUARES= 3.6948222E-13 
X= 9.9999988E-01 9.9999970E-01 
F= 5.9604645E-07 1.1920929E-07 

DF= 1.9998337E+01 -1.0000000E+01 
-1.0000000E+00 0.0 

********************************* FINISHED****** 
ITERATION 21 
MODELF-CALL 38 
MODELD-CALL 21 

Bibliography 

1) Bartholomew-Biggs, M.C.; »The estimation of Hessian matrix in nonlinear least squares problems 
with non-zero residuals». Mathematical Programming 12, pp.67-80 (1977) . 

2) Kunio Tanabe; »Algorithm of nonlinear least squares method.» Applied statistics, Vol. 9. No. 3. 
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POl EQ C I B I Z (Solution of a Polynomial Equation wi th Complex Coeff icients) 

Solution of a Polynomial Equation with Complex Co~fficients 

Programm Tsuyako Miyakoda and Tatsuo Tor i i" and revised by Ichizo Ninomiya, June 1984 

ed by 

Format Subroutine language: FORTRAN; size: 172 lines 

(1) Outline 

POLEQC/B/Z obtains all the roots of an algebraic equation with complex coefficients using the 

evaluation of the degree-reduced type~ 

(2) Direct ions 

CALL POLEQC/B/Z(AA,NN,Z,ERR,W, ILL) 

Argument Type and Attribut Content 

kind (*1) e 

AA Complex Input The coefficients of algebraic equations are sequentially 

type input in descending order of degree. 

One-dimens AA (1) :1= 0 and s i z~ NN+ 1. 

ional 

array 

NN Integer Input Degree of algebraic equations. NN~l 

type 

Z Complex Output The roots of algebraic equations are output in the reverse of 

type the searching order. 

One-dimens 

ional 

array 
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Argument Type and Attribut Content 

kind (*l) e 

ERR Real type Output Error evaluation for each obtained solution. 

One-dimens 

ional 

array 

W Complex Work The size is 3x (NN+l). 

type area 

One-dimens 

io"nal 

array 

ILL Integer Output I LL=O: Norma I term i 11a t ion. 

type LL=30000: N<l or AA{I)=O. 

ILL=K: The convergence may not occur even if the calculation 

is iterated 50 (lOO. 200) times when a reduced K-degree 

equation is processed . 

. 1* Por double (quadruple) precision subroutines. all complex types are assumed to be double 

(quadruple) "precision complex types. 

(3) Calculation method 

Refer to paper (2). "The method of obtaining approximate roots is fundamentally the same as in 

paper (I). And the convergence is improved by distributing the roots of the reduced polynomial 

evenly inside and outside of a unit circle each time. We obtain the root existing inside of the 

circle setting the initial value of the iterate as Z=O. When the order of coefficients is 

reversed and the root of a polynomial whose order is reversed from the original one is obtained. 

a minus sign is added to ERR. 

(4) Example of use 

C TEST FOR POLEQB 
IMPLICIT REAL*8 (A-H,O-Z) 
REAL*4 XR,XI 
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COMPLEX*16 A(50),BC50),ZC50),XC50),T,WZC200) 
DIMENSION ERR(50),TERC50) 
DO 60 N=1,10 . 
DO 10 I=1,N 
ACI+1)=0.DO 
XR=1.0-RANDOMCO)*2.0 
XI=1.0-RANDOMCO)*2.0 

10 XCI)=CMPLXCXR,XI) 
A(1)=1.DO 
DO 50 I=1,N 
DO ·30 J=2,I+1 

30 BCJ)=ACJ)-ACJ-1)*XCI) 
DO 40 J=2,I+1 

40 ACJ)=BCJ) 
50 CONTINUE 

WRITEC6,1010)CI,XCI),I=1,N) 
CALL POLEQBCA,N,Z,WZ,ERR,ILL) 
DO 66 I=1,N-1 
K=I 
DO 70 J=2,N 
IFCCDABSCZCJ)-XCI».LT.CDABSCZCK)-XCI») K=J 

70 CONTINUE 
T=ZCK) 
ZCK)=ZCI) 
ZCI)=T 
SS=ERRCK) 
ERRCK)=ERRCI) 
ERRCI)=SS 

66 CONTINUE 
WRITEC6,1030) ILL 
DO 55 I=1,N 
TERCI)=CDABSCZCI)-XCI» 

55 WRITEC6,1040)I,ZCI),TERCI),ERRCI) 
60 CONTINUE 

1010 FORMATCI121X,11HEXACT ROOTSIICIS,2D23.15» 
1030 FORMATC/25X,5HROOTS,2BX,3HTER,BX,3HEST,SH ILL=,I4/) 
1040 FORMATC1H ,I4,2D23.15,2X,2D11.3) 

END 

(5) Note 

21fl 

The obtained roots are stored in the reverse order. The error estimation of each root is 

for the degree-reduced polynominals. Therefore. the evaluation becomes rough gradually. By 

the by degree reduction. a cubic polynomial is finally obtained. The cubic equation is solved 

directly. so 0 is input to the error estimation for these 3 roots. 

Bibliography 

1) Tatsuo Torii and Tsuyako Miyakoda: A Root-finding Method for a Polynomial based upon the Cubic 

Hermitian Interpolation. Information Processing. Vol. 14. No. 4. PP. 253-259 (1973L 

2) Tatsuo Torii and Tsuyako Miyakoda: A Root-finding Algorithm for a Complex Polynomial'Based on 

the Taylor Expansion of Third Order. Information Processing. Vol. 15. No. 8. PP. 644-646 (1974). 
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POLESB/C (Solution of Polynomial Bquation with Compl~x Coefficients by the Model of 

Electrostatic Field) 

Solution of Polynomial Equation with Complex Coefficients by the Model of Blectrostatic field 

Programm Tetsuya Sakurai, Tatsuo Torii, and Hiroshi Sugiura: September 1986 
ed by 

Format Subroutine language: FORTRAN; size: 255 lines 

(l) Outl ine 

PoLESB/C is a single or double precision subroutine for obtaining all the roots of polynomial 

equations with complex coefficients. Even if the roots include multiple and adjacent roots, they 

can be obtained in about the same calculation time as for single roots. 

(2) Directions 

CALL PoLBSB (A, N, Z, W. ILL) 

Argument Type and Attribut Content 
kind (*l) e 

A Complex Input The coefficients of polynomial equations should be entered 
type sequentially starting from the highest order coefficient. 
one-dimens Not reta i ned. A (l}:#=0 and size N+ 1. . 
ional 
array 

N Integer Input Order of polynomial equations. N~1. 
type 

Z Complex Output The roots of polynomial equations are output. 
type 
one-dimens 
ional 
array 

W Integer Work The size is 3x (N+l). 
type area 
one-dimens 
ional 
arr!ly 
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Argument Type and' Attribut Content 
kind (*1) e 

ILL Integer Output ILL=O: Normal termination. 
type ILL=30000: N<1 or A(1)=0. 

ILL=K: If no convergence occurs even if the routine is 
iterated 50 times while an reduced k-th order equation is 
processed. 

*1 All real and complex types should be of a double precision. 

(3) Calculation method 

This method solves the equation f(z)=O by approximating f' (z)lf(x) using the rational 

expression obtained from the electrostatic field model. It has a quaternary convergence 

characteristic that is independent of the multiplicity of roots. and solves the quadratic 

equation for each iteration. 

(4) Example ,of use 

This is an example of solving f(z)=Z>-iz4-azl-3iz2+4z-10i . 

*TEST FOR POLESB 

* 

* 
* 

IMPLICIT REAL*8 (A-H,O-Z) 
COMPLEX*16 A(6),Z(S) 
REAL*8 W(18) 

N=S 
A(1)=(1.DO,0.DO) 
A(2)=(0.DO,-1.DO) 
A(3)=(-3.DO,0.DO) 
A(4)=(0.DO,-3.DO) 
A(S)=(4.DO,0.DO) 
A(6)=(0.DO,-10.DO) 

CALL POLESB(A,N,Z,W,ILL) 

WRITE (6,1000) (I,Z(I),I=1,N) 
1000 FORMAT(' ',I10,2F2S.1S) 

ST.OP 
END 

FORTRAN 77 COMPILER ENTERED 
END OF COMPILATION 

1 0.000000000000000 
2 2.000000000000000 
3 -2.000000000000000 
4 1.000000000000000 
5 -1.000000000000000 

END OF GO,SEVERITY' CODE=OO 

1.000000000000000 
1.000000000000000 
1.000000000000000 

-1.000000000000000 
-1.000000000000000 
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(5) Note 

The obtained roots are stored in the reverse order. 

Bibliography 

1) Tetsuya Sakurai, Tatsuo Torii, and Hiroshi Sugiu~a; Solution of Polynomial Bquations by 
Blectrostatic Field Interpretation, Proceedings of Symposium of 33-rd Information Processing 
Society of Japan, PP. 1849-1850, 1986 

(1987. 07. 28) 
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QUADRC/B/Z, CUBICC/B/Z, and QUARTC/B/Z (Solution of Low Order Polynomial 

Equations with Complex Coefficients) 

Solution of Low Order Polynomial Equations with Complex Coefficients 

Programm Tsuyako Uiyakoda and Tatsuo Torii, and revised by Ichizo Ninomiya, 

ed by June 1984 

Format Subroutine language: FORTRAN; size: 22, 63, and 46 lines respectively 

(1) Outl ine 

QUADRC(B,Z), CUBICC(B,Z), and QUARTC(B.Z) are the single (double or quadruple) precision 

subroutine for calculating all the roots of quadratic, cubic. and quartic polynomial equations 

with complex coefficients. 

(2) Direct ions 

CALL QUADRC/B/Z(C.Z. ILL) 

CALL CUBICC/B/Z(C,Z. ILL) 

CALL QUARTC/B/Z(C.Z, ILL) 

Argument Type and Attribut Content 

kind (*1) e 

C Complex Input Coefficient of polynomial equations. Coefficients should be 

type input in descend i ng order f r'om the hi ghes t. 

One-dimens 

ional 

array 
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Argument Type and Attribut Content 

kind (*1) e 

Z Complex Output Roots of polynomial equations are output. 

type 

One-dimens 

ional 

array 

ILL Integer Output ILL=O: Normal termination. 

type I LL=30000: C (1) =0. 

*1 For double (quadruple) precision subroutines, all complex types should be double (quadruple) 

precision complex types. 

(3) Calculation method 

1 Quadratic equations conform to the root formulas and the relationship between the roots and 

coefficients. 

2. Cubic equations conform to the modified Cardano method by Hirano (I). 

3. Quartic equations conform to the Ferrari method. 

Bibliography 

1) Sugayasu Hirano: Numerical Solution of Polynomial Equations by Floating Point Arithemetic, 

doctorial thesis, 1980. 

0987.07.21> 

274



275 

QUADR S I D I QI , CUB I CS I D I Q, QUARTS I D IQ (Solution of low-order polynomial 

equations with real coefficients) 

Solution of Low Order Polynomial Equations with Real Coefficients 

Programm Ichizo Ninomiya; April 1977 
ed by 

Format Subroutine language; FORTRAN 
Size; 24. 27. 27. 40. 41. 41. 46. 47. and 47 lines respectively 

(1) Out line 

QUADRS (D. Q). CUBICS (D. Q). and QUARTS (D. Q) are single (double, quadruple) precision 

subroutines used to calculate all roots of the quadratic. cubic, and quartic equations (real 

~. 
coefficients) respectively. 

(2) Directions 

[QUADRS/D/~ CALL CUBICS/D/Q (~Xt y, ILL) 
QUARTS/D/Q 

Argument Type and Attribut r.ontent 
kind (*1) e 

A Real type Input Coefficients for a polynomial equation is input in descending 
One-dimens order of the degree. 
ional A (I) =#=0 
array 

X· Real type Output The real parts of roots of the polynomial equation are 
One-dimens output. 
ional 
array 

y Real type Output The imaginary parts of the roots of the polynomial equation 
One-dimens is output. 
ional 
array 

ILL Integer Output ILL=O: Normal termination. ILL=30000: A(I) = O. 
type 

*1 For double (quadruple) subroutines, real types are all changed to double (quadruple) 

precision real types. 

(3) Calculation method 
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1. For a quadratic equation, on~y the root with the larger absolute value is determined by the 

quadratic formula ~nd the other root is determined by using the relation between the product of 

the two roots and the coefficients. 

~ A cubic equation is solved by the Cardano's method. 

3. A quartic equation is solved by the Ferrari's method. 

(4) Note· 

Fifth or higher degree equations can be solved by using GJMNKS/D/~ 

'. 

<1987. 07. 24) <1987. 08. 21> 
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RTFNDS/D (Solution of a nonlinear equation) 

Solution of a Nonlinear Equation 

Programm Ichizo Ninomiya; August 1984 

ed by 

Format Subroutine language; FORTRAN Size; 274 lines each 

(l) Out! ine 

RTFNDS and RTFNDD calculates all roots in the given interval of the given nonlinear equation. 

(2) Directions 

CALL RTFNDS (A. B, FUN, C. EPS, EPSZ, L. NR, RT, NF, BD. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input Left end of an interval.' A<B 

B Real type Input Right end of an interval. A<B 

FUN Real type Input Function subprogram prepared by the user for f(x) when the 

Function equation to be solved is f(x);O. 

subprogram 

C Real type Input Constant for Chebyshev test. Default value 3 is given when 

C~O. 

EPS Real type Input Constant e for root isolation test. The standard range is 

10-1", 1 0-4• 

EPSZ Real type Input Constant e z for root precision test. 

L Integer Input Size for arrays RT and BD. About 100 is enough in most 

type cases. i 

NR Integer Output Total number of roots 

type 
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Argument Type and Attribut Content 

kind (*1) e 

RT Real type Output NR roots are output in ascending order. This argument is 

One-dimens also used as a work area during calculation. 

ional 

array 

NF Integer Output Number of evaluations of function f(x) 

type 

BD Real type Work Size 4*NR is needed. 

One-dimens area 

ional 

array 

ILL Integer Output . 
Error code. 

type ILL;O: Normal termination. 

ILL;20000: L was so small that the capacity of array RT or BD 

was exceeded. Calculation has disc'ontinued. 

ILL=30000: A~B or L<2. 

*1 For double precision subroutines, real types are all changed to be double precision real 

types. 

(3) Calculation method 

1. Sufficiently small intervals, each containing one of all rO(its in the ,interval (A, B), are 

d~tected by the B. Jones' root isolation method (1). When each interval is (Xi, X2), then 

IX2-X1/~ e -Xm holds, where Xm=max(/X1+X2/12,l). 

2. The root in each small interval obtained in 1. is calculated by the Popovski's method (2). 

(4) Example 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION RT(100),BD(100) 
EXTERNAL FUN 
A=O.ODO 
B=15.DO 
EPS=1.D-2 
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EPSZ=1.D-8 
C=3.DO 
L=100 
CALL RTFNDDCA,B,FUN,C,EPS,EPSZ,L,NR,RT,NF,BD,ILL) 
WRITEC6,600) NR,CRTCI),I=1,NR) 

600 FORMATC5X,'NR=',I4/CSD16.8» 
STOP 
END 
FUNCTION FUNCX) 
IMPLICIT REAL*8 CA-H,O-Z) 
DATA PI 13.141S92653589794DOI 
FUN=DSINCPI*X/14.DO)+DSIN(PI*X*1.5DO) 
RETURN 
END 

(5) Notes 

1 Constant C is used in Chebyshev's inequal ity m2~Cv to test that a certain interval contains 

no root, where m and v are average value and variance of the function values in that interval 

respectively. If this inequality is satisfied. the statistical hypothesis Da root exists in this 

intervalD is rejected with the level of significance IIC or below. C=3.0 is often a suitable 

valu~ If C is too small. there is a danger of misjudging an existent root as Dinexistent. D 

Conversely, if C is too large. judgment is done too carefully. increasing the number of function 

evaluations. 

2. Select ion of the constant e for root isolat ion test is also very important. If e is too 

large. roots cannot be isolated completely to one another. If it is too small. the number of 

functio~ evaluations increases. Once the roots have been isolated. subsequent calculation is 

done very fast regardless of e z. Therefore. assign e a large value enough to isolate the 

roots. 

3. If 16zl~ez·max(/zl.1). where z is roots and 8z is their correction. is established, 

convergence is regarded to be completed. Note. therefore. that If (z) I ~ e z is not always 

establ ished. 
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