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I. NUMPAC routine

Library programs of NUMPAC are roughly divided into two cathegories, ie., function subprograms
and subroutine subprograms, There are some general rules for each of them and the rules are used
in this manual for simple description, Please read the following explanations carefully before

using NUMPAC,

(I) Function subprogram
(1) Function name and type
The function name of the real type follows the rule of the implicit type specification of
FORTRAN,
Example : BJ0, ACND
The function name of the double precision real type consists of the function name of the
corresponding real type with adding D to the head of it, The function name of the quadruple
precision real numﬁer type (if exists) consists of the function name of the corresponding real
type with adding Q to the head of it, However, there are some exceptions,
Example : SINHP, DSINHP, QSINHP
Example of exception : ALOG1, DLOG1, QLOG]

It is severely observed that the function name for double precision begins with D and that for
quadrup]e precision begins with O, Note that the function name should be declared with a
suitabl; type in each program unit referring to the function,

Example : DOUBLE PRECISION DCOSHP, DJ1
REAL=8 DCELI1, DCELI2
REAL=16 QSINHP, QASINH
Because the function name of double precision always begins with D and that of quadruple
precision with @, it is convenient to use the IMPLICIT statement considering cher variables,
Example : IMPLICIT REAL*8 (D)
IMPLICIT REAL*8(A-H, 0-2)
In this way, you need not declare the function name, separately,
(2) Accuracy of function value

Function routines are created aiming at the accuracy of full working precision as a rule,

)

However, this cannot be achieved completely because of fundamental or technical difficulty )



[

Especially, it is not achieved for functions of two variables and functions of complex variable,
(3) Limit of argument
(a) The domain is limited,
Example : ALOG]
This function calculates log(1+x) . Therefore, x>-1 should be satisfied,
(b) The singular point exists,
Example : TANHP
This function calculates tanwx/2. Therefore, an odd integer X is a sungularity,
(c) The function value overflows,
Example : BI(

This function is for modified Bessel function Io(x), and for big x, e

is calculated
referring to standard function EXP, Therefore, overflow limit 252l0g.2=174.673 of EXP
is the upper bound of the argument of this function,
(d) The function value becomes meaningless,

Example : BJO-

This function is for Bessel function Jo(x), and standard functions SIN and COS are referred
to for big x. Therefore, the argument limit |x | s2%728.23-10° of SIN and COS is the
limit of the argument of this function,

There are many such examples, Note that the value 218, is not a sharp limit and that the
nunber of significant digits for the function decreases gradually as approaching this limit even
if within this -]imit. .

When the function value underflows, it is sei to 0 without special processing,

(4) Brror processing

When the argument exceeds the limit, an message for the error is printed‘ and the calculation is
continued with the all function values set as 0, The message consists of the function name, the
argument value, the function value (0) and the reason for the error,

Example : ALOGI ERROR ARG=-0, 2000000E+01 VAL=0.0 ARG, LT, -1

The error processing program counts the frequency of the errors and stops the calculation if

the frequency exceeds a certain limit, considering the case that the calculation becomes

meaningless when the error occurs one after another, Because all users do not want this, you can

adopt or reject this processing including the print of the message, Subroutine FNERST is



provided for this purpose and you can use it in the following way.

CALL FNERST (IABORT, MSGPRT, LIMERR)

Argument Type and Attrib Content
kind ute
TABORT Integer Input | IABORT=0 The calculation is not stopped,
type IABORT+#0 The calculation is stopped,
MSGPRT Integer Input | MSGPRT=0 The message is not printed,
type MSGPRT#(0 The message is printed,
LIMERR Integer Input | Upper bound of frequency of errors,
type .

If this subroutine is not called, following values are set as a standard value,

TABORT=], MSGPRT=], LIMERR=10

(I1) Subroutine subprogram
(1) Subroutine name and type

There is no meaning of the type in the head character of the subroutine name, Subroutines with
the same purpose and the different type are distinguished by the ending character of the name,

The principle is as follows,

Single precision : S| Complex number : C Vector computer single precision
Double precision : D | Double precision .V
Quadruple precision | complex number : B Vector computer double precision
:Q Quadruple precision | .

complex number : Z Vector computer complex number : X

Vector computer double precision
complex number : Y

However, there are some exceptions,

Example Example of exception
LEQLUS/D/0/C/B FFTR/FFTRD
RK4S/D/Q/C/B MINVSP/MINVDP
GJMNKS/D/Q

(2) Argument --- The following four kinds are distinguished as an attribute of the argument,

Input Users should set this data before calling the subroutine, As long as it is not
especially noticed, the data is preserved as it is at the subroutine exit, This
includes the case when the function name and the subroutine name are used as
arguments, Note that those names should be declared with EXTERNAL.




Qutput | This data is created in the subroutine and is significant for the user,

Input/Qu | Data is output in the same place as the input to save area, When input/output
tput argument is a single variable, you should not specify a constant as a real
argument, PRor instance, if LEQLUS is called with constant 1 specified in
input/output argument and is ended normally, IND=(Q is output, but all constants ]
are changed to (.

Work It is an area necessary for calculation in a subroutine, and the content of the
area subroutine at exit is meaningless for users,

The type and attribute of the argument are explained for each subroutine group, The explanation
is for single precision, For others, please read it with exchaﬁging the type for the suitable
one,

When a subroutine is called with an argument, but the argument is not used, the area for the
argument need not be prepared, and anything can be written in that place, The same area can be
allocated for the different arguments, only if it is pointed as it like SVDS, Therg is an
example (FT235R) that special demand is requested for the argument,

It is requested for users to frovide the function routine and the subroutine for the numerical
integration routine and the routine for solving differential equations, In this case, the
number, the type, and the order of the argument should be as specified, If parameters except a
regulated a;gument are necessary, they are allocated in COMMON area to communicate with the main

program, Refer to the explanation of an individual routine for the example,

1) Ichizo Ninomiya; “Current state, issues of mathematical software”, information processing,

Vol.23 and pp. 109-117(1982).



[ Opening source program to the public ]

The following source programs are published for users requesting them, Calculation can be
requested directly, and the source list can be output or can be copied .in the shared file, The

copied program cannot be given to the third party without the permission of this center.

. If you need to copy the source list in ;he card or the data set, please execute following
procedures,
(1) Input the following command for TSS,
 NLIBRARY ELM (library name) "DS (data set name)” "SLAVE(ON)”
When you need only the source list,” you can omit DS and SLAVE, When SLAVE(ON) is specified,
all slave routines of the prdgram will be output,
(2) Execute the follgwing job for BATCH,
//EXEC NLIBRARY, ELM=program names[,DS='daia set names’ ][, SLAVE=0N]
You can have examples of the program usage with the following procedures,
(1) For TSS
EXAMPLE NAME (library name) [DS (data set name)]
(2) For BATCH

//EXEC EXAMPLE, NAME=program names[, DS="data set names’ ]

Four kinds of manual listed below are prepared concerning library program,

Numb Manual title : Content
er
1| Library program and data list All library programs and data which can be

used in this center are listed,
Additionally, “description format of the
NUMPAC routine and notes on use”, “llow to
choose the NUMPAC routine®, and usage of
error processing subroutine "FNERST” are
described in this list,

2 | Guidance to use library program This volume describes the general use of
programs except NUMPAC, which can be used in
(General volume : GENERAL VOL. 1) this center.




3 | Guidance to use library program

(Numerical calculation :

NUMPAC VOL. 1)

This volume describes how to use the
following five kinds of programs,

1. Basic matrix operations

2. System of linear equations

3. Matrix inversion

4, Eigenvalue analysis

5. Polyncmial equation and nonlinear
equation

4 | Guidance to use library program

(Numerical calculation : NUMPAC VOL. 2)

This volume describes how to use the
following five kinds of programs,

6. Interpolation, smoothing, and numerical
differentiation and integration

7. Fourier analysis

8. Numerical quadrature

9. Ordinary differential equation

10. Elementary function

5| Guidance to use library program

(Numerical calculation : NUMPAC VOL.3)

This volume describes how to use the
following nine kinds of programs,

11. Table functions

12. Orthogonal polynomial

13. Special functions

14. Bessel function and related function
15. Acceleration of convergence of sequences
16. Linear programming

17. Special data processing

18. Pigure display application program
19. Others

All these manuals can be output by "MANUAL command®, “PICKOUT command” is available if you

need part of the usage of individual program,




For NUMPAC users

Please note the following and use NUMPAC effectively,

(1) The user has the responsibility for the result obtained by NUMPAC,
(2) When the trouble is found, please report it to the center program
consultation corner (Extension 6530).

(3) Do not use NUMPAC in computer systems other than this center without
permission,

(4) To publish the result obtained NUMPAC, the used program names (for

instance, xxx of NUMPAC) should be referred to,

This manual was translated using Fujitsu’s machine translation system ATLAS.
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ADDMMV/W/X/Y and SUBMMV/W/X/Y (Addition and Subtraction of Matrices-Vector Version)

Addition and Subtraction of Matrices-Vector Version

Programm | Ichizo Ninomiya, July 1987

ed by

Format Subroutine Language: FORTRAN; Size: 70 lines

(1) Outline
The ADDMMV (W, X,Y) and SUBMMV(K X, Y) calculate the sun C=A+B and difference C=A-B of the
two matrices A and B, They are for the single precision real numbers (double precision real

number, single precision complex number, and double precision complex number),

(2) Directions

CALL ADDMMV/W/X/Y (A, B, C, KA, KB, KC, M, N, ILL)
CALL SUBMMV/W/X/Y(A, B, C, KA, KB, KC, M, N, ILL)

Argument Type and Attrib Content

kind (x1) | ute

A Real type | Input | MXN matrix A
Two-dimens
ional
array

B Real type | Input | MXN matrix B
Two-dimens
ional
array

C Real type | Output | MXN matrix C. A+B or A-B
Two-dimens’
ional
array

KA Integer Input | Adjustable dimensions of A, KA=M
type

KB Integer | Input | Adjustable dimensions of B, KB=M
type

KC Integer Input | Adjustable dimensions of C. KC=M
type

H Integer Input | Number of rows of A, B, and C. M=1]
type

10
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Argument Type and Attrib Content
kind (x1) | ute

N Integer Input | Number of columns of A, B, and C, N=1
type

ILL Inieger Output | ILL=0: normal termination; ILL=30000: argument
type error

=1 For ADDMMW(X,Y) and SUBMMIW(X,Y), all real types should be changed to double precision real

types (complex type and double precision complex type).

(3) Note

1. This routine is for vector computers, However, it can be used also for scalar computers,

11

(1987.09. 18)



MDETS/D/Q/C/B/s2Z (Calculation of Determinants)

Calculation of Determinants

Programm | Ichizo Ninomiya, April 1977
ed by

Format Subroutine language: FORTRAN; size: 45, 34, 45, 34, and 35 lines
respectively :

(1) Outline

MDETS/D/Q/C/B/Z calculates the determinant of a given matrix,

(2) Directions

CALL MDETS/D/Q/C/B/Z(A, KA, N, EPS, D, ILL)

Argument | Type and Attribut Content
kind (x1) |e

A Real type | Input Matrix whose determinants should be calculated, Destroyed
Two-dimens
ional
array

KA Integer Input Value of the first subscript in the array-A declaration,
type KA=N

N Integer Input Degree of AN=2
type

EPS Real type [ Input Criterion constant for matrix sihgula:ity, If the absolute

value of pivot elements is smaller than this constant, D= 0

is assumed, EPS>0

D Real type | Output The value of determinant is output,
ILL Integer Cutput ILL = 3000: Limits on KA, N, and EPS are violated,
type Otherwise, ( is output,

x1  For MDETD (q, C..B, Z), A and D are double precision real types (quadruple precision real
type, complex type, double precision complex type, and quadruple precision complex type),
For (@, C, B, Z), EPS is a double precision real type (quadruple precision real type, real

type, double precision real type, and quadruple precision real type).

(3) Performance

12
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Precision depends on problems, Because the LU-decomposition methed (Doolittle method) is used,
and double precision arithmetic operation is performed to calculate the inner products in MDETS,
precision is high, The required computation time is almost the same as that for solving a system

of linear equations,

(4) Remarks

1. If the typical size of elements in the matrix A is a;sumed to be a, the standard value of
8PS is ax1075(ax107%,ax10°%°) for WOETS (MDETD).

2. When a system of linear équations is to be solved, and the determinant is to be calculated
at the same time, it is recommended to use LEQLUS and LEQLUD.

(1987. 06. 17) (1987. 08. 07)

13



MNORMS/D/Q/7C/B/Z (Normalization of a Matrix)

Normalization of a Matrix

Programm | Ichizo Ninomiya, April 1977
ed by
Format Subroutine language: FORTRAN; size: 20, 21, 20, 23, 24, and 24 lines

respectively

(1) Outline

MNORMS/D/0/C/B/Z divides each row of a given matrix by a number of the form of 2" to limit the

maximum absolute value of elements in each row to the order of I,

(2) Directions

CALL MNORMS/D/Q/C/B/Z(A, KA, N, M, S, ILL)

Argument | Type and Attribut Content
kind (x]) |e
A Real type | Input/ou | Matrix to be normalized
Two-dimens | tput '
ional
arcay
KA Integer Input Value of the first subscript in the array-A declaration,
type KA=N
N Integer Input Number of rows in A, N=2
type
o} Integer Input Number of columns in A, M2=N
type
S Real type |Output |[S (I) (I=1, ---, N) contains a divisor in the form of power of
One-dimens 2 to normalize the row I, '
ional
array
ILL Integer Output [LL=0: Normal termination
type ILL=30000: Limits on KA, N, and M are violated,
The row number whose elements are all (

x] For MNORMD (@, C, B, Z), A is assumed to be a double precision real type (quadruple precision

real number, complex number, double precision complex number, and quadruple precision complex

number), and S is assumed to be a double precision (guadruple precision, single precision, double

precision, and quadruple precision) real type,

14
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(3) Remarks

1. When normalization is to be done as preprocessing for solving a system of linear equations,
merge the right side column in the right of the coefficient matrix, and apply this routine to the
augmented matrix., The solution obtained by solving the normalized equation is the solution of
the original equation, That is, postprocessing is not required,

2. The inverse matrix of the original matrix is obtained by dividing each I-th column of the
inverse matrix of the normalized matrix by the scale factor S (I).

3. In general, normalization changes a symmetric matrix to an asymmetric matrix.

4, For symmetric positive definite matrices, the special-purpose routine such as MNRSPS should

be used,

(1987. 06. 17) (1987. 08. 07)

15



MNRMBS/D/Q/C/B/Z and MNMBSS/D/Q (Normalization of Band Matrices)

Normalization of Band Matrices

Programm | Ichizo Ninomiya, May 1982
ed by

Format Subroutine language; FORTRANTT
Size; 25, 26, 26, 26, 27, 27, 25, 26, and 26 lines

| respectively

(1) Outline

The general band matrix subroutine MNRMBS/D/Q/C/B normalizes each row of a given band matrix by
dividing it by a power of 2 that is close to the maximum absolute value of the row,

The symmetric positive definite band matrix subroutine MNMBSS/D/Q normalizes each row and
column of a given band matrix by dividing it by a power of 2 that is close to the square root of

the diagonal element,

LB \
. ' NB

NB

\ KA KA
]

(2) Directions
CALL MNRMBS/D/Q/C/B/Z(A, KA, N, NB, LB, S, ILL)

CALL MNMBSS/D/@ (A, KA, N,NB, S, ILL)

16
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Argument | Type and Attribut . _ Content
kind (1) |e

A Number of | Input/ou | Matrix to be normalized.
real _tput General matrices are transformed into a rectangular form as
numbers shown in Figure 1. That is, the (I, J) elements are stored
Two-dimens inA (J-1+1LB 1),
ional Positive definite symmetric matrices are transformed into a
array rectangular form as shown in Figure 2. That is, the (I, J)

elements are stored in A (1 - J + 1, J).

KA Integer ‘Input Adjustable dimension of A (first subscript in array -
type declaration).
KA=NB
N Integer Input Degree of A (number of columns), N=NB
type
NB Integer Input Entire band width for general matrices, NB=LB
type Half band width for symmetric positive definite matrices,
NB=1
LB Integer Input Left band width of A, LB=1
type
S Real type | Qutput Normalization factor, Real number of the form of power of 2
One-dimens used to divide each row (column),
ional One-dimensional array of size N
array
ILL Integer Output ILL=0: Normal termination,
type ILL=K: Normalization is interrupted at Kth step,

General: The Kth line is all zero,

Symmetric positive definite matrix: The Kth diagonal
element is not positive,
ILL=30000: Argument error,

x] For MNRMBD (0, C, B, Z), A is assumed to be a double precisicn real type (quadruple
precision real type, complex type, double precision complex type, and quadruple precision complex
type), and S is assumed to be double precision (quadruple precision, single precision, double
precision, and quadruple precision) real type, |

For MNMBSD (@), real types are changed to double (quadruple) precision real types.

(3) Example of use
1. Example of MNRMBS
A quindiagonal matrix (NB = 5, LB = 3) equation (N = 1000} is solved with LEQBDS, after
normalizing it with MNRMBS. All diagonal elements are put as a;;=5j and non-diagonal
elements as 1, and constant terms are set so that all elements of the solution are 1.

DIMENSION A(7,1000),S(1000),X¢1000),MAX(1000)

17
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N=1000
KA=7
NB=5
LB=3
EPS=1.E-6
DO 10 J=1,N
DO 20 I=1,5
20 A(I,J)=1.0
A(3,J)=J%*5
XC(JI)=A(3,J)+4.0
IF(J.LE.2) X(J)=XC(JI)-FLOAT(3-J)
IFCJ.GE.N=-1) X(J)=X(J)-FLOAT(J+2-N)
10 CONTINUE
CALL MNRMBS(A,KA,N,NB,LB,S,IND)
DO 25 I=1,N
25 X(Id)=X(I)/S(I)
IND=0 .
CALL LEGBDS(A, KA N,NB,LB,MB,X,N,1,MAX,EPS,IND)
EM=0.0
DO 30 I=1,N
EM=AMAX1(ABS(X(I>-1.0),EM)
30 CONTINUE .
WRITE(6,600) EM
600 FORMAT(10X,E11.3)
sToP
END

2. Example of MNMBSS
An equation having a positive definite symmetric band matrix (N'= 1000, NB =5) as a
coefficient is solved by CHLBDS after normalizing it by MNMBSS. All diagonal elements are
put as a;;=10j and non-diagonal elements as ], and all constant terms are set so that all
elements of the solution are 1.

DIMENSION A(5,1000),5¢1000),X(1000)
N=1000
KA=5
NB=5
EPS=1.E-6
DO 10 J=1,N
AC1,J)=1%10
DO 20 I=2,5
20 ACI,J)=1.0
X(J>=AC1,J>+8.0
IFC(J.LE.4) X(JI=X(J)-FLOAT(5-J)
IFCJ.GE.N-3) X(JI)=XCJI)-FLOAT(J+4-N)
10 CONTINUE
CALL MNMBSS(A,KA,N,NB,S,IND)
DO 25 I=1,N
25 X(I)=X(IX/SCL)
IND=0
DET=0.
CALL CHLBDSC(A,KA,N,NB,X,N,1,DET,EPS,IND)>
DO 27 I=1,N
27 X(IXY=X(I)/S(I)
EM=0.0
DO 30 I=1,N
EM=AMAX1(ABS(X(I)>-1.0),EM)

18



30 CONTINUE
"WRITE(6,600) EM
600 FORMAT(10X,E11.3)
STOP
END

(4) Remarks

1. When this routine is used to solve a system of linear equations that has a band matrix as a
coefficient, each element of the right side constant vector must be divided by the corresponding
normalization factor before thé e simultaneous linear equation routine is called, For general
matrices, nothing need not be‘done after a solution is obtained. For a symmetric positive
definite matrix, however, each element of the solution must be divided by the corresponding

normalization factor, (See the example of use.)

(1987. 06. 17) (1987. 08. 07)

19
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[
MNRSPS/D/Q (Normalization of a Symmetric Positive Definite Matrix)

Normalization of a Symmetric Positive Definite Matrix

Programm | Ichizo Ninomiya, April 1977
ed by

Format Subroutine language: FORTRAN; size: 20, 21, and 21 lines respectively

(1) Outline
MNRSPS/D/@ limits the maximum absolute value of elements in each row and column to the order of
1 by dividing each row and column of a given symmetric positive definite matrix by a number of

the form of 2" preserving symmetric positive definiteness.

(2) Directions

CALL MNRSPS/D (A, KA, N, M, S, ILL)

Argument | Type and Attribut Content
kind (x1) |e
A Real type | Input/ou | Matrix to be normalized, Only the upper right half including
Two-dimens | tput the diagonal lines is processed, Other part is preserved,
ional
array
KA Integer Input Value of the first subscript in the array-A declaration,
type . KA=N
N Integer Input Number of rows in A, N2
type
M Integer Input Number of columns in A, M=2N
type
S Real type | Output S() =1 2 -- K contains a divisor in the form of
One-dimens power of 2 to normalize the row I and column I,
ional
array
ILL Integer Output ILL=0: Normal termination
type 1LL=30000: Limits on KA, N, and M are violated,
The row number of the diagonal element which is not positive

x1 For MNRSPD (Q), all real types are changed to double (quadruple) precision types,

(3) Remarks

1. When normalization is done as a preprocessing for solving a system of linear equations,

- 20
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every element of solution of normalized equation should be divided by the corresponding scale
vfactor, .
2. When normalization is done as a preprocessing for obtaining inverse matrix, every row and

column of the inverse of normalized matrix should be divided by the corresponding scale factors,

(1987. 06. 17) (1987. 08. 08)
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MULMMV/W/X/Y (Multiplication of Matrices-Vector Version)

Multiplication of Matrices-Vector Version

Programm | Ichizo Ninomiya, July 1987

ed by

Format Subroutine Language: FORTRAN; Size: 80 lines

(1) Outline
MULMMV/W/X/Y calculates the product C=A-B of two matrices A and B, MULMMV(W, ¥, Y) is for

the single precision real numbers (double precision real number, single precision complex number,

and double precision complex number),

(2) Directions

CALL MULMMV/W/X/Y (A, B, C, KA, KB, KC, L, M, N, ILL)

Argument Type and Attrib Content

kind (x1) | ute

A Real type | Input | LXM multiplicand matrix A
Two-dimens
ional
array

B Real type | Input | MXN multiplier matrix B :
Two-dimens
ional
array

C Real type | Output | LXN product matrix C
Two-dimens
ional
array

KA Integer Input | Adjustable dimensions of A, KA=L
type

KB Integer ‘ Input | Adjustable dimension of B, KB=M
type

KC Integer Input | Adjustable dimensions of C, KC=L
type

L Integer Input | Number of rows of A and C, L=1
type

22
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Argument Type and Attrib Content

kind (1) |[ute

H Integer Input | Number of columns of A and rows of B, M=1
type

N Integer Input | Number of columns of B and C. N=1
type

ILL Integer Output | ILL=0: normal termination; ILL=30000: argument
type error

z]1 For MULHMW(X, Y), all real types should be changed to double precision real types (complex
type and double precision complex type).

(3) Calculation method

The product of ! Xm matrix A and mXn matrix B is an I Xn matrix,

It is

]
Cii=k§aikbk,-,i=1 ooy lij=l,---yn

If A and C are considered as sets of column vectors A=(ai,uz,---,das) and
C=(c1,c2,++-,Cn) respectively, then C; can be written as

m
C;'—'Zbk,ak,j:l ’Zy LY 1 4
k=t

The algorithm of this subroqtine is based on this idea,

(4) Note
1. The product of a matrix and a vector can be calculated with this routine with B assumed as
a single column matrix, However, it is more reasonable to use the special routine MULMVV,

2. This routine is for vector computers, However, it can be used also for scalar computers,

(1987. 08. 04)
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MULMVV/W/X/Y (Multiplication of a Matrix and a Vector-Vector Version)

Multiplication of a Matrix and a Vector-Vector Version

Programm | Ichizo Ninomiya, July 1987
ed by
Format Subroutine Language: FORTRAN; Size: 70 lines

(1) Outline

A4

MULMVV/W/X/Y calculates the product y=Ax of a matrix A and a vector x. MULMVV(K, X, Y) is for

the single precision real numbers (double precision real number, single precision complex number,

and double precision complex number),

(2) Directions

-

CALL MULMVV/H/X/Y(A X, Y, KA, M, N, ILL)

Argument

Type and
kind (1)

Attrib
ute

Content

Real type
Two-dimens
ional
array

Input

NXN matrix A

Real type
One-dimens
ional
array

Input

N vector x

Real type
One-dimens
ional
array

Qutput

M vector y

KA

Integer
type

Input

Adjustable dimensions of A, KA=M

M

Integer
type

Input

Number of rows of A and order of ¥y, N21

Integer
type

Input

Number of columns of A and order of . M=l

ILL

Integer
type

Output

1LL=0: Normal termination; ILL=30000: Argument
error

%] For MULMVW(X,Y), all real types should be changed to double precision real types (complex
type and double precision complex type).

24
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(3) Calculation method
If the matrix A is considered as a set of the column vector (Qy,d2,--- »Qg), Y=Ax can be

written as

n
y=zxkak
k=1

The algorithm of this subroutine is based on this idea,

(4) Note
This routine is for vector computers, However, it can be used also for scalar computers,

(1987. 08. 04
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2. System of linear equations

[Method of choice of linear equation routines]

NUMPAC provides a variety of effective linear equation subroutines that you can select
depending on the type, characteristics, and structure of each coefficient matrix, By carefully
selecting then hasgd on the guideline shown below, you can enjoy much of their superiority in all
aspects of precision, speeds, and storage capacities, To make the following explanation simple,
the name .of each recommended routine is represented by the one for single precision, The routine
marked by x is written in assembly language and recommended specially,

(A) Real coefficient

1. Non-symmetry

(1) Dense matrix LEQLUS*
(2) Band matrix LEQBDS
(3) Tridiagonal matrix TRIDGS

2. Symmetry
(1) Dense matrix BUNCHS
(2) Band matrix BUNCBS

3. Positive-definite symmetric

(1) Dense matrix CHOLFSs, MCHLFS=x
(2) Band matrix - CHLBDS®, MCHLBS#
(3) Variable width band matrix CHLVBS
(4) Tridiagonal matrix o TRDSPS, TDSPCS
4, General system of linear eguations LEQLSS, LSMNS

(B) Complex coefficient
1. Dense matrix LEQLUC
2. Band matrix LEQBOC
‘If there is a great difference between coefficients and between solutions of linear equations,
satisfactory precision is not generally expected, 1t is important to level the coefficients and
solutions in advance by means of normalization or variable transformation
Many users seem to use an inverse matrix routine to solve linear equations because the solution

of linear equations Ax=b is theoretically written as X=A'lb, However, they shouldn’ t do this
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=2/
because it takes three times for calculation that taken by a linear equation routine and the
accuracy of the solution is remarkably worse,

To repeat solving equations with the same coefficients by changing the right-hand side column
only, it seems reasonable to calculate zi=A"'b;,1=1,2, —- by calculating an inverse matrix
only once, For this, however, it is far more advantageous to exploit the function of reuse of
decomposition component available in all Nagoya University routines,

In short, it is nothing but the abuse of inverse matrixes to use them to solve linear

equations,
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BUNCBS/D (Solution of linear equations with symmetric band matrix of ccefficients by

bunch’ s method)

Solution of Linear Equations with Symmetric Band Matrix of Coefficients by Bunch’s Method

Programm | Ichizo Ninomiya; April 1981
ed by

Format Subroutine language; FORTRAN Size; 200 lines each

(1) Outline

BUNCBS and BUNCBD are single or double precision subroutines used to obtain the following
solution using the bunch’s LoLT decomposition method: The solution obtained by the
subroutines is X=A"'B of the linear equations AX=B with right-hand side matrix B, and
symmetric band matrix A which is not necessarily positive definite as a coefficient,

These subroutines have the function of the reuse of the LJ)LT decomposition component,

(2) Directions

CALL BUNCBS/D(A, KA, N, NB, X, KX, M, CHG, EPS, IW, IND)

Argument | Type and Attribut Content
Kind (x1) |e

A Real typé Input/ou | The left lower half containing the diagonal of the symmetric
Two-dimens | tput band matrix is transformedAto a rectangle as shown in the
ional figure and-input, That is, the I, J elements of the matrix
array are put in A(I-J+1,J). After processing by this routine, the

Bunch’ s decomposition component is -output,

KA Integer Input Adjustable dimension of A (value of the first subscript in
type array declaration of A), The band width of A will generally
increase by pivoting, It is therefore necessary to make KA

large enough to meet it, KA=NB
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Argument | Type and | Attribut Content
Kind (x1) |e

N Integer Input Number of unknowns in the equation (number of colummns of A).
type N=1

NB Integer Input/ou | Half band width of A (number of rows) is input., Half band
type tput width after processing is output,

| NB=2

X Integer Input/ou | The right hand side matrix is input, The solution matrix is
type tput generated to the corresponding place,
Two-dimens
ional
array

KX Integer Input Adjustable dimension of X, KX=N
type

M Integer Input Number of columns in X, When M0, only decomposition of A
type is done ,

Clig Real type | Output One-dimensional array of size N or greaterInformation on
One-dimens pivoting and the determinant of the 2X2 diagonal block are
ional generated,
array

EPS Real type | Input When the size of the pivot element becomes smaller than

Al -EPS during decomposition, the coefficient matrix is

assumed to be singular and then calculation is interrupted,

When EPS=(0. 0 is given, default
value u is used, where u=2"20
(single precision) and u=2"92 (double precision),
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Argument | Type and Attribut Content

Kind (x1) |e
W Integer Work One-dimensional array of size N

type area

One-dimens

ional

array

For input, this argument has the following meanings:

IND Integer Input/ou IND=0: The equation is solved by restarting Bunch's

type tput decomposition from the beginning,

IND#(Q: The equation is solved by using the decomposition
component calculated immediately before. To do this, the
contents of A and CHG must have been stored,

For output, this argument has the following meanings:

IND=0: Normal end

IND=K: Judged as singular at step K of decomposition or
band width exceeded KA.

IND=30000: The input argument violated the limit,

x] For double precision subroutines, real types should be changed to double precision real

types,

(3) Calculation method

When coefficient matrix A is a symmetric positive definite, modified Cholesky decomposition

A=LDLT is possible using unit lower triangular matrix L and diagonal matrix D, However, when A

is not positive definite, decomposition is generally impossible even if it is symmetric,

llowever, if D is assumed to be a blbck diagonal matrix for which the submatrix of 2X2 is

permitted as a diagonal block element, decompositinn above is possible, Bunch designed an

algorithm to perform decomposition

=IDLT ina numerically stable manner by exchanging rows

and columns properly, n.2) This routine is based on Bunch's algorithm D,
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NB

o 7

KA

By using this decompositionﬂ solution X=A"'B of AX=B can be determined by forward
substitution Y=L7'B and backvard substitution X=LTD'Y
(4) Notes

1. The standard value of EPS for BUNCBS or BUNCBD is 1078(107'®) . 1f EPS=<0.0 is given,
default-value 22°(22) will be used,

2. Argument IND is used for both input and output, Therefore, do not use a constant as an
actual argument,

3. The routine’s function of reusing decomposition components is very useful to repeatedly
solve the equations with the same coefficient matrix and different right hand side matrices, It

is superior to the inverse-matrix method in all aspects of accuracy, speed, and storage capacity,

4, When M, the number of columns of B, is 1, a one-dimensional array is acccptable for the
actual argument corresponding to X, For this, however, it is necessary to meet the condition

KX=N,

Bibliography
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1) J.R Bunch et al,; “Decomposition of a Symmetric Matrix " Numer, Math., Bd. 27, pp.95-109 (1976).

2) J.R Bunch et al. ; "Some Stable Methods for Calculating Inertia and Solving Symmetric Linear
Systems”, Math, Comp., Vol 31, No.137, pp.163-179 (1977).
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BUNCHS/D (Solution of Linear Equations with Symmetric Matrix of Coefficient by Bunch's

Method)

Solution of Linear Equations with Symmetric Matrix of Coefficients by Bunch’s Method

Programm
ed by

Ichizo Ninomiya, April 1981

Format

Subroutine language: FORTRAN; size: 200, 200 lines respectively

(1) Outline

BUNCHS (D) is a single (double) precision subroutine for finding X=A"'B or the solution of

the simultaneous linear equation AX=B with a symmetric matrix A (not necessarily positive

definites) and multiple right side columns B, using the Bunch's u'pu decomposition method, It

has the facility for reusing the U'pu decomposition elements,

(2) Directions

CALL BUNCHS/D(A, KA, N, X, KX, M, CHG, EPS, IND)

Argument | Type and Attribut- Content
kind (x1) |e

A Real type | Input/ou | The upper right half including the diagonal of the
Two-dimens | tput coefficient matrix is input. The upper right half is
ional processed with this routine, and the Bunch decomposition
array elements are output, The lower left half is preserved,

KA Integer Input Adjustable dimension of A (value of the first subscript in
type array declaration). KA=N

N Integer Input Order of equation, N1
type
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Argument | Type and Attribut Content
kind (1) |e
X Real type | Input/ou | The right side columns are input. The solution vectors are
Two-dimens | tput output in the corresponding place,
ional
array
KX Integer Input Adjustable dimension of X, KX=N
type
M Integer Input Number of columns of X, If M0, only A is decomposed.
type
CHG Real type | Qutput One-dimensional array of size N or greater, Pivoting
One-dimens information and 2 X 2 diagonal block determinants are
ional output,
array
EPS Real type | Input If the size of pivot elements becomes smaller than || A|[| <EPS
during decomposition, the coefficient matrix is decided to be
singular, and the calculation is interrupted, [f EPS=0.0 is
assigned, the standard value u
is used, where u=220 (single precision) and u=2"52
(double precision),
This argument has the following meaning as an input argument,
IND Integer Input/ou
type tput IND = 0: Solve equation newly starting with Bunch’s

decomposition,
IND # 0: Solve equations, reusing the decomposition
elements previously calculated, In this case, A and CHG must

be kept unchanged in the states of previous call,
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Argument { Type and Attribut Content

kind (x1) |e

This argument has the following meaning as an output
argument,

IND = 0: Normal termination

IND = K: Singularity is decided at Ktﬁ step of the

decomposition

IND = 30000: The input argument violates the limit,

%] For double precision subroutines, all real types are changed to double precision real types,

(3) Calculation méthog

If the coefficient matrix A is symmetric positive definites, a modified Cholesky decomposition
A=U'DU is possible with an upper unii triangular matrix U and a diagonal matrix D, If the
matrix A is not of positive definites even though it is symmetric, the decomposition is generally
impossible, However, if D is assumed to be a diagonal block matrix that permits a 2 x 2
submatrix as a diagonal block element, the similar decomposition is possible,  Bunch designed a
algorithm for calculating the decomposition A=UTDU with nunerical stability by properly
interchanging rows and columns, h.2)
This routine is based on Bunch's'algorithm A

If this‘ decomposition is applied, the solution X=A"'B of AX=B is found by the forward

substitution Y=UTB and backward substitution )(=(]"l)"¥ﬂ

(4) Remarks

1. The standard value of EPS is 1075(107'®) for BUNCIS (D). If EPSS0.0 is given, the
standard value 22°(2°%) is used,

2. Because IND is an input/output argument, a constant must not be used as an actual argument,

3. When a solution to the same coefficient matrix is to be repeatedly found changing only.the
right side columns, the facility for reusing the decomposition components of this routine is

extremely useful, As compared with the method by inverse matrices, this calculation method is
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excellent in p;ecision, speed, and- storage sizé,
4, If the number of right side columns (M) is 1, an actuval argument that corresponds to X can

be a one-dimensional array. However, KX=N must be met,

References
1)J.R. Bunch et al, ;"Decomposition of a Symmetric Matrix”Numer, Math,, Bd, 27, pp. 95-109 (1976).

2) J.R Bunch et al, ;"Some Stable Methods for Calculating Inertia and Solving Symmetric Linear
Systems” and Math, Comp . Vol 31, No, 137, and pp, 163-179(1977).

(1987. 06. 16)
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CGHTCS/D Solution of a Linear System of Equations with Positive Definite Symmetric

Coefficients Matrix by Conjugate Gradient Method (Compressed matrix storage Mode)

Solution of a Linear System of Equations with Positive Definite Symmetric Coefficients Matrix by
Conjugate

Gradient Method (Compressed matrix storage mode)

Programm | Tsuyako Miyakoda and Tatsuo Torii, February 1982
ed by

Format Subroutine language: FORTRAN; size: 55 and 56 lines respectively

(1) Outline
This is a solution routine with a conjugate gradient method if the upper triangular and
diagonal elments of the matrix are stored in a row to set up the storage arrays, where the

symmetric positive definite matrix A is a coefficient matrix .

(2) Directions

CALL CGHTCS/D(A, NA, N, B, X, EPS, NMAX, W, [ DUMP)

Argument | Type and | Attribut Content
kind e

A Real type | Input The upper triangular and diagonal elements of the matrix are
One-dimens stored in a one-dimensional array. Element (I,J) (I<J) is
ional assumed to be (Jx(J-1)/2+1)th element of a one-dimensional
array array,

A(k)=aij, k=j(3-1)/2+1

NA Integer 'Input Length of the vector when the coefficient matrix is made into
type a one-dimensional array,

N Integer [nput Number qf unknowns of the system,
type
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Argument | Type and | Attribut Content
kind e
B Real type | Input Right-side vector of the systenm.
One-dimens
ional
array
X Real type | Input/ou | Input: Approximative solution vector (initial value),
One-dimens | tput Qutput: Corrected solution vector,
ional
array
EPS Real type | Input Convergence criterion, It is assumed to be 8-u-||bll as
external page storage if it is too small, wu is a unit of the
*| rounding error,
NMAX Integer Input Maximum number of iterations, When a too large value is
type input, it is assumed to be 3-N/2.
W Double Work Size NX3,
precision | area
real type
One-dimens
ional
array
IDUMP Integer Input/ou | It has the following meaning as an input argument,
type tput IDUMP<0: No printing of the result on the way,

IDUMP=1: Printing of residual (P, AP) of each iteration,
IDUMP>2: Printing of residual, A - orthogonal set vectors,
and approximative solution of each iteration,
[t has the following meaning as an output argument,
The same as input: Normal termination,
IDUMP=3#N : Not settled even for 3N iterations,,

1DUMP=30000: Input parameter error,
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= All real types are assumed to be a double precision real type for CGHTCD,

(3) Calculation methed
CGHTCé/D finds the solution of a linear system of equations with the symmetric positive
definite matrix, Ax=b, so that the error function <p(:r)=(r,A_'T‘) is minimized if the
residual r=b-Ax is assumed, In the conjugate gradient methnd, both sides of a correction
vector (A-orthogonal system) calculation formula of the original version is divided by | Tisi| 2
, and normalized as a type of formula (Takahashi version). The calculation formula becomes
simple, but the speed of residual reduction and the computation time are not much changed, The
calculation expression is as follows:
Initial value 0=0, ro=b-Axo, Po=ro/|r0|?
ai=1/(Pi,AP;)
Ti+1=Xi+Qi Py
T 1=ri—a;AP;
Convergeﬁce decision | ri+1| 2<(lEFE§)2 ?

Piv1=Pi-Tis1/ | Tist |
(4) Example

c MAIN FOR CGHTCS : _ '
DIMENSION AS(5050),X(100),B(100),A(100),X0(100)
DOUBLE PRECISION W(300).,SU
NR=5
NW=6
EPS=0.1E-4
XX=0.1E8+1.

N=100

XI1=12345678.00

DO 10 1I=1,N

X0(I>=0.0

X(I)=4.xXI/1.E8-2.

XI=AMOD(23.*xXI,XX)
10 CONTINUE

NT=0

DO 40 I=1,N

SU=0.0D0

DO 20 J=1,N

IJ=IABS(I-J)

AC(J)=FLOAT(N-1J)
20 SU=ACJI*xXCJI)+SU

B(I>=SU

DO 30 J=1,1

NT=NT+1

39



qo

30 AS(NTI=A(J)
40 CONTINUE
WRITE(NW,1000)N
1000 FORMAT(1H1,15H EXAMPLE 3-6 N=,14)
IDUMP=0
MAXN=100
CALL CLOCKM(JTIMEl)
CALL CGHTCS(AS:NTerB/XO'EPS;MAXNszIDUMP)
CALL CLOCKM(JTIMEZ2)
JTIME=JTIMEZ2-JTIME1
WRITE(6,1010) IDUMP,JTIME
1010 FORMAT(iH ,' IDUMP =',15,3X,'TIME(MSEC)>=',15)
b0 50 I=1.,N
RES=X(I)-X0(CI)
WRITE(NW,1020) I,X(I>,X0CI),RES
1020 FORMAT(IS5,2E13.5,E11.3)
50 CONTINUE
1030 FORMAT((1H ,5(1PE13.5)))

STOP

END

EXAMPLE 3-6 N= 100
IK= 26 ZANSA= 0.53581611D-02
IDUMP = o TIME(MSEC)= 565

1 -0.15062E+01 -0.15031E+01 -0.303E-02
2 -0.18420E+01 -0.18510E+01 O0.899E-02
3 -0.19655E+01 -0.19646E+01 -0.883E-03
4 -0.16055E+01 -0.16043E+01 -0.119E-02

(9) Note
The conjugate gradient method is characterized by fast convergence if a coefficient matrix is
large in the number of dimensions and sparse, For dense coefficient matrices, it is desirable to

use other methods or the conjugate gradient method that includes preprocessing (PRCGFS/D).

References

1) Hayato Togawa: Conjugate Gradient Method, Kyoiku Shuppan, 1977

(1987. 06. 16) (1987. 08. 07) (1987. 08. 10)
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CHLBDC/B/2,MCHLBC/B/Z

(Solution of Hermitian Positive Definite.Linear Equations by Cholesky and Modified Cholesky
Method (Band Matrix))
Solution of Hermitian Positive Definite Linear Equations by Cholesky and Modified Cholesky

Method (Band Matrix)

Programm | Ichizo Ninomiya, December 1983

ed by

Format Subroutine language: FORTRAN; size: 63, 64, 64, 70, 71, and 71 lines

respectively

(1) Outline

CHLBDC(B, Z) (MCHLBC(B,Z)) is a single (double or quadruple) precision subroutine for obtaining
the solution X=A"'B of the equation AX=B having a Hlermitian positive definite band matrix A
as coefficient matrix and multiple right side columns B, using modified Cholesky decomposition

method, It reuses Cholesky decomposition component.

(2) Directions

CHLBDC/B/Z
CALL (A, KA, N, NB, X, KX, M, DET, EPS, IND)
MCHLBC/B/Z
Argument | Type and Attribut Content
kind (x1) |e
A Complex Input/ou | The lower left half band area containing the diagonal of a
type tput coefficient matrix is transformed into a rectangular form and
Two-dimens input, That is, the | and J elements of the matrix are input
ional in A(I-J+1,J). These elements are proccssed with this
array routine, and Modified Cholesky decompositior elements are
output, See the figure,
KA Integer Input Adjustable dimensions of A (value of the first subscript in
type the array declaration), KA=N3
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Argument | Type and Attribut Content
kind (x1) |e
N Integer Input Order of equations (number of columns of A), N=1
type
NB Integer Input Band width (number of rows of A), 1<NB=N
type
X Complex Input/ou | The right side columns are input, The solution vectors are
type tput output to the corresponding pusitions,
Two-dimens
ional
array
KX Integer Input Adjustable dimensions of X, KX=N
type
| Integer -Input Number of columns of X, If M<(, only modified Cholesky
type decomposition is executed,
DET Real type | Imput/ou | If DET+0,0 is input, coefficient matrix determinants are
tput output, |
If DET=0.0 is input, 0.0 is output,
EPS Real type | Input Coefficient matrix positivjty criterion, If the value of a

diagonal element becomes smaller than EPS during Cholesky
decomposition, it is decided to be not positive definite, and

the computation is interrupted, EPS>(
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Argument | Type and Attribut Content
kind (1) |e

IND Integer Input/ou | This argument has the following meaning as an input argument,
type tput

IND=0: Equation is solved newly beginning with Cholesky
decomposition,

IND#£0: Equation is solved reusing the Cholesky decomposition
component computed before,

This argument has the following meaning as an output
argument,

IND=0: Computation is normally executed,

IND=K: Because the value of a diagonal element becomes
smaller than EPS at the K-th step of Cholesky decomposition,
computation is interrupted,

IND=30000: The input argument exceeded the limit,

1x For double (quadruple) precision subroutines, all single precision types are changed to

double (quadruple) precision types,

(3) Calculation method

1. Cholesky decomposition method

The coefficient matrix A is decomposed into A=LL* with a lower triangular matrix L and

its transposition conjugate matrix L* . The solution X=A"'B is obtained with the forward

substitution Y=L"'B and backward substitution X=(LHy.

2. Modified Cholesky decomposition methed

The coefficient matrix A is decomposed into A=LDL* with a lower unit triangular matrix

L, its transposition conjugate matrix A=LDL*, and a diagonal matrix D. The solution

X=A"'B is obtained with the forward substitution Y=L"'B and backward substitution

X=(L*)"'D"Y,

(4) Notes

1. If the typical size of coefficient matrix elcments is a, the value 10'6(1(10‘]6(1,10'300)
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is adequate as the standard value of EPS for {MCHLBS(D, Q) CHLBDS(D,Q)}.
2. Because DET and IND are I/0 arguments, constants must not be used as an actual argument,
Note that DET is a real type,
3. When a solution to the same coefficient matrix is to be repeatedly obtained with only the
right side column changed, the function that reuses the Modified Cholesky decomposition
elements of this routine is particn;larly useful, It is more efficient in all of storage
size, precision, and speed as compared with the method using the inverse matrix,

4. If the number M of right side columns is ], the real argument that corresponds to X can be
a one-dimensional arllay, llowever, KX=N must be met,

(1987. 06. 19) (1987. 08. 07)
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CHLBDS/D/Q,MCHLBS/D/@

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky

Method) (Band Matrix)

. Solution of Symmetric Positive Definite Linear Bquations by Cholesky and Modified Cholesky Method

(Band Matrix)

Programmed by Ichizo Ninomiya in April 1981

Format Subroutine language:Assembler (CHLBDQ and MCHLBQ FORTRAN)
Size:233. 239, 64, 202, 199, and 71 lines respectively

(1) Outline

CHLBDS (D, Q) (MCHLBS (D, @)) is a single (double or quadruple) precision subroutine that finds
the solution X=A"'B of the equation AX=B with a symnmetric positive definite band matrix A
as a coefficient matrix and multiple right sides B, using modified Cholesky decomposition

method, It has the facility for reusing Cholesky decomposition components,

(2) Directions

CHLBDS/D/@
CALL [ ] (A, KA, N, NB, X, KX, M, DET, EPS, IND)

MCHLBS/D/@:
Argument | Type and Attribut - Content
kind (x1) |e
A Real type | Input/ou | Transform the lower left half including the diagonal of the
two-dimens | tput coefficient matrix into a rectangular form, that is, the I
ional and J element of the matrix is stored in A(I-J+1,J)., The
array array is processed by this routine, and modified Cholesky

decomposition components are output, See the figure,

KA Integer Input Adjustable dimension of A (value of the first subscript in
type the array declaration of A)., KA=NB

N Integer Input Order of equations (number of columns of A). N=1
type

NB Integer Input Band width (number of rows oi A), 1<NB=N
type
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X Real type | Input/ou | The right side columns are input, The solution vectors are
two-dimens | tput output to the corresponding place,
ional
array

KX Integer Input Adjustable dimension of X, KX=N
type

M Integer Input Number of columns in X, If M<(, only (modified) Cholesky
type decomposition is executed,

DET Real type | Input/ou | If DET#0.0 is input, coefficient matrix determinant is

tput output,

If DET=0.0 is input, 0.0 is output,

EPS Real type | Input Constant for determining the positivity of coefficient
matrices, If the value of a diagonal element becomes smaller
than that of EPS during Cholesky decomposition, the input
matrix is decided to be non positive definite, and the
calculation is interrupted, EPS>)

IND Integer Input/ou | This argument has the following meaning as an input,
type tput IND=(0: Solve an equation newly starting from Cholesky
decomposition, :

IND#0: Find the solution of an equation, reusing the
Cholesky decomposition elements calculated before,

This argument has the following meaning as an output,

IND=0: The calculation is normally executed,

IND=K: Because the value of a diagonal element becomes
smaller than that of EPS at the K-th step of Cholesky
decomposition, the calculation is interrupted,

IND=30000: The input arguments violate the limit,

x] For a double (quadruple) precision subroutine, all real types are changed to double
(quadruple) precision real types,
(3) Calculation method
1. Cholesky decomposition method
Decompose 11=ll;r with a lower triangular matrix L and its transposition l}: The solution
X=A"'B is found by the forward substitution Y=L7'B and backward substitution X=LTY,
2. Modified Cholesky decomposition method
Decompose A=LDLT with a lower unit triangular matrix L, its transposition LT, and a
diagonal matrix D, The solution X=A"B is found by the forward substitution Y=L"'B and the
‘backward substitution X=LT-D7'Y,
3. Because the partial double precision calculation is used for all inner product calculations in

CHLBDS and MCHLBS, the influence of the round-off error is negligible,
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(4) Remarks

1. If the typical size of elements in a coefficient matrix is assumed to be aq,

the value BPS= ‘10'°a(10—'°a,10"’°a) is adequate for [MCHLBS(D,Q)
LcHLBDS (D, @) -

2. Because DET and IND are input/output arguments, constants must not be used as éctual
arguments,

3. If solutions to the same coefficient matrix is to be repeatedly found changing the right side
columns, the facility for reusing modified Cholesky decomposition components of this routine is
extremely useful, [t exceeds in storage size, precision, and speed as compared with the -method
by inverse matrices,

4. If the number of right side columns M is 1, fhe actual argument that corresponds to X can be a

one-dimensional array, However, KX=N must be met,

(1987. 06. 16)
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CHLBDV/W,MCHLBV/W

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky

Method (Band Matrix) - Vector Version -)

Solution of Symmetric Positive Definite Linear Equations by Chulesky and Modified Cholesky '

Method (Band Matrix) -Vector Version-

Programm | Ichizo Ninomiya, May 1986

ed by

Format | Subroutine language: FORTRANT7; size: 106, 107, 114, and 115 lines

respectively

(1) Outline

CHLBDV (W) (MCHLBY(W)) is a single (double) precision subroutine for obtaining the solution
X=A"'B of the equation AX=B having a symmetric positive definite band matrix A as
coefficient matrix and muitiple right side columns B, using modified Cholesky decomposition

method, It has the facility of reusing Cholesky dccomposition component.

(2) Directions

CHLBDV/W '
CALL (A, KA, N, NB, X, KX, M, DET, EPS, ®, IND)
HCHLBY/W
Argument | Type and | Attribut Content
kind (x1) |e
A Real type | Input/ou | The lower left half band area containing the diagonal of a
Two-dimens | tput coefficient matrix is transformed inio a rectangular form and
ional input, That is, the I and J elements of the matrix are input
array in A(I-J+1,J). These elements are processed with this
routine, and medified Cholesky decomposition elements are
output, See the figure,
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Argument | Type and Attribut Content

kind (1) |e

KA Integer Input Adjustable dimensions of A (value of the first subscript in

| type the array declaration), KA=NB

N Integer Input Order of equations (number of columns of A). N=1

type

NB Integer Input Band width of A (number of rows of A). 1=SNB=N

type

X Real type | Input/ou | The right side columns are input, The solution vectors-are

two-dimens | tput output to the correspon@ing positions,
ional |
array

KX Integer Input | Adjustable dimensions of X. KX=N

type

| Integer Input Number of columns of X, If M<(, only modified Cholesky

type decomposition is executed,

DET Real type | Input/ou| If DET#0,0 is input, coefficient matrix determinant is

tput output, .
If DET=0.0 is input, 0.0 is output,

EPS Real type | Input Coefficient matrix positivity criterion, If the value of a
diagonal element becomes smaller than EPS during Cholesky
decomposition, it is decided to be not positive definite, and
the computation is interrupted, BPS>0

H Real type | Work One-dimensional array of size NB.

one-dimens | area
ional
array

50




Argument { Type and | Attribut Content
kind (1) |e

IND Integer Input/ou | This argument has the following meaning as an input argument,
type tput -

IND=0: An equation is solved newly beginning with Cholesky
decomposition,

IND#0: Equation is solved reusing the Cholesky decomposition
component calculated before,

This argument has the following meaning és an output
argument,

IND=0: Computation is normally executed,

IND=K: Computation is interrupted because the value of a
diagonal element becomes smaller than EPS at the K-th step of
Cholesky decomposition,

IND=30000: The input argument exceeded the limit.

x] For double precision subroutines, all real types are changed to double precision real types,

(3) Calculation method
1. Cholesky decomposition method
The matrix A is decomposed into /1=Ll;r using a lower triéngular matrix L and its
transpose LT The solution X=A"'B is obtained with the forward substitution Y=L"'B
and backward substitution )(=lfTYﬂ
2. Modified Cholesky decomposition method
The matrix A is decomposed into A=LDLT with a lower unit triangular matrix L, its
" transposition l}', and a diagonal matrix D, The solution X=A"'B is obtained with the
forward substitution Y=L"'B and backward substitution X=LTD’'Y,
3. Because partial double precision calculation is used for all inner sums in CILBDS and

MCHLBS, the influence of rounding errors is small,

(4) Notes
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1. If the typical size of coefficient matrix elements is“a, the value 10'6a(10"6a) is
adequate as the standard value of EPS for {MCHLBV(W) CHLBDV()).

2. Because DET and IND are 1/0 arguments, constants must not be used as an actual argument,

3. When a solution with the same éoefficient matrix is to be repeatedly obtained with only the
right side column changed, the function of reusing modified Cholesky decomposition component of
this routine is particularly useful, It is more efficient in all of storage size, precision,
and speed as compared with the method using the inverse matrix,

4. If the number M of right side columns is 1, the actual argument corresponding to X can be a

one-dimensional array, However, KX=N must be met,

(1987. 06. 19) (1987. 08. 07)
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CHLVBS/D

(Solution of Symmetric Positive Definite Linear Equations by Cholesky Method) (Band Matrices

with Variable Bandwidth, Compact Mode)

Solution of Symmetric Positive Definite Linear Equations by Cholesky Method

(Band Matrices with Variable Bandwidth, Compact Mode)

Programm | Ichizo Ninomiya, April 1977
ed by

Pormat | Subroutine language: FORTRAN; size: 94 and 94 lines respectively

(1) Outline
CHLVBS/D finds the solution X=A"B of the equation AX=B with a symmetric positive
definite variable bandwidth matrix A as a coefficient matrix and a multiple right sides B,
using Cholesky decomposition methed, A is first decomposed as 44;11111 with an upper
triangular matrix U and its transpose lJT, then the solution is given by }(=if"(LFJ13),
C=U"B is calculated by the forward substitution method for the lower triangular matrix ‘lJT,
and X=U"'C is calculated by the backward substitution method for the upper triangular matrix

U. This routine posesses facility for reusing Cholesky decomposition components,

(2) Directions

CALL CHLVBS/D(A, NB, X, KX, N, M, EPS, IND)

Argument | Type and Attribut Content
kind (x1) |e

A Real type | Input/ou | Rearrange the upper right half including the diagonal
One-dimens | tput excluding zero elemnts of a symmetric positive definite band
ional matrix in a line as shown in the figure, These elements are
array processed by this routine, and Cholesky decomposition

components are output,

NB Integer Input One-dimensional array with N elements, Input the band width
type of each column in the upper right half of a coefficient
One-dimens matrix, (See the figure, )
ional
array
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Argument | Type and | Attribut Content
kind (1) |e
X Real type | Input/ou | The right side columns are input. The solution vector is
Two-dimens | tput output to the corresponding place,
ional
array

KX Integer Input Value of the first subscript in the array declaration of X.

type KX=N

N Integer Input Order of-equations, that is, the number of rows of X, N=2

type

| Integer Input Number of columns of X, M=(

type If M=0, only Cholesky decomposition is executed,
If M=1, an actual argument to X can be a one-dimensional
array,

EPS Real type | Input Constant for determining the positivity of coefficient
matrix, If the value of a diagonal element becomes smaller
than that of EPS during Cholesky decomposition, the input
matrix is decided to be non positive definite, and the
calculation is interrupted, EPS>(

IND Integer Input/ou | This argument has the following meaning as an input,

type .| tput IND=0: Solve an equation newly starting from Cholesky

decomposition,
IND=£0: Solve an equation reusing Cholesky decomposition
components previously obtained,
This argument has the following meaning as an output,
IND=0: The calculation is normally executed, -
IND=30000: Limits on input-output arguments are violated,
IND=K: Because the value of a diagonal element becomes
smaller than that of EPS at the Kth step, the calculation is
interrupted,
Because this argument is for both input and output, a
constant must not be used as an actual argument,

x] For CHLVBD, all real types are assumed to be a double precision real type.
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1247
3 581
6 9121519 -
10 13 16 20 ---
14 17 21 -~
18 22 -~
923 -

M1 23 4445

(3) Remarks

If the facilitﬁ fog reusing the Cholesky decomposition components of this routine is exﬁloited,
it becomes almost unnecessary to calculate inverse matrices, This is because inverse matrices of
band matrices are not band matrices any more, thus losing their advantage, The reuse of

Cholesky decomposition is more excellent in computation speed and precision than processing via

inverse matrices,

(1987. 06. 16)
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CHOLCS/D/Q@,MCHLCS/D/Q
(Solution of Symmetric Positive Definite Linear Bquations by Cholesky and Modified Cholesky

Method) (Full Matrix, Compact Mode)

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified

Cholesky Method (Full Matrix, Compact  Mode)

Programm | Ichizo Ninomiya, April 1981
ed by

Format Subroutine language: Assembler (CHOLCQ and MCHLCQ are FORTRAN.)
Size: 203, 217, 60, 180, 179, and 96 lines

respectively

(1) Outline

CHOLCS (D, @) and (MCHLCS (D,.Q)) are single (double or quadruple) precision subroutines that
find the solution X=A"'B of the equation AX=B with the compressed symmetric positive
definite matrix A as a coefficient matrix and multiple right side columns B, using modified
Cholesky decomposition method, It has the facility for reusing modified Cholesky decomposition

components,

HOLCS/D/!
CALL (A, N, X, KX, M, DET, EPS, IND)
MCHLCS/D/

(2) Directions

Argument | Type and Attribut Content
kind (1) |e
A Real type | Input/ou} Converts the upper right half including the diagonal of a
One-dimens | tput coefficient matrix column wise into a one dimensional vector
ional before it is input, That is, the | and J element in the
array original matrix is stored in A ((J - 1))%J/2 + I). The
array is processed by this routine, and modified Cholesky
decomposition elements are output,

56



b7

Argument | Type and Attribut Content

kind (1) |e

N Integer Input Order of equations, N=1 '

type

X Real type | Input/ou | The right side columns are input, The solution vectors are

Two-dimens | tput output to the corresponding place,
ional
array

KX Integer Input Adjustable dimension of X, KA=N

type

M Integer Input Number of columns in X, If M=<(0, only modified Cholesky

type decomposition is executed,

DET Real type | Input/ou | If DET+0.0 is input, coefficient determinants are output,

tput If DET=0.0 is input, 0.0 is output,

EPS Real type | Input Constant for determining the positivity of coefficient
matrices, If the value of a diagonal element becomes smaller
than that of EPS during Cholesky decomposition, the input
matrix is decided to be non positive definite and the
calculation is interrupted,

IND Integer Input/ou | This argument has the following meaning as an input,

type tput IND=0: Solve an equation newly starting from Cholesky
decomposition,

IND#0: Solve an equation, reusing the Cholesky
decomposition components calculated previously,

This argument has the following meaning as an output,

IND=0: Calculation is normally executed,

IND=K: Because the value of diagonal elements becomes
smaller than that of EPS at the Kth step of Cholesky
decomposition, the calculation is interrupted,

IND=30000: The input arguments violate the limit,

x] For a double (quadruple) precision subroutine, all real types are changed to double

(quadruple) precision real types,

(3) Calculation methed

1. Cholesky decomposition method

Decompose A=UU with an upper triangular matrix U and its transpose (]T, The solution

X=A"'B is found by the forward substitution Y=UTB and backward substitution Y=U"Y.

2. Modified Cholesky decomposition method

Decompose A=U'DU with a unit upper triangular matrix U, its transpose lJT, and a

diagonal matrix D, The solution X=A"'B is found by the forward substitution Y=U'B and

backward substitution X=U~ lD"Y,
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3. Because CHOLCS and MCHLCS use partial double precision in all product inner calculations,

the effects of rounding errors on the results is negligible,

(4) Remarks

1. If the typical size of elements in a coefficient matrix is assumed to be a as the

standard value of external page storage, IO'Qa(1(T4qa,1(T3Qa) is adequate for:
CHOLCS (D; Q)

[MCHLC.“)(IJ,Q)jI

2. Because DET and IND are input-output érguments. a constant must not be used as an actual
argument,

3. HWhen a solution to the same coefficient matrix is repeatedly found changing only the right
side columns, facility for reusing the modified Cholesky decomposition components of this routine
is extremely useful, As compared with the method by inverse matrices, this calculation method is
excellent in storage size, precision, and speed,

4. If the number of right side columns M is 1, an actual argument that corresponds to X can be
a one-dimensional array, However, KX=N must be met,

(1987. 06. 17)
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CHOLFC/B/Z,MCHLFC/B/Z
(Solution of Hermitian positive definite linear equations by Cholesky and modified Cholesky

methods (full matrix))

Solution of Hermitian Positive Definite Linear Equations by Cholesky and Modified Cholesky Method

(Full Matrix)

Programm | Ichizo Ninomiya; December 1983

ed by

Format Subroutine language; FORTRAN Size; 50, 51, 51, 50, 51, and 51 lines

respectively

(1) Dutline

CHOLFC (B, Z) and MCHLFC (B, Z) are complex single (double, quadruple) precision subroutines,
each of which calculates solution X=A"'B of equation AX=B by the Cholesky or modified
Cholesky decomposition method, where A is a Hermitian symmetric positive definite matrix and B

is a right-hand side matrix, [t has the facility of reusing Cholesky decomposition components,

(2) Directions

CHOLFC/B/Z '
CALL (A, KA, N, X, KX, M, DET, EPS, IND)
MCHLFC/B/Z
Argument | Type and | Attribut Content
kind (1) e
A Complex Input/ou | The upper right half including the diagonal of the
type | tput coefficient matrix is input, After processing by this
lTwo-dimens routine, Cholesky- or modified Cholesky-decomposed components
ional are output, The lower left half is retained,
array
KA Integer Input Adjustable dimension of A (value of the first subscript in
type . array declaration), KA2N
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Argument | Type and Attribut Content
kind (1) |e
N Integer Input Number of unknowns of the equation, N=1
| type
X Complex Input/ou | A right-hand side vectors are input, as a matrix., Solution
type tput vectors are generated in the corresponding locations,
Two-dimens
ional
array
KX Integer Input Adjustable dimension of X, KX=N
type
H Integer Input Number of columns of X. When M<(0, only Cholesky or modified
type 1 Cholesky decompositicn- is performed,
DET Real type | Input/ou | When a value other than (.0 is input, the coefficien;
tput determinant is output,
When 0.0 is input, 0.0 is output as it is,
EPS Real type | Input Constant for test of positiveness of coefficient matrix,
When.the diagonal element becomes smaller than EPS during
Cholesky decomposition, it is decided as non positive and
calculation is interrupted,
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Argument | Type and Attribut Content
kind (1) (e
IND Integer Input/ou | This argument has the following meanings for input:
type tput IND=0: An equation is solved beginning with Cholesky
decomposition,

IND#0Q: An equation is solved by reusing the
Cholesky~decomposed components obtained immediately before,
This argument has the following meanings for output:

IND=0: Calculation is performed noi‘mally,

IND=K: Because the diagonal element became smaller than EPS
at step K in Cholesky decomposition, calculation was
discont inued,

IND=30000: The input argument violated the limit,

x] For double (quadruple) precision subroutines, single precision types are all changed to
double (quadruple) precision types,

(3) Calculation method
1. Cholesky decomposition method
A is decomposed as a product of an upper triangular matrix U and its conjugate
tianspose U* as A=U'U. Then the solution X=A"'B is deternined by forward substitution
Y=(U*)"'B and backward substitution X=U"'Y,
2. Modified Cholesky decomposition method
A is decomposed as a product of an upper triangular matrix U and its conjugate
transpose U* and diagonal matrix D as A=U*DU. Then the solution X=A"'B is deternined

by forward substitution Y= (U*)'IB and backward substitution X=U"'D7'Y.

(4) Notes
1. Let a be the typical size of elements of the coefficient matrix, then
10%a(107%a,10®%a) is a reasonable EPS value for (CHOLFS (D, Q) MCHLES (D, Q)).

2. Do not use a constant as the actual argument for DET and IND because these are used for

both input and output,

3. When equations sharing the same coefficient matrix are solved iteratively with different
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right-hand side columns, this routine’s facility of reusing the Cholesky- or modified
Cholesky-decomposed components is very useful. This routine is superior to the inverse
matrix method in every respect of storage capacity, accuracy, and speed,

4, When the number of right-hand side columns M is 1, the actual argument corresponding to X
" can be a one-dimensional array, where KX=N must be met,

(1987. 06. 19) (1987. 08. 07) (1987. 08. 10)
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CHOLFS/D/Q,MCHLFS/D/Q
(Solution of symmetric positive definite linear equations by Cholesky and modified Cholesky

method (full matrix))

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky Method

(Full Matrix)

Programm | Ichizo Ninomiya; April 1981

ed by

Format Subroutine language; Assembler (CHOLFQ and MCHLRQ are in FORTRAN)

Size; 207, 217, 49, 179, 176, and 51 lines respectively

(1) Outline

CHOLFS(D, @) (MCHLFS(D,@)) is a subroutine for single (double or quadruple) precision to obtain
solution X=A"'B of matrix equation AX=B by the Cholesky or modified Cholesky decomposition
method when A is positive definite, It has the facility reusing Cholesky or modified Cholesky

decomposition components,

(2) Directions

CHOLFS/D/Q
CALL (A, KA, N, X, KX, M, DET, EPS, IND)
MCHLFS/D/Q
Argument | Type and Attrib Content

kind (x1) | ute

A Real tﬁpe Input/ | The upper right half of a coefficient matrix including the

Two-dimens | output | diagonal is input, After processing by this routine, Cholesky

ional or modified Cholesky composition compoﬁents are generated, The
array lower left half is saved.
KA Integer Input | Adjustable dimension of A (value of the first subscript in
type array declaration). KA=N
N Integer Input | Number of unknowns of equation, N=1
type
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Argument | Type and Attrib . Content

kind (1) | ute

X Real type | Input/ | The matrix of right-hand columns are input, Solution vectors

two-dimens | output | are generated at the corresponding columns,

ional
array
KX Integer ‘Input | Adjustable dimension of ¥, KX=N
type
| Integer Input | Number of columns of X. If M = (0, only Cholesky or modified
type Cholesky decomposition is done,
DET Real type | Input/ | When DET#0,0 is input, coefficient determinant is generated,
output | When DET=0,0 is input, 0. 0 is returned,
BPS Real type | Input | Constant used to check positivity of the coefficient matrix,
When the diagonal element becomes smaller than EPS during
Cholegky decomposition, it is assumed to be non-positive
definite and calculation is interrupted,
IND Integer Input/ | For input, this argument has the following meanings:
type output { IND=0: The equation is solved by restarting Cholesky

decbmposition from the begipning.

IND#0: The equation is solved by feusing the Cholesky
decomposition component calculated immediately before,

For output, this argument has the following meanings:

IND=0: Calculation has been done normally,

IND=K: Calculation was terminated because the diagonal element

became smaller than EPS at step K in Cholesky decomposition,

IND=30000: The input argument violated the limit,

x] For double or quadruple precision subroutines, all real types are changed to double or
quadruple precision real types.

(3) Calculation method
1. Cholesky decomposition method

A 1is deconposed as A=UU by an upper triangular matrix U and its conjugate transpose
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matrix UT. Solution X=A"'B is obtained by forward substitution Y=UTB and backward
substitution X=U'Y.
2. Modified Cholesky decomposition method
A is decomposed as A=UTDU by an unit upper triangular matrix U, its conjugate
transpose matrix UT, and a diagonal matrix D, Solution X=A"'B is obtained by forward
substitution Y=U'B and backward substitution X=U"'D"'Y,
3. Because the partial double precision calculation is used for all inner product

calculations in CHOLFS and MCHLFS, rounding errors have little influence on it,

Notes

1. When a typical size of the element of the coefficient matrix is assumed to be' a,
10’6a(10“6a,1_0‘3°a) is suitable as a standard BPS value for (CHOLFS(D, Q) and

MCHLFS (D, 0)}. |

2. Do not specify a constant for an actual argument of DET and IND because these arguments
are used for both input and output,

3. For the purpose of obtaining solutions of the same equation by simply changing its
right-hand side column, this routine’s facility to reuse Cholesky or modified Cholesky
decomposition components is extremely useful, The Cholesky method is superior to the inverse
matrix method in all aspects of the storage capacity, accuracy, and speed,

4. When M, the number of right hand side columns, is 1, a one-dimensional array is accéptable.

for the actual argument corresponding to X, KX=N should hold, however,

(1987. 06. 19) (1987. 08. 10)
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CHOLFV/W,MCHLFV/W

(Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky

Method (Full Matrix) - Véctor Version-)

Solution of Symmetric Positive Definite Linear Equations by Cholesky and Modified Cholesky

Method (Full Matrix) -Vector Version-

Programm | Ichizo Ninomiya, December 1984

ed by

Format Subroutine language: FORTRANTT; size: 141, 142, 141, and 142 lines

respectively

(1) Outline -

CHOLFV(W) and (MCHLFV(W)) are single (double) precision subroutines for obtaining the solution
X=A"'B of the equation AX=B -having a symmetric positije definite matrix A as coefficient
matrix and oultiple right sides B, using modified Cholesky decomposition method, It has the
facility of reusing modified Cholesky decomposition component,

CHOLFV (W) and MCHLFV(W) are for single (double) precision,

(2) Directions

CHOLFV/H
CALL (A, KA, N, X, KX, W, DET, EPS, W, IND)
MCHLFV/W
Argument | Type and | Attribut Content
kind (1) |e
A Real type | Input/ou | The upper right half containing the diagonal of a coefficient
Two-dimens | tput matrix is input, It is processed wifh this routine, and
ional modified Cholesky decomposition elements are output, The
array lower left half is retained.
KA Integer Input Adjustable dimensions of A (value of the first subscript in
type the array declaration), KAZN
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Argument | Type and Attribut Content
kind (1) (e

N Integer Input Order of equations, N=1

type

X Real type | Input/ou | The right side columns are input, The solution vectors are

two-dimens | tput output to the corresponding positions,
ional
array

KX Integer Input Adjustable dimensions of X, Ki=N

type

L] Integer Input Number of columns of X, If M<0, only modified Cholesky

type decomposition is executed,

DET Real type Input)ou If DET+#0.0 is input, coefficient matrix determimant is

tput output,
If DET=0,0 is input, 0,0 is output,

EPS Real type | Input Coefficient matrix positivity criterion, If the value of a
diagonal element beccmes smaller than EPS during Cholesky
decomposition, it is decided to be not positive definite, and
the computation is interrupted,

W Real type | Work One-dimensional array of size N,

one-dimens | area
ional
array
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Argument | Type and | Attribut Content .
kind (1) |e

IND .. | Integer Input/ou | This argument has the following meaning as an input argument,
type tput

IND=0: An equation is solved newly beginning with Cholesky
decomposition,

IND#0: An equation is solved reusing the Cholesky
decomposition elements calculated before,

This argument has the following meaning as an output
argument,

IND=0: Computation is normally executed.

IND=K: Computation is interrupted because the value of a
diagonal element becomes smaller than EPS at the K-th step of
Cholesky decomposition,

IND=30000: The input argument exceeded the limit,

x] PFor double precision subroutines, all real types are changed to double precision real types,

(3) Calculation methed

1. Cholesky decomposition method

The coefficient matrix A is decomposed into A=UU using an upper triangular matrix U

and its transpose UT, The solution X=A"'B is obtained with the forward substitution

Y=UTB and backward substitution X=U" 'Y.

2. Modified Cholesky decomposition method

The coefficient matrix A is decomposed into A=UTDU using an upper unit triangular

matrix U, its transpose UT, and a diagonal matrix D, The solution X=A"'B is obtained

with the forward substitution Y=UTB and backward substitution X=U"D"Y,

(4) Notes

1. If the typical size of coefficient matrix elements is a, the value 10'6(1(10"60) is

adequate as the standard value of BPS for {CHOLRV(W) MCHLFY(W)}.

2. Because DET and IND are inhut—output arguments, constants must not be used as an actual
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argument,
3. When a solution with the same matrix is to be repeatedly obtained with only the right side
column changed, the function of reusing the modified Cholesky decomposition component of this
routine is particularly useful, It is more efficient in all of storage size, precision, and
speed as compared with the method using the inverse matrix.
4. If the number M of right side columns is 1, the actual argument corresponding to X can be

a one-dimensional array, However, KX=N must be met,

(1987. 06. 19)
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CHOLSK/CHOLSD (Solution of Symmetric Positive Definite Linear Equations by Cholesky

Method)

Solution of Symmetric Positive Definite Linear Equations by Cholesky Method

Programn | Ichizo Ninomiya, April 1977
ed by

Format | Subroutine language: FORTRAN; size: 43 and 43 lines respectively

(1) Outline
CHOLSK/CHOLSD solves multiple simultaneous linear equations that share a symmetric positive
definite coefficient matrix, using Cholesky decomposition method, In other words, it finds the

solution X=A"'B of the matricial equation AX=B -

(2) Directions
CALL CHOLSK (A, KA, N, M, EPS, IND)

CALL CHOLSD (A, KA, N, M, EPS, IND)

Argument | Type and Attribut Content
kind (x1) |e
Real type | Input/ou | Input an augmented matrix with multiple right side columns
A Two-dimens | tput added to the right of a symmetric positive coefficient
ional . matrix, Only the upper right half including the diagonal of
array the coefficient matrix need be input, When the matrix is

processed with this routine, Cholesky decomposition
components are output in the same place, The corresponding
solution vectors are output in the corresponding right side
columns, The lower left half of the coefficient matrix is
preserved, [f Cholesky decomposition components are
preserved, the computation time required for Cholesky
decomposition can be saved when another equation with the
same coefficient matrix is to be solved.

KA Integer Input Value of the first subscript in the array declaration of A
type KA=N

N "| Integer Input Number of rows of A, It is also the order of equation, N=2
type
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Argument | Type and
kind (1)

Attribut
e

Content

M Integer
type

Input

Number of columns of A, Sum of the order of equations and
the number of right side columns, M=N, If M =N, only
Cholesky decomposition of the coefficient matrix is executed,

EPS Real type

Input

Constant for deciding the positivity of A, If the value of a
pivot element in A is smaller than that of EPS, the input
matrix is decided to be non positive definite, and the the
calculation is interrupted,

EPS>0

IND Integer
type

Input/ou
tput

Determines whether to reuse Cholesky decomposition components
or not as an input. If IND = 0, normal calculation is
executed, If IND#0, the component is reused,

Indicates the calculation status in the routine as an output,

If limits on KA, N, M, and BPS are violated, 30000 is
assumed, If calculation is interrupted at K-th stage of
decomposition, K is assumed, If calculation is normally
executed, ( is assumed,

%] For CHOLSD, all real types are changed to double precision real types,

(3) Remarks

1. Because the argument IND is used for both input and output, a constant must not be written

as an actual argument for it,

2. When a number of equations that has the same coefficient matrix, but differ in the right

side only are to be solved, computation time can be saved by using the facility for reusing the

Cholesky decomposition components of this routine,

3. If the typical size of matrix elements is a, axlO's(axlo"e) is adequate as the

standard value of EPS for CHOLSK (CHOLSD).

4. CHOLFS/D routine that is similar to this routine but has much more facilities, and the

CHLBDS/D routine for band matrix are available in NUMPAC,

7/

(1987. 06. 17) (1987. 08. 07)
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GAUELS/D/Q@/C/B (Solution of Linear Equations by LU-Decomposition)

Solution of Linear Equations by LU-Decqmposition

Programm | Ichizo Ninomiya, April 1977
ed by

Format Subroutine language: FORTRAN (GAUELS/D is assembler); size: 180, 183, 53,
43, and 44 lines respectively

(1) Outline
GAUELS/D/Q/C/B solves multiple simultaneous linear equations that share a coefficient matrix,
using a modified Doolittle method a version of Gaussian elimination accompanied by row

interchange for pivot selection, In other words, it finds the solution X=A"'B of the

matricial equation AX=B .

(2) Directions

CALL GAUELS/D/Q/C/B(A, KA, N, M, EPS, ILL)

Argument | Type and Attribut Content
kind (1) |e .

A Real type | Input/ou | Input an augmented matrix in which right side columns are
Two-dimens | tput added to the right of the coefficient matrix, The solution
ional vectors are output in the corresponding right side columns,
array

KA Integer Input Value of the first subscript in the array-A declaration,
type KA=N

N Integer Input Number of rows in A, that is, the order of the equation, N=2
type

M Integer Input The number of columns in A, that is, the order of the
type equation plus the number of equations to be solved at the

same time, MON

EPS Real type | Input Criterion constant for matrix singularity, If the absolute

value of a pivot element is smaller than this constant, the
input matrix is decided to be singular, and the calculation
is interrupted, EPS>(
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Argument | Type and Attribut Content
kind (1) |e
ILL Integer Output ILL=0: Normal termination
type ILL = 30000: Limits on KA, N, M, and EPS are violated,

The number of the pivot element whose absolute value is

smaller than EPS,

=] Por GAUELD (@, C, B), A is a double precision real type (quadruple precision real type,
complex type, and double precision complex type).
For GAUELD (@, C, B), EPS is a double precision real type (quadruple precision real type,

real type, and double precision real type).

(3) Remarks

1. If the magnitude of coefficient of equations differ significantly, it is desirable to
normalize the equatit;ns in advance using MNORMS and MNORMD to insure precision in the results,

2. I1f the typical absolute value of elements in a coefficient matr.ix is to be a,
ax10'6(0x10'16,a><10'30) is adequate as the standard value of EPS for GAUELS and (GAUELD,
GAUELQ),

3. If there is no special reason, it is recommended to use LEQLUS with high precision and
various facilities, as a simultaneous linear equation solver,

(1987. 06. 17) (1987. 08. 07)
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GSORSS/D (Solution of lim;ar equations for sparse matrices by SOR method (compact mode))

Solution of Linear Bquations for Sparse Matrices by SOR Method (Compact Mode)

Programm | Yasuyo Hatano 1977, Revised;-lchizo Ninomiya 1982
ed by
Format | Subroutine language; FORTRAN Size; 49 and 50 lines respectively

(1) Outline

Bach of these subroutines solves linear equations with coefficient matrices including many 0

elements,

Gauss-Seidel method,

To do this, it uses the SOR {(successive over-relaxation) method based on the

This routine is used when only non-zero elements of coefficient matrices

are reduced to a one-dimensional system by the compact mode and input,

(2) Directions

CALL GSORSS/D(IJTAB, A, LA, B, N, X, BPS, OMG, IMAX, ILL)

Argument | Type and | Attribut Content
kind (¢1) e

1JTAB Two bytes | Input The numbers of rows and columns with non-zero elements are
Integer input to 1JTAB (1K) and 1JTAB (2,K) respectively. Suppose
type A(K)=a;j, for instance, then input
Two—dimens 1JTAB(L,K) = 1,
ional 1JTAB(2,K) = j.
array The values are not retained,

A Real type | Input Only non-zero elements of the coefficient matrix are input
one-dinens in a row,
ional The values of 1, are rearranged in ascending order,
array divided by the pivot element, and put in this argument,

Note that the values are not retained,
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Argument | Type and | Attribut Content
kind (x1) |e
ALA Integer Input Number of non-zero elementc of coefficient matrix
type
B Real type | Input One right-hand side column is inpuf. It is then divided by
one-dimens the pivot element and output. The value is not retained,
ional |
array
N Integer Input Number of unknowns of equation, 2=N
type
X Real type | Input/ou| Input: Initial value of solution vector,
one-dimens | tput Output: Solution vector after iterative calculation, Size
ional * N
array
EPS Real type | Input Tolerance for convergence test in iteration method,
When all correction quantities of solution vectors are
below EPS, it is assumed that convergence has occurred,
OMG Real type | Input Acceleration factor for convergence in iteration method,
1=<0M6<2
IMAX Integer Input/ou | Input: Upper limit of the number of iterations, (<IMAX,
type tput Qutput: Actual number of iterations until convergence of
solution vectors
ILL Integer Output | ILL=0: Normal termination
type ‘ILL=30000: The restrictions on N or OMG are not observed,
1LL=25000: IJTAB error
ILL=K: Calculation is not done because the diagonal element
on Kth row is 0,
ILL=IMAX: Convergence does not occur in IMAX iterations,

x] For double precision subroutines, real types are all assumed to be double precision real

types,
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(3) Example

00010 C.
00020
00021
00030
00040

. 00050

00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00301
00310
00320
00330
00331
00340
00341
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520

20

21

22

23

24

600

40
555
601

TEST OF GSORSS ....
DIMENSION V(41,31),1V(41,31),A(4500),X(1000)~
1 B(1000)
INTEGER*2 1JTAB(2,4500)
EQUIVALENCE (V,IV)
M=41
N=31
IMAX=1000
EPS=1.E-4
0OMG=1.8
DO 20 J=2,30
DO 20 I=2,40
IV(I,J)=1
DO 21 J=1,31
V(1,4)=0.
V(41,J)=0.
DO 22 I=12,40
V(1,1)=0.
V(1,31)=0.
DO 23 I=2,11
DO 23 J=1,11
V(I,J)=0.
V(1,J+20)=0.
DO 24 J=11.,21
DO 24 I1=21,31
V(I,J)>=100. '
WRITE(6,601) ((IV(1,J),J=1,31),1=1,41)
LA=4500
NA=1000
CALL CLOCKM(ITO)
CALL LAPLSS(V,IV,M,M,N,IJTAB,A,LA,B,NA,X,EPS,0OMG.,
2 IMAX,ILL)
CALL CLOCKM(IT)
IT=IT-ITO
WRITE(6,600) ILL,NA,LA,IT,IMAX,((V(1,4),0=1,16),

3 I=1,41)

FORMAT(1H1//7/10X,5HILL =,16,5X,4HNA =,17,5X,4HLA

4 ) =,15

*,5X,6HTIME =,17,5X,6HITER =,17//7/(5X,16F8.3))
DO 40 I=1,41

DO 40 J=1,31

IV(I,J)=V(iI,J)+0.5

WRITE(6,601) ((IV(I,J),J=1,31),1=1,41)
FORMAT(1H1//7/7(5X,3114))

STOP

END

SUBROUTINE LAPLSS(V,IV,KV,NR,NC,IJTAB-A-LA,B,NA,X
*,EPS,OMG,IMAX,ILL)

DIMENSION V(KV,NC),IV(KV,NC),ACLAY,B(NA),X(NA)
INTEGER*2 IJTAB(2,LA)
IF(NR.LT.3.0R.NC.LT.3.0R.KV.LT.NR.OR.
* EPS.LE.0..OR.OMG.LT.1..0R.0MG.GE.2.) GO TO 130
NR1=NR-1

NC1=NC-1

N=0

L=0
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00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140

10

20

30

50
60
70

80

90
100

110
120

130

- | (7[

DO 70 J=2,NC1

LB=1

DO 60 I=2,NR1
IFCIVCI,J).NE.1) GO TO 50
N=N+1

IF(N.GT.NA) GO TO 120
X(N>=0.0

IVCILJ)=N

LEFT=IV(I,J-1)
IFCLEFT.GT.0.AND.LEFT.LT.N) GO TO 10
B(N)=V(I,J-1)

GO TO 20

L=L+1

ACL)=-1.0

IJTABC1,L)=LEFT
1JTAB(2,L)=N

IF(LB.EQ.0) GO TO 30
BCN)=V(I-1,J)+B(N)

GO TO 40 ’

L=L+1

ACL)=-1.0

IJTAB(1,L)=N-1
IJTAB(2,L)=N

L=L+1

IFCL.GT.LA)Y GO TO 120
ACL)=4.0

IJTAB(1,L)=N

IJTAB(2,L)=N
IFCIVCI+1,4).NE.1) BCN)=V(I+1,J)+B(N)
IFCIVCI,J+1) .NE.1) BC(N)=V(I,J+1)+B(N)
LB=0

GO TO 60

LB=1

CONTINUE

CONTINUE

NA=N

KM=L

DO 80 K=1,KM

IFCACK) .NE.~1.) GO TO 80

L=L+1
IFCL.GT.LA) GO TO 120
A(L)=-1.0

IJTAB(1,L)=1JTAB(2,K)
I1JTAB(2,L)=IJTAB(1,K)

CONTINUE

LA=L

CALL GSORSS(IJTAB,A-LA,B,NA,X,EPS,OMG,IMAX,ILL)
IFC(ILL.NE.O) GO TO 110

DO 100 J=2,NC1

DO 90 1I=2,NR1

L=IV(I,J)
IFC(L.LE.O.OR.L.GT.NAY GO TO 90
V(I,J)=X(L)

CONTINUE

CONTINUE

RETURN

ILL=10000

RETURN

ILL=20000

RETURN

ILL=30000

RETURN



T

01150 END

* (4) Note

If the coefficient matrices are positive definite symmetric, the Gauss-Seidel method (when
0MG=1) converges. Furthermore, if the sum of absolute values of non-diagonal elements on each

row is smaller than that of diagonal elements, that is, if
N
Y laij] <|aii]
)=1

is met, then convergence occurs, However, this is effective only when the right-hand side is
sufficiently larger than the left-hand side and OMG is adequate,

Bibliography

1) Hayato Togawa; “Numerical calculation of matrices,” page 64, Ohm-sha (1971)

(1987. 06. 19)
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LAPLBS/VS/SS/CS (Solution of 2-dimensional Laplacian equation)

Solution of 2-Dimensional Laplacian Equation

Programas | Ichizo Nidbmiya. Yasuyo Hatano, and Tsuyako Miyakoda; September 1982

ed by

Format | Subroutine language; FORTRANTT Size; 07, 69, 73, and 73 lines

respectively

(1) Outline
Bach of these subroutines solves a birichlet boundary value problem of two-dimensional
Laplacian equations by five-point difference approximation with uniform orthogonal mesh, When
the mesh division of the solution region and the distribution of the boundary values are given,
it automatically generates a five-point difference approximation equation, aﬂd solves it by the
corresponding method as follows:
LAPLBS: Modified Cholesky decomposition method for symmetric band matrix
LAPLVS: Cholesky ‘decomposition method for symmetric band matrix of variable width
LAPLSS: SOR method for sparse matrix

LAPLCS: Conjugate gradient methed with preconditioning for sparse matrix

(2) Directions
CALL LAPLBS(V, 1V, KV, NR, NC, A, LA, NA; S, IND)
CALL LAPLVS(V, IV, KV, NR, NC, A, LA, NA, NB, S, IND)
CALL LAPLSS(V, IV, KV, NR, NC, 1JTAB, A, LA, B, NA, X, EPS, OMG, IMAX, ILL)

CALL LAPLCS(V, IV, KV, NR, NC, 1JTAB, A, LA, B, NA, X, EPS, OMG, IMAX, 14, ¥, ILL)
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Argument Type and Attribut Content
kind (1) |e
v Real type | Input/ou | Solution region, V and IV are connected by the EQUIVALENCE
two-dimené tput statement to be assigned to the same region, It is then
ional used appropriately for V or IV depending on purbosa
array Input: A boundary value is input in V in the boundary
point, IV=1 in inner points, and IV=0 in the other points,
Qutput: A solution is output in the interior point as V.
(See the example,)
Iv Integer Input/ou
type tput
two-dimens
ional
array
KV Integer Input Adjustable dimension of V(IV), KV=AR
type
NR Integer Input Number of rows of V(IV), NR=3
type
NC Integer Input Number of columns of V(IV). NC=3
type
[JTAB Integer. Output | Numbers of rows and columns of non-zero coefficients of
type equation,
one-dimens Size LA,
ional
array
A Real type | Output Equation coefficients (non-zero coefficients for LAPLSS/D
one-dimens and LAPLCS/D) are generated and processed, Size LA
ional
array

.80




Type and

Argument Attribut Content
kind (:1) e
LA Integer Input/ou | Input: Bstimation of the total number of equation
type tput coefficients,
Output: Total number of equation coefficients,
B Real type | Output Right-hand side vector of equation, Size NA
one-dimens
ional
array
NA Integer Input/ou | Input: Estimation of the number of unknowns of equations,
type tput Output: Number of unknowns of equations,
S Real type | Output Solution vector, Size NA
one-dimens The same is output also in V.
ional.
array
X Real type | Input/ou Input: Initial approximation vector of solution,
one-dimens | tput Qutput: Solution vector. The same is output also in V.
ional Size NA,
array
EPS Real type | Input Criterion for convergence test, EPS>)
OMG Real type | Input Acceleration factor, 1=<0MG<2
IMAX Integer Input/ou | Input: Upper limit of the number of iterations,
type tput Output: Number of iterations,
¥ Integer Work Size LA,
type area
one-dimens
ional
array
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Argument | Type and | Attribut Content
kind (s1) |e
W Real type | Work The size is 6xNA.
one-dimens | area
ional
array
IND Integef Input/ou | Input: IND=0: A coefficient matrix is generated and
type tput decomposed, A right-hand side vector is generated
and solved,
IND+#0: Generation and decomposition of a coefficient
matrix is omitted, and only a right-hand side vector
is generated and solved by using the result of the
previous call, It is useful to repeat calculation
for the same region with different boundary values,
Output: IND=0: Normal termination,
IND=10000: Cholesky decomposition was interrupted,
IND=20000: LA or NA is too small,
IND=30000: Parameter error,
ILL Integer Output | ILL=0: Normal termination,
) type ILL=10000: The number of iterations exceéded the upper
limit,
ILL=20000: LA or NA is too small,
ILL=30000: Parameter error,

(3) Example

The program shown below uses LAPLBS to solve the Laplacian equations for a convex region with a

rectangular hole, whose external boundary value is (, and whose internal boundary.value is 100.

KKK=1 (IND=0) indicates an ordinary usage.

KKK=2 (IND=1) indicates how to reuse the decomposed components of a coefficient matrix,
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20

21

22

23

24

600

40
555
601

DIMENSION V(41,31),1IV(41,31),A(36900),X(1000)
EQUIVALENCE (V,IV)

DO 555 KKK=1.,2

DO 20 J=2,30

DO 20 I=2,40

IV(I,J)=1

b0 21 J=1,31

V(1,J)=0.

V(41,J)=0.

DO 22 1I=12,40

V(I,1>=0.

V(I,31)=0.

DO 23 1=2,11

DO 23 J4=1,11

V(I,J)=0.

V(I1,J+20)=0. "

DO 24 J=11.,21

DO 24 1=21,31

V(1,J)=100.

IF(KKK.EQ.1) WRITE(6,601) ((IV(I,J),J=1,311,1=1,41)
M=41

N=31

IND=KKK-1

NA=1000

LA=36900

CALL CLOCKMCITOD

CALL LAPLBS(V,IV,M,M,N,A,LA,NA,X,IND)

CALL CLOCKM(IT)

IT=1T-1T70 .
WRITE(6,600) IND,NA,LA,IT,C((V(1,J),d=1,16),1=1,41)
FORMAT(1H1///710X,5HILL =,16,5X,4HNA =,17,5X,4HLA =,17

x,5X,6HTIME =,17///(5X,16F8.3))

DO 40 I=1,41

DO 40 J=1,31

IV(I,Jd)=V(I,J)+0.5

WRITE(6,601) ((IV(I,J),J=1,31),1=1,41)
FORMAT(1H1///(5X,3114))

STOP

END

A program that solves the same problem by using LAPLSS and the source program of LAPLSS are

shown in the example of GSORSS,

(4) Notes

1. For the method of solving the difference equation generated, see the direction of each

corresponding subroutine as follows:

LAPLBS: = +++ee=2e MCHLBS
LAPLVS ............ CHLVBS
LAPLSS- -+« ~+ - -+ -GSORSS ‘ .
LAPLCS-+« -+~ -+« -PRCGSS
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2. It is recommended to allocatg a solution area in @ x n matrices where o (columns) is larger
than n (rows). This can reduce the band width of the coefficient matrices generated and also
save the stofage capacity and computation time,

3. When calculation is repeated in the same region with different boundary values by using the
LAPLBS or LAPLVS subroutine, the subroutine’s facility of reusing the Cholesky-decomposed
components is very effective to save computation time, Refer to the gxplanation of IND and the
example,

4. When LAPLSS or LAPLCS is usedt it is desirable to put a value as close as possible to the true
solution into the initial value (X) of the solution vector, If sufficient information for it is
not available, however, a zero vector, for imstance, or a vector whose components are all equal
to the average boundary value can be used,

(1987. 06. 19)
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LEQBDS/D/Q/C/B (Solution of Linear Equations with Band Matrix of Ceefficients by

Gaussian Elimination)

Solution of Linear Equations with Band Matrix of Coefficients by Gaussian Elimination

Programm | Ichizo Nincmiya, September 1978 -
ed by

Subroutine language: FORTRAN; size: 80, 80, 80, 81, and 80 lines
respectively

Format

.

(1) Outline
LEQBDS/D/0/C/B finds the solution X=A"'B of the simultaneous linear equation AX=B with

a band matrix A as coefficient matrix and multiple right side columns B using the Gaussian
elimination accompanied by row interchange for pivot selection, It has facility for reusing the

LU -decomposition elements of A obtained by the elimination,

NB
NB KA

(2) Directions

CALL LEGBDS/D/Q/C/B(A, KA, N, NB, LB, MB, X, KX, NX, MAX, EPS, IND)
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Argument | Type and Attribut Content
kind (1) (e

A Real type | Input/ou | Transform the coefficient band matrix into a rectangle form,
Two-dimens | tput that is, the | and J elements in an original matrix is stored
ional in A(J-14LB, I) (Sce the figure), The LU decomposition
array elements processed by this routine are output,

KA Integer Input Value of the first subscript in the array declaration of A
type KA=NB

N Integer Input The order of an eguation, that is, the number of columns in
type A. N=NB

NB Integer -Input Total band width (see the figure), It is also the number of
type rows in A, NBOLB

LB Integer Input Left band width (see the figure), LB=2
type

MB Integer Qutput Number of rows in A after processing, HB<KA must hold,
type

X Real type | Input/ou | If the right side columns are input, the solution vectors are
Two-dimens | tput output in the corresponding place,
ional
array

KX Integer Input Value of the first subscript in the array declaration of X,
type KX=N

NX Integer Input Number of columns in X, Only A is processed when NX=<(.
type )

MAX Integer Qutput One-dimensional array containing N elements, It stores
type information on row interchange, and is used when LU elements
One-dimens are reused,
ional ’
array

EPS Real type | Input Criterion constant for matrix singularity, If the absolute

value of pivot elements is smaller than that of EPS, the
input matrix is decided to be singular, and calculation is

interrupted, EPS>(
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Argument | Type and Attribut _ Content

kind (1) |e
This argument has the following meaning as an input, If
IND Integer Input/ou | IND=0, it indicates that an equation should be solved from
type tput the beginning starting from the elimination, If IND#0, it

indicates that a solution should be obtained immediately by
reusing the LU decomposition elements previously obtained Qnd
skipping the elimination, A and MAX must be left unchanged
in the state of the previous call,

This argument has the following meaning as an output, 0:

When calculation terminates normally, 30000: When no
calculation is executed because limits on the argument are
violated, K: When a matrix is decided to be singular, and

the elimination is interrupted at the Kth step

x] For LEGBDD (@, C, B), A and X are double precision real types (quadruple precision real
type, complex type, and double precision complex type).
For LEGBDD (@, C, B), EPS is a double precision real type (quadruple precision real type,

real type, and double precision real type),

(3) Example of use
This example shows a program for solving an equation with order N=1000, total band width NB=T7

and left band width LB=3,

C TEST FOR LEQBDS
DIMENSION A(C10,1000),MAX(1000),X¢1000)
N=1000 -
NB=7
LB=3
KA=10
EPS=1.0E-6
NX=1
C=1.

DO 10 I=1,N
ACl1,I)=C
AC2,1)=-C
A(3,1)=0.
AC4,1)=0.
AC(S5,1I)=C
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AC6,13=0.
10 A(7,1>=-C
DO 20 L=1,2
IND=L-1
DO 11 I=1,N
11 X(I>=0.0
X(2)=-CxC
X(N-2)=Cx*C
X(N-3)=Cx(C
CALL CLOCKM(KO)
CALL LEQBDS(A,KA/N,NB,LB,-MB,X-N,NX,-MAX,EPS,IND)
CALL CLOCKM(K1) ’
K0=K1-KO
AM=0.0
DO 12 I=1,N ‘
AA=ABS(X(I)-C)
IFCAA.LE.AM) GO TO 12
AM=AA
MM=1
12 CONTINUE
WRITE(6,600> IND,KO,AM,MM,MB
600 FORMAT(//10X,'ILL=",16,5X,"TIME =',16,5X"ERR=",1PE10.2,
*5X,*IMAX ='16,5X,"MB="',16/)
20 CONTINUE
STOP
END

(4) Remarks

1. Since this routine posesses facilities of simultaneous solution of multiple righi hand sides
and reuse of LU decomposition components, it can play the role of both a linear equation solver
and an inverse matrix routine, The reuse of LU decomposition components is especially
impottant, ‘This eliminates the needs for invérse matrix calculation,

2. Because rows are interchanged, if necessary, for pivot selection, the number of columns of
the coefficient matrix normally becomes greater than that in the initial state, Thus, KA must be
assigned so that MB<KA, Because MB=NB+LB-1 even in the worst case, KA=NB+LB-1 should be
assigned for safety.

3. If equation coefficients differ significantly in size, it is desirable to normalize the
coefficient matrix in advance so that the maximum absolute value of each equation coefficient is
in the order of 1.

4. If the typical size of elements in a coefficient matrix is a, ax108(ax107'%) js
adequate as the standard value of EPS for LEGBDS (LEQBDD).

5. If a coefficient matrix consists of symmetric positive definites, it is wise to use the

special routine CHLBDS.
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6. Because the argument IND is used for-both:input and output,-a‘'constant must not be used as -

an actual argument for it

(1987. 06. 22) (1987. 08. 07)
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LEQBDV/W/X/7Y (Solution of linear equations with band matrix of coefficients by Gaussian

elimination - vector version -)

Solution of Linear Bquations with Band Matrix of Ceefficients by Gaussian Blimination

-Vector Version-

Programm | Ichizo Ninomiya; May 1986

ed by

Format Subroutine language; FORTRAN Size; 146, 147, 149, and 150

respectively

(1) Outline
‘Bach of these subroutines determines the solution XG%ATJI3 of the linear equation AX=B having
band matrix A as a coefficient matrix and right-hand side matrix B by the Gaussian Elimination

involving row interchange for pivoting, It has the facility to reuse LU-decomposition components

of A,

{2) Directions

CALL LEQBDV/W/X/Y(A, KA, N, NB, LB, B, X, KX, NX, HAX, EPS, #, IND)

Argument | Type and Attribut , Content
kind (1) e

A Real type | Input/ou | A band matrix of coefficients ‘transformed to a rectangular
Two-dimens | tput form is input, That is, elements I and J of the original
ional matrix are put in A(J-I+LB,I). (See the figure for LEQBDS,)
array After processing by this routine, LU;decomposition components

are entered,

KA Integer Input Value of the first subscript in array declaration of A
type KA=NB

N Integer Input Number of unknowns of the equation, or number of columns of
type A. N=NB
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Argument Typé and Attribut Content
kind (1) e
NB Integer Input Total band width (See the figure,) Number of rows of A, NB>LB
type
LB Integer Input Left band width (See the figure ) LB=2
type
MB Integer Qutput Number of rows of A after processing, MB=KA must be met,
type
X Real type | Input/ou | Right hand side columns are input, and corresponding solution
two-dimens | tput vectors are output,
ional
array
KX Integer Input Value of the first subscript in array declaration of X, KX=N
type
NX Integer Input Number of columns of X. Only A is processed when NX=<(.
type
MAX Integer Output | One-dimensional array with the N elements, Information
type concerning row interchange is kept in it, It is needed when
one-dimens LU-decomposition components are reused,
ional
array
EPS Real type | Input Criterion constant of singularity of coefficient matrix,
When the absolute value of an pivot element is smaller than
EPS, the coefficient matrix is decided as singular and
calculation is interrupted. EPS>0
W Real type | Work One-dimensional array of size LB+NB.
one-dimens | area
ional
array
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Argument | Type and Attribut Content
kind (1) |e

IND Integer Input/ou | Input: IND=0 indicates that the equation will be solved
type tput

starting with elimination from the beginning, IND#0
indicates that it will be solved immediatély by reuse of the
LU-decomposition components obtained previously, For this
case, A and MAX must hold the content of the previous call,
Output: (0 indicates normal termination of calculation,

30000 indicates that no calculation has heen done because the
restrictions on the argument were not observed, K indicates
that the equation was decided as singular and elimination

terminated at step K

x1 A X and W are assumed to be double precision real types (complex type and double precisien

complex type) for LEABDW(X, Y).

EPS is changed to a double precision real type for LEQBDW/Y.

(3) Example

A program for solving an equation with 1000 unknowns (N=1000), total band width 7 (NB=T), and

left band width 3 (LB=3) is shown below:

10

11

TEST FOR LEQBDV

DIMENSION AC10,1000),MAX(1000),X¢1000),W(1000)

N=1000

NB=7

LB=3

KA=10
EPS=1.0E-6
NX=1

C=1.

DO 10 I=1,N
AC1,1)=C
AC2,1)=-C
A(3,1)=0
AC4,1)=0
A(S5,1)=C
AC6,1)=0.
AC7,1)=-C
b0 20 L=1.,2
IND=L-1

DO 11 I=1.,N
X¢(I1)=0.0
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X(2)=-Cx(C

X(N-2)=CxC

X(N-3)=CxC

CALL CLOCKM(KO)

CALL LEQGBDV(A,KA,N,NB,LB-MB,X,N,NX,MAX,EPS,W,IND)
CALL CLOCKM(K1)

KO0=K1-KO

AM=0.0

DO 12 I=1,N

AA=ABS (X(I)-C)

IFCAA.LE.AM) GO TO 12

AM=AA

MM=1

12 CONTINUE
WRITE(6,600) IND,KO,AM,MM,MB
600 FORMAT(//710X,*ILL =',16,5X,'TIME =',16,5X,'ERR =
1 *,1PE10.2, SX,%x'IMAX =',16,5X,"MB =',16/)
20 CONTINUE
sSTOP
END
(4) Notes

1. This routine has the facilities of simultaneous processing of multiple right-hand columns
and reuse of LU-decomposition components, Therefore, it can work as both a linear equation
routine and an inverse matrix routine, Especially, the reuse of LU-decomposed components
is important. It almost eliminates the need for calculation of inverse matrices,

2. Because rows are interchanged for pivoting, if necessary, the original number of columns of
the coefficient matrix generally increases, Therefore, KA must be prepared to meet the
condition MB=<KA,

Because MB=NB+LB-1 even in the worst case, it is safe to take KA=NB+LB-1,

3. If there is a large difference between the size of the coefficients of the equations,- it is
desirable to normalige the coefficient matrix beforehand so that the maximum absolute value
of the coefficient of each equation becomes the order of 1.

4 The reconmended standard value of EPS is about ax1078(ax107'®) for LEQBDV/X (LEGBDH/Y)

when the typical size of an element of the coefficient matrix is supposed to be a,
- 5. For a positive symmetric coefficient matrix, it is wiser to use sbecia] routines such as
CHLBDY,

6. Argument IND is used for both input and output. So, do not use a constant as the actual

argument for this,

(1989. 04. 06)
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LEQLSS/D/Q/C/B
' (least squares solution and minimum norm solution of general system of linear equations by

Householder transformation)

Least Square and Minimum Norm Solutions of General Simultaneous Linear Equations by Householder

Transformation

Programm | Ichizo Ninomiya March, 1979

ed

Format Subroutine Language; RORTRAN Size; 94, 94, 94, 94 lines

(1) Outline

When matrix A with m rows n columns mZn=1) and n as rauk and matrix B with m rows 1
columns are given,
Least squares solutior; X=(ATA)'A'B (n rows 1 columns) (X=(KTA)"A'TB .for complex number)
of overdetermined system of linear equations AX=B is calculated by A triangulation with
Householder transformation, When the similar matrix A and matrix B with n rows k columns are
given, minimum norm solution X=A(ATA)"B (m rows k columns) (X=Z(ATZ)'IB) for complex
nunber) of underdetermined system of linear equations A?)(=l3 is calculated with a similar

method,

(2) Directions

CALL LEQLSS/D/Q/C/B(A, KA, M, N, X, KX, NX, EPS, R, Q, ISH, ILL)

Argument | Type and | Attribut Content
kind = e
A Real type | Input Coefficient matrix, Triangulation is done by Householder
Two-dimens transformation,
ional
array
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Argument | Type and | Attribut Content
kind = e

KA Integer Input Value of the first subscript in array declaration of A, KA=M

type
] Integer Input Number of rows of A, M=N
type

N Integer Input Number of columns of A, N1
type

X Real type | Input/Ou | When right side matrix B is input to call this routine,
Two-dimens | tput solution matrix X is generated, Two-dimensional array with ¥
ional roés NX columns,
array

KX Integer * | Input Value of the first subscript in array declaration of X, KX=M

type

NX Integer Input Number of colﬁmns of X Only triangulation of A is done if

type NX=0.

EPS Real type | Input The criterion constant € for the rank degeneration of A The
rank is judged to be degenerated when the absolute value of
the diagonal element is smaller than that of |[All1-¢ in the
process of triangulation, and the pfocessing is interrupted,
The minimum unit of the round-off error is set as a standard
value if EPS<(,

R Real type | Output One-dimensional array of size NX, The residual norm or the

One-dimens norm of each solution vector (each column of X) is generated,
ional A
array
a Real type | Work One-dimensional array of size N,
one-dimens | area
ional
array
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Argument | Type and Attribut ~ Content
kind = e

ISW Integer Input The least squares solution is calculated if ISW=0 and the
type minimun norm solution is calculated if 1SW<), The

triangulation of A is done if |ISW| =<1, and the triangulation

of A is omitted if |ISH|>2.

ILL Integer Input ILL=0: Normal termination,
type . ILL=20000: Rank degeneration,

1LL=30000: Input variable-error

% All real types are assumed to be a double precision real type if the subroutine is for double
precision,
A, X, and Q@ are assumed to be a (double precision) complex type if the subroutine is for the

(double precision) complex number,

(3) Performance

In the current method to calculate the least squares solution (minimum norm solution), A{RA is
created from coefficient matrix 41(1&7) and system of linear equations with this as a coefficient
is solved, Therefore, the condition of the equation deteriorates and it is difficult to obtain
the solution with good accuracy,

On the other hand, the condition does not deteriorate in this routine because A is transformed
into upper triangular matrix U=HA without creating ATA by Householder's orthogonal
transformation H, Therefore, the accuracy of the solution is excellent though it is a little
inferior‘to the current method in the point of quantity of calculation,

The following table shows the result of the accuracy experiment of the numerical solution when
A is the first N column of Hilbert matrix (aij=1/(i+j-1)) of the order M, and B is given

so that all elements of the strict solution may become 1.

Least N=10 Minimum N=10
squares norm

solution solution

¥=10 ¥=20 H=10 M=20
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LEQLSD 5 digits | 8 digits| 6 digits| 4 Digits
Current method | IND=8 IND=9 IND=8 IND=9
CHOLFD using interrupte | interrupte | interrupte | interrupte
, d d d d

(4) Example

The following program is to calculate the least squares solution in the above experiment:

1 IMPLICIT REAL*8 (A-H,0-2)
2 DIMENSION AC20,10),X(203,Q(C10)
3 M=20
4 N=10
5 EPS=1.0D-17
6 ISwW=0
7 DO 10 1=1,M
8 X(1>=0.0D0
9 DO 10 J=1,N
10 AC1,J)>=1.0DO/DFLOAT(I+J-1)
11 10 X(I>=AC1,J)+X(I)
12 CALL LEQLSDCA,M,M,N,X,M,1,EPS,R,Q,ISW,ICON)
13 WRITE(6,600) ICON,R,(X(I)>,I=1,N)
14 600 FORMAT(1H1,110,D25.17/7/(C1H ,10X,D25.17))
15 STOP
16 END

(5) Calculation method
Matrix M with m rows n columns (mZnz1) and vector v of the order m are divided into two

parts with m—n rows and n rows and written as follows :
_( M ) V1
M= M2 v=( v2 )

The following explains the case when the right side is vector b,
1. Least squares solution
Norm I rit2 of residual r=Ax-b is minimized, Householder’s orthogonal transformation matrix

H is multiplied to the left of A :

(4

, where Uy is the right upper triangular matrix, and Oz is zero matrix,

It is sufficient to minimize 1 Hr ll2 because Hr=HAx-Hb and 1Hrli2 = Wrll2. Putting

) 51)
Hb‘( b2
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, we have

le:fn )
Hr=( _bZ

Therefore, the least squares solution is calculated as x=Uj '51 by Back-substitution method
of the upper triangular matrix and the folowing relation holds :

irfiz = WHrlz = 0b2l

2. Minioun norm solution

Out of the infinitely many solutions of AT:r=b, the one with minimum llx 2 is calculated,
(HA)THx=b .is obtained by the same conversion as that for the least squares solution, Putting
y=Hx, we obtain

wi ') ()=

, that is, Ur Tys=b,
The minimum norm solution of this Y is calculated by forward substitution method of lower

triangular matrix Ui T and is given by
_( Ui'b )
y= 02

, where O2 is assumed to be zero vector of the order m—n, When we calculate x by :c=HTy

from y, x is the minimum norm selution because of Uxll2 = I HTy lz = Nylia,

(6) Note

1. To solve system with identical A and different B many times, it is recommended to set
|ISW|<1 in the first call, and to set |ISW|=2 in the subsequent calls with A and Q
preserved, since in this way Householder transformation can be omitted,

2. When the rank of A is smaller than m, this subroutine cannot handle it , In such a case, it
is better to use subroutine LSMNS/D based on the singular value decomposition,

(1987. 06. 23) (1987. 08. 07) (1987. 08. 11) (1987. 08. 21)
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LEQLUS/D/@/C/B/Z (Solution of linear equations by LU-decomposition method)

Solution of Linear Equations by LU-Decomposition Method

Programm
ed by

Ichizo Ninomiya; April 1977

Format

Subroutine language; FORTRAN (assembler for LEQLUS/D only)
Size; 293, 241, 74, 75, and 76 lines respectively

(1) Outline

A number of linear equations that share a coefficient matrix are solved by the LU-decomposition

methed involving a row exchange for pivoting. That is, a solution X=A"'B of matrix equation

AX=B

is obtained,

(2) Directions

CALL LEQLUS/D/Q/C/B/Z(A, KA, N, X, KX, M, DET, MAX, EPS, IND)

Argument | Type and | Attribut Content
Kind (x1) |e
A Real type | Input/ou | Specify a coefficient matrix, An LU-decomposition component
Two-dimens | tput of the coefficient matrix is determined and is overwritten,
ional When this component is stored, it can be reused to eliminate
array the need for repeated LU-decomposition and thereby save
computation time if an equation with the same coefficient
needs to be solved at a later time (see the description of
MAX and IND),
KA Integer Input Value of the first subscript in array declaration of A, KA=N
type
N Integer Input Number of unknowns of the equation, that is, the number of
type rows in A, N=2
X Real type | Input/ou | Specify several right-hand side columns of the equation,
Two-dimens | tput After processing of this routine, solution vectors which
ional correspond to individual columns are overwritten,
array
KX Integer Input Value of the first subscript in array declaration of X, KX=N
type ‘
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Argument | Type and Attribut Content
Kind (x1) |e

M Integer Input Number of right-hand side columns, that is, the number of
type columns of matrix X, M=0

If M =10, only LU-decomposition of the coefficient matrix is
done but the equation is not solved,
If M =1, a one-dimensional array is acceptable for the real
argument of X,
DET Real type | Input/ou | If DET+#0, a coefficient determinant is output,
tput If DET=0, the value remains unchanged,

MAX Integer Output Information concerning the row exchange in LU-decomposition
type is entered using the name of one-dimensional array having the
One-dimens N number of elements , It is useful to store this
ional information because it can be reused if an equation of the
array same coefficient needs to be solved later,

EPS Real type | Input Criterion constant for singularity of coefficient matrix,
The calculation is interrupted because of singularity if the
absolute value of a pivot element becomes smaller than this
constant, EPS>0
As an input variable, IND=0 indicates that the equation

IND Integer Input/ou | should be solved by LU-decomposition, and IND#(Q indicates
type tput that the equation should be solved immediately by using the

result of previous LU-decomposition, For this, A and MAX
must be retained the same as those when this subroutine was
called previously,

As an output variable, () indicates that calculation ends
successfully, 30000 indicafes that no calculation has been
done because the restrictive conditions for the argument was
violated, and a value K indicates that LU-decomposition was

interrupted at the K-th stage of elimination by the

singularity test,

x] A X, and DET each are a double precision real type (quadruple precision real type, complex

type, double precision complex type, or quadruple precision complex type) for LEQLUD, LEQLUQ,

LEQLUC, LEQLUB, and LBGLUZ,

EPS is a double precision real type (quadruple precision real type, real type, double

precision real type, or quadruple precision real type) for LEGLUD, LEQLUQ, LEQLUC, LEQLUB,
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and LEQLUZ,

(3) Performance
Because LEQLUS and LEQLUD are written with the assembler, they run fast and efficiently,
Moreover, because double precision operation is partially used for LEQLUS, round-off errors are

minimized and accuracy is improved accordingly,

(4) Notes

1. This routine has the functions of simultaneous processing of several right-hand-side
columns, calculation of determinants, and reuse of LU-decomposition components. Therefore, it
can also work as routines to solve linear equations and calculate determinants and inverse
matrices, Especially, the function of reuse of LU-decomposition is most important. This
function almost eliminates the need for calculation of inverse matrices,

If there is a substantial difference between the absolute values of coefficients in the
equations, 'it is desirable to normalize the coefficient matrix in advance by MNORMS or MNORMD to
secure precision,

3. If a typical absolute value of coefficient matrix elements is assumed to be a,

aXIO'G(aXIO'ls,GXIO'so) is adequate for the standard value of BPS for LEQLUS, LBGLUD, or
LEQLYQ, ,

4. When the coefficient matrix is a syametric positive definite, it is wiser to use special
routines CHOLFS and CHOLFD, etc,

5. Arguments DET and IND afe used for both input and output, Therefore, do nt;t use constants

as real arguments for thea,

(1987. 06. 19) (1987. 08. 07)
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LEQLUV/W/X/Y (Solution of linear equations by LU-decomposition method <vector version-)

Solution of Linear Bquations by LU-Decomposition Method -Vector Version-

Progranm | Ichizo Ninomiya; May 1986, December 1984

| ed by

Pormat | Subroutine language; FORTRANTT Size; 201, 202, 205, and 206

respectively

(1) Outline

A number of linear equations that share a coefficient matrix are solved by the LU-decomposition
method involving row interchange for pivoting, That is, a solution X=A"'B of matrix equation’
AX=B is determined, LEQLUQ ig for single precision, LBQLUW is for double precision, LEQLUX is

for single precision cemplex numbers, and LEQLUY is for double precision complex numbers,

(2) Directions

CALL LEQLUV/W/X/Y (A, KA, N, X, KX, M, DET, LIST, EPS, W, IND)

Argument | Type and Attribut Content
kind (1) |e

A Real type | Input/ou| A coefficient matrix is input, After processing by this
Two-dimens | tput routine, the LU-decomposition components of coefficient
ional - matrix are entered, These components are stored so that they
array can be used when it is laéer needed to solve equations with

the same coefficients, This can eliminate the need for
repeating LU-decomposition, thus saving computation time (see

the descriptions of LIST and IND).

KA Integer Input Value of the first subscript in array declaration of A, KA=N
type
N Integer Input Number of unknowns of equation, that is, the number of rows
| type in A, N22
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Argument | Type and Attribut Content
kind (1) |e
X Real type | Input/ou | One or more right-hand side columns of equations are input,
two-dimens | tput After processing by this routine, corresponding solution
ional vectors are output,
array
KX Integer Input Value of the first subscript in array declaration of ¥,
-type KX=N
[’} Integer Input Number of right-hand side columms, that is, the number of
type columns of matrix X,
u=0
When M=0, only LU-decomposition of the coefficient matrix is
performed,
When M=1, the real argument for X can be a one-dimensional
array,
DET Real type | Input/ou | When a value other than 0 is input, the coefficient
tput determinant is output,
When (0 is input, it is retained as it is,
LIST Integer Output | A one-dimensional array with N elements, Information
type concerning row interchange in LU-decomposition is kept in it
one-dimens If this information is preserved, it can be reused when an
ional equation -having the same coefficients needs to be solved,
array
EPS Real type | Input Tolerance for test of singularity of coefficient matrix, If

the absolute value of a pivot element becomes smaller than
this constant, the matrix is decided as singular and
calculation is interrupted,

EPS>0
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the facility of reuse of LU-decomposition is most important, eliminating the need for
calculation of inverse matrix,

2. If a typical absolute value of coefficient matrix elements is assumed to be a,
ax108(ax107'%) is reasonable value of EPS for LEQLUV and LEQLUX (LEQLUW and LEQLUY).

3. When the coefficient matrix is symmetric pos_itive definite, it is wiser to use special
routines CHOLFV/W and MCHLFV/H etc.

4. Arguments DET and IND are used for both input and output, Therefore, do not use constants

as actual arguments for them,

(1987. 06. 19) (1987. 08. 07)
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LSMNS/D (Least Squares and Minimum Norm Solutions of General Simultaneous Linear Equations

by Singular Value Decomposition)

Least Squares and Minimal Norm Solutions of General Simultaneous Linear Equations by

Singular Value Decomposition

Programm | Ichizo Ninomiya, March 1979
ed by

Format | Subroutine language: FORTRAN; size: 194,194 lines respectively

(1) Outline
LSMNS/D finds ann X I matrix X that minimizes
Il Axi-bill2 i=1,2,-+-,1
and
Nx;ll2 i=1,2,--+,1
if anm X n matrix A and anm X l matrix B are given, Where,'
B=(b1,b2,++,b1]
and
X=[x1,%2,°-+,%1)
When this type of least square and minimal norm solutions are to be found, A is first
" decomposed as . .
A=UTVT
by the singular value decomposition method, where U is an m X n matrix, and L and V are n X
n matrices,
UTU=VTV=VVT=I,. (n X n unit patrix)
L=diag(q1,q2, * * * »qa)
qi=q2=-----=qa=0 are the singular value of A, that is, the positive square roots of
eigenvalues of ATA,
The solution X is then given by
X=v£'U'B

Khere,
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z‘.=diag(q|+,q2+a b ’Qn+)

QF={16Qi

(2) Directions

q:>0
qi=0

1=1,2,--+,n
i=l ,2,"',11

CALL LSMNS/D(A, KA, M, N, B, KB, NB, @, EPS, ¥, ILL)

Argument | Type and Attribut Content
kind (1) |e
A Real type | Input/ou | If a coefficient matrix is input, the orthogonal matrix V is
Two-dimens | tput output to the first N-th row of it., Array of max (M, N) rows
ional and N columns,
array
KA Integer Input Value of the first subscript in the array declaration of A,
type KA=max (M, N)
M Integer Input Number of rows of A, M=1
type
N Integer Input Number of columns of A, N=1
type
B Real type | Input/ou | If a right side matrix is input, the solution matrix X is
Two-dimens | tput output to the first N-th row of it, Array of max (M, N) rows
ional and NB columns,
array
KB Integer Input Value of the first'suhscript in the array declaration of B,
type KB=max (M, N)
NB Integer Input Number of columns of B, NB=1
type
Q Real type | Output The singular value of A is output in descending order,
One-dimens One-dimensional array of size N,
ional
array
EPS Real type |.Input Constant ¢ used for convergence test and test for singular
values, If a double diagonal matrix obtained by bilateral
Householder transformation from A is denoted by J,
lJloe+u is used as a threshold
value for zero test of the non-diagonal element and singular
values of A, If EPS<(, the rounding unit error u is used as
€,
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Argument | Type and Attribut Content
kind (%1) |e
W Real type | Work Dne-dimensional array of size N,
One-dimens | area,
ional
array
ILL Integer Output ILL=0: Normal termination,
type 1LL=2000: Singular value decomposition does not converge in
30N iteration,
ILL=30000: Input arguments violate the limits,

x] Por double precision subroutines, all real types are changed to double precision real

types,

(3) Performance

The problem described on page 418 in the literature D are solved by LSMNS. In that problem, A

is an 8 x 5 rank 3 matrix with singular values +~'1248,20,+384,0,0 and B is an § x 3

matrix,

EPS=10% is chosen and the transformation matrix V was overwritten on A, The

precision of the singular value Q, transformation matrix V, and three least squares and minimal

norm solutions was about six digits,

(4) Example of use

The program for the above test is as follows:

Voo ~NOOVS~WN P

R R RRPRR R A
NouPHrP LWL O

18

19

500
510
*

600
*

DIMENSION A(8,5),B(8,3),Q(5),W(5),R(5)
M=8

N=5

KA=8

KB=8

NB=3

EPS=1.E-6

R(1>=SQRT(1248.)

R(2)>=20.

R(3)=SQRT(384.)

R(4)=0.

R(5)=0.

READ(5,500) (CACI,J),d=1,N),1I=1,M)
FORMAT(5F4.0)

READ(5,510) ((B(I,J),J=1,NB),I=1,M)
FORMAT(3F4.0)

WRITE(C6,600) M,N,NB,(CACI,J),J=1,N),1=1,M)
s((BC(1,J),J=1,NB),1=1,M)
FORMAT(1H1///10X»"M =',12,2X,'N =',12,2X,
'NB',12//8C10X,1P5E13.5/)/(10X,3E13.5))
CALL LSMNSCA,KA,M,N,B,KB,NB,Q,EPS,W,ICON)

107



Io&

20 WRITE(6,610) EPS,ICON,(QCJI,R(CJII,JI=1,N),
*(C(ACI,J),J=1,N),1=1,N),((BCI1,J),Jd=1,NB),1I=1,N)"
21 610 FORMAT(//10X,*EPS =',1PE10.2,2X,'ICON =',16//

*5(10X,2E13.5/)/ 5(C10X,5E13.5/)>/(C10X,3E13.5))
22 ' STOP
23 END

(5) Remarks

1. The constant EPS used for the convergence criterion of singular value decomposition and zero
test of singular values must be selected carefully, If EPS that is too small as compared with
the precision of A and B is given, unnecessarily precise computation will be executed, or a
singular value that should be discarded as () may be assumed to be significant, Conversely, too
large EPS may cause a s@all. but meaningful singular value to be discarded as zero,

2. If least squares and minimal norm solution is found only orce for thg same coefficient
matrix A, it is not wise from the standpoint of computation time to find a generalized inverse
matrix A" using GINVS/D except that A" itself is required, By all means, the routine LSMNS/D

should be used in this case,

References
1)G. H, Golub, C, Reinsch; *Singular Value Decomposition and Least Squares Solutions®,

Numerische Mathematik, 14, pp. 403-420(1970).
(1987. 06. 16)
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PRCGFS/D and RECGFS/D (Solution of a linear system of equations with positive definite
symmetric coefficient matrix by conjugate gradient methed with preconditioning)
Solution of a Linear System of Equations with Positive Definite Symmetric Coefficient Matrix by

Conjugate Gradient Method'with Preconditioning

Programm | Tsuyako Miyakoda and Tatsuo Torii; February 1982

ed

Format Subroutine language; FORTRAN Size; 85 and 86 lines respectively

(1) Outline

Bach of these subroutines solves a linear systen of equations Ax=b for x, where A is a positive
definite symmetric dense matrix and x and b are vectors, To do this, it performs preprocessing
to improve convergence conditions and then uses the conjugate gradient method,

It is useful to correct an approximate solution vector which is already known, RECGFS (RECGED)
is provided as an entry name used to perform calcuiation again by skipping preconditioning after

PRCGFS (PRCGFD) is once called,

(2) Conditions

CALL PRCGFS/D(A, NA, N, B, X, OMEGA, EPS, NMAX, 4, 1DUMP)
CALL RECGFS/D(A, NA, N, B, X, OMEGA, EPS, NMAX, W, IDUMP)

Argument Type and Attribut Content
kind (1) e

A Real type | Input Coefficient matrix, This is not retained,
Two-dimens
ional
array

NA Integer ' Input Adjustable dimension of A, NAZ=N
type

N Integer Input Number of unknowns of a system of equations
type
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Argument Type and Attribut Content
kind (x1) |e
B Real type | Input Right-side vector of the system, Size N
one-dimens
ional
array
X Real type | Input/ou{ Input: Approximate solution vector
one-dimens | tput Qutput: Solution vector
ional
array
OMEGA Real type | Input Acceleration factor for convergence in iteration methed,
1<O0MEGA<2, If a value outside the range is input, 1 is
used for calculation,
EPS Real type | Input Tolerance for convergence test, Convergence is assumed
when the sum of squares of the residuals is'smaller than
EPSxx2, If EPS is too small, however, 8-u-|[bll is used
for it,
u is the unit of rounding errors,
NMAX Integer Input Maximum number of iterations, Theoretically, the value of
type NMAX is ﬁ at most, If given NMAX is too large, it w}ll be
replaced by 3N/2.
W Real type | Work Size Nx3
one-dimens | area
ional
array
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Argument | Type and | Attribut

Content
kind (x1) (e
1DUMP Integer Input/ou | On entry, this argument has the following meanings:
type tput ‘ IDUMP=<0: During calculation, no printing is done,

1DUMP=]1: During calculation, the norm of residuals and
(p, Ap) in each iteration are printed,
IDUMP=2: The approximate solution, residuals, and
A-orthogonal vectors in each iteration are printed,
On return, this argument has the following meanings:
IDUMP=0: Normal termination,

IDUMP=NMAX: Convergence does not occur in NMAX

iterations,

1DUMP=30000: Input argument error,

%] For double precision subroutines, real types are all assumed to be double precision real
types.

(3) Calculation method

Regular division is done as A=M-N, where M have the same characteristics as A with symmetric
positive definite and permit easy calculation to determine the inverse matrix, We think the
systen preconditioned by using M as follows:
M 'Ax=M""b
Then, we obtain;
A=MZAME, b=M3b,y=Mbx
It is rewritten as

Ax=b

This is a positive definite system equivalent to the original system. We then apply an algorithm

of the conjugate gradient methed to this system,

Matrix M here is formed by the following method by (Nodera and Takahashi)'):lt'is decomposed as

follows:
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where

A=Lo+D+L8

Lo : Lower triangular matrix (diagonal elements ()

D: Diagonal matrix

We then multiply

D3

And, we put

to obtain

from both sides of A,

A =D 3AD =L+ T+KoT

C¥I+mL6

M—l= (CCT)—I

where, @ is an acceleration parameter of the SOR method, satisfying 0<w<2,

(4) Bxample

00010 C
00020
00030
00031
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200 .
00210
00220
00230
00240
00250
00260

1810
1800

1100

2100

1

MAIN FOR PRCGFS

REAL*8 SU,A,X,B,W

DIMENSION AA(C100,100),B(100),A€100,100),XY(100),
X(100),W(500)

DIMENSION X0(100)

NR=5

NW=6

EPS=1.E-5

NA=100

N=100

XX=1.0E8+1.

DO 1800 I=1,N

DO 1810 J=1,N

I1J=1ABS(I-J)

ACI,J)=FLOAT(N-1J)

CONTINUE

XI1=12345678.0

DO 7 I=1,N

X0(I1>=0.0

XC¢I>=4.%xX1/1.E8-2.

XI=AMOD(23.%xXI,XX)

CONTINUE

FORMAT(F12.0)

DO 2000 IK=1,N

Su=0.

DO 2100 I=1,N

SU=SU+ACIK,I) =X (1)
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00270
00280
00290
00300
00310
00320
00330
00340
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590

2000

1205

19

203
200

20

2200
303
300
302

B(IK)=SU

WRITE(NW,1205)N

FORMAT(1H1,15H EXAMPLE 3-6 N-r14)
IF(N.GE.10)GO TO 19

DO 5 I=1,N

WRITE(NW,200) CACI,J),d=1,N)
CONTINUE
WRITE(NW,203)(B(I),I=1,N)
FORMAT(2H B//¢4D23.15))
FORMAT(2H A//(4D23.15))

DO 20 I=1.,N

XY(I)=B(C(I)

po 20 J=1,N

AACI,J)=A(C1,J)

IDUMP=1

OMEGA=1.00

CALL CLOCKM(JTIME1)

NMAX=100

CALL PRCGFS(AA,NA,N,XY,X0,OMEGA,EPS,NMAX,W,IDUMP)
CALL CLOCKM(JTIME2)
JT=JTIME2-JTIMEL
WRITE(NW,300)IDUMP,JT

DO 2200 I=1,N

RES=X(I)-X0CI)

WRITE(NW,303) 1,X(I1),X0CI),RES
CONTINUE

-FORMAT(15,2E15.6,E11.3)

FORMAT(7H IDUMP=,15,3X,°'TIME =',15)
FORMAT(2H X//7(D23.15)) '
STOP

END

EXAMPLE 3-6 N= 100

IDUM

VNIH W

Bibliography

P= 0 TIME = 130
-0.150617E+01 -0.150611E+01 -0.572E-04
0.135802E+01 0.135791E+01 0.116E-03
-0.765456E+00 -0.765381E+00 ~-0.755E-04
-0.160547E+01 -0.160547E+01 -0.572E-05
-0.925886E+00 -0.925903E+00 0.170E-04

1) T. Nodera and H, Takahasi; "Preconditioned Conjugate Gradient Algorithm for Solving Biharmonic

Equation® 4th IMACS and International Symposium (1981)

(1987. 06. 19) (1987. 08. 08)
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PRCGSS/D,RECGSS/D

(Solution of a linear system of equations with sparse positive definite symmetric coefficient
matrix by conjugate gradient method with preconditioning (compressed matrix storage mode))
Solution of a Linear System of Equaiions with Sparse Positive Definite Syametric Coefficient

Matrix by Conjugate Gradient Method with Preconditioning (Compressed Matrix Storage Mode)

Programm | Tsuyako Miyakoda; 1982

ed by

Format | Subroutine language; FORTRAN Size; 192 and 193 lines respectively

(1) Outline

Bach of these subroutines solves the linear system of equations Ax = b where coefficient matrix
A having a relatively small number of nohzero elements is positive definite symmetric, To do
this, it performs preconditioning to improve convergence conditions and then uses the conjugate
gradient method, This solution routine is used when only non-zero elements of coefficient
matrices are stored by rows in a one-dimensional array by the compressed storage mode,

It is useful to correct an approximate solution vector which is already known, RECGSS (RECGSD)
is provided as an entry name used to perform calculation again by skipping preconditioning after

PRCGSS (PRCGSD) is once called,
(2) Directions

CALL PRCGSS/D(IJTAB, A, LA, B, N, X, EPS, OMG, MAX, IH, W, ILL)

CALL RECGSS/D(IJTAB, A, LA, B, N, X, EPS, OMG, IMAX, IW, ¥, ILL)
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Argument Type and Attribut Content
kind (%1) |e

[JTAB Two bytes | Input The rows and colunns numbers of non-zero elements are input
Integer to 1JTAB(1,K) and 1JTAB(2, K) respectively,
type - Suppose A(K)=a;j, for instance, we set:

Two-dimens 1JTAB(1,K)=1 and 1JTAB(2, K)=3.

ional The size is ZsLA,

array Qutput data in arrays are rearranged in ascending order in
the values of 1, .

A Real type | Input The size is 2«LA, Only non-zero elements of the
one-dimens coefficient matrix are stored by row in an array of length
ional LA appearing first, They are rearranged simultaneously
array with 1JTAB. The non-zero elements of the preconditioned

matrix are stored in the array of size LA appearing last,

LA Integer Input Number of non-zero elements of.the ceefficient matrix.
type LAZN

B Real type | Input The right-side vector of a system of equations, Size N
one-dimens
ional
array

N Integer Input Number of unknowns of a system of equations, N=3
type

X Real type | Input/ou | Input; Approximate solution vector with size N, (Zero
one-dimens | tput vector at first)
ional Output; Solution vector,
array

/ /\S\
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Argument Type and Attribut Content

kind (x1) |e

EPS Real type | Input/ou | Tolerance for convergence test, When the sum of squares of

tput the residuals is smaller than BPSxs2, it is assumed that
convergence has occurred,
If EPS is tco small, however, 8-u+|| bl is used instead, u
is the ﬁnit of rounding errors,

CHG Real type | Input Acceleration factor for convergence in iteration method,
1=0M6<2, If a value outside the range is input as QMG,
0MG=1 is used for calculation,

THAX Integer Input/ou | Input: Maximum number of iterations, Theoretically, it is

type tput N at most, If the given IMAX is too large, however, it is
replaced by 3-N/2,
Output: Actual number of iterations,
I Integer Working | The size is 2sN.
type storage
one-dimens
ional
array
W Real type | Working | The size is N#3,
one-dimens | storage
ional
array
ILL Integer Output | ILL=0: Normal termination,
type ILL=IMAX: Convergence does not occur in IMAX iterations,
ILL=25000: 1JTAB error,
ILL=30000: Input argument error,

%] For double precision subroutines, real types are all assumed to be double precision real

types,

(3) Example
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c - e

630

100

610

620

TEST OF PRCGSS ...

DIMENSION AC40),B(6),X(6),1IW(2,6)

INTEGER*2 IJTAB(2,20)

REAL*4 W(18)

DATA N/ 6/LA/20/

DATA A(1),1JTAB(1,1>,1JTAB(2,1>/10.0,1,1/
DATA AC2),1JTAB(C1,2),1JTAB(C2,2)/-2.0,1,4/
DATA A(3),I1JTAB(1,3),1JTAB(2,3)/-1.0,1,5/
DATA AC4),1JTAB(1,4),1JTAB(2,4)/-1.0,1,6/
DATA A(5),1JTAB(1,5),1JTAB(2,5)/12.0,2,2/
DATA A(C6),1JTAB(1,6),1JTAB(2,6)/-3.0,2,3/
DATA A(7),I1JTAB(1,7),1JTAB(2,7)/-1.0,2,4/
DATA A(8),1JTAB(1,8),1JTAB(2,8)/-2.0,2,6/
DATA A(9),1JTAB(1,9),1JTAB(2,9)/-3.0,3,2/
DATA AC10),1JTAB(1,10>,1JTAB(2,10>/15.0,3,3/
DATA AC11),1JTAB(1,11>,1JTAB(2,11)/-2.0,4,1/
DATA AC12)>,1JTAB(1,12),1JTAB(2,12)/-1.0,4,2/
DATA A(13),1JTAB(1,13),1JTAB(2,13)/20.0,4,4/
DATA AC14),1JTAB(C1,14),1JTAB(2,143/-5.0,4,5/
DATA A(15),1JTAB(1,15),1JTAB(2,15)/-1.0,5,1/
DATA AC16),1JTAB(1,16),13TAB(2,16)/-5.0,5,4/
DATA AC17>,1JTAB(1,17),1JTAB(2,17>7/1.0,5,5/
DATA A(18>,1JTAB(1,18),1JTAB(2,18)/-1.0,6,1/
DATA Al19),1JTAB(1,19),1JTAB(2,19)/-2.0,6,2/
DATA AC20),1JTAB(1,20),1JTAB(2,20)/6.0,6,6/
DATA (B(1),1=1,6>/10.,-5.,28.5,37.5,-10.0,10./
WRITE(6,630) (IIA(I)IIJTAB(iII)’IJTAB(ZII)II 1,LA)
FORMAT(I5,F10.3,213)

ILL=0

IMAX=100

oMG=1.2

EPS=1.E-4

DO 100 I=1,N

X(I1>=1.0

CALL PRCGSS(IJTAB,A,LA,B,N,X,EPS,OMG,IMAX,IW,W,ILL)
WRITE(6,610) ILL,IMAX,N,OMG

FORMAT(1H ~,'ILL,IMAX,N,OMG=',316,F10.3)
WRITE(6,620) (X(I)>,I=1,N)

FORMAT(1HO,3E15.6)

_STOP

END

<Qutput result>

VO~NOUVMTSWN R

10.000
-2.000
-1.000
-1.000
12.000
-3.000
-1.000
-2.000
-3.000
15.000
-2.000
-1.000
20.000
-5.000
-1.000
-5.000

VUV DPUWNNVNNOVNNE R R
SfRrUBANRPUWUNMNOOSTWNNDNOOVIASR
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(b

17 1.000 5 5
18 -1.000 6 1
19 -2.000 6 2
20 6.000 6 6
" ILL,IMAX,N,OMG= 0 7 6 1.200

0.999998E+00 0.500000E+00 0.200000E+01

0.100000E+01 -0.400000E+01 0.2000C0E+01

(4) Calculation methed
See the calculation method for subroutines PRCGFS and PRCGFD which use the conjugate gradient

method with the preconditioning,

(5) Notes

If the approximate solution vector is known as argument X, input it, Otherwise, input the zero
vector, "

Call RECGSS or RECGSD to restgrt the iterative calculation after PRCGSS or PRCGSD is once
called, In this case, do not change the contents of arguments IJTAB, A, L, IW, and W, Also,

call RECGSS or RECGSD to determine solutions when only the right-side vector B is changed,

Bibliography
1) Tsuyako Miyakoda;"Consideration on solution of linear equations, and reduction of iterations
and quantity of calc;lation—conjugate gradient method” Dsaka University'computer center news,
Vol. 12, No.2, pp. 55—69 (1982)
(1987. 06. 19) (1987. 08. 08) (1987. 08. 21)
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TRDSPS/D and TDSPCS/D (Solution of Symmetric Positive Definite Tridiagonal Equations)

Solution of Symmetric Positive Definite Tridiagonal Equations

Programm | Ichizo Ninomiya, April 1977
ed by

Format | Subroutine language: FORTRAN; size: 29, 29, 45, and 46 lines
respectively

(1) Outline

TRDSPS/D or TDSPCS/D solves simultaneous linear equations with a symmetric positive definite
tridiagonal matrix as a coefficient matrix, using Cholesky deccmposition method that does not use
square roots,

TRDSPS/D is used if C(N)=0, and TDSPCS/D handles cyclic type tridiagonal equations, that is, if
C(N) 0. Bpth routines process multiple right side columns simultaneously, calculate

determinants, and can reuse Cholesky decomposition components,

(2) Directions
CALL TRDSPS/D(B, C, N, X, KX, M, DET, EPS, IND)

CALL TDSPCS/D(B, C, D, N, X, KX, M, DET, EPS, IND)

Argument | Type and Attribut Content -
kind (x1) |e

B Real type | Input/ou| If coefficient matrix diagonal elements are input, Cholesky
One-dimens | tput decomposition diagonal elements are output,
ional .
array

C Real type | Input/ou{ If coefficient matrix sub-diagonal elements are input,
One-dimens | tput Cholesky decomposition sub-diagonal elements are output, The
ional numbering of sub-diagonal elements is as shown in the figure,
array

D Real type 'Dutput The Cholesky decomposition elements of a coefficient matrix
One-dimens are output,
ional
array

N Integer Input Order of equation, It is also the number of elements in the
type arrays B, C, and D, N=3
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Argument | Type and | Attribut Content
kind (x1) |e
X Real type | Input/ou | If M right side columns are input in the form a matrix X, the
Two-dimens | tput solution vectors are output in the corresponding places,
ional
array

KX Integer Input Value of the first subscript in the array declaration of ¥,

type KX=N

M ‘| Integer Input Number of columns in X, If M =0, only Cholesky

type decomposition of a coefficient matrix is executed, .

DET Real type | Input/ou | If DET+#0 is input, the value of coefficient matrix

‘| tput determinant is output,
If DET=0 is input, DET=0 is output,

EPS Real type | Input Constant for determining the non-positivity of coefficient
matrix, If the value of a pivot element is smaller than this
constant, the input matrix is decided to be non positive
definite, and the calculation is interrupted, EPS>(

IND Integer Input/ou | This argument has the following meaning as an input,

type tput IND=0: Solve an equation by newly executing Cholesky

decomposition,

IND#0: Solve an equation, reusing the Cholesky -
decomposition elements previously calculated,- and stored in
B, C, and D,
This argument has the following meaning as an output,

IND=Q: Calculation terminated normally,

IND=30000: Limits on input arguments are violated,

IND=I: Calculation is interrupted at the I-th stage of non
positivity,

1+ For double precision subroutines, all real types are changed to double precision real

types,

(3) Performance

Generally, computation time is only proportional to the order of equation, If the same problem

is solved with a general simultaneous linear equation routine (LEGLUS, CHOLFS, GAUELS, etc.), it

takes very long time because computation time becomes proportional to the cubic power of the

order of equations,
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(4) Remarks

1. TRIDGS/D is prepared for tridiagonal equations where coefficients are not symmetric positive

definite,

2. When the same equation is to be repeatedly solved with the right side colunn changed, the

calculation time can be saved by using the facility for reusing the Cholesky decomposition

components of this routine,

(1987. 06. 17)
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TRIDGS/D (Solution of Tridiagonal EBquations)

Solution of Tridiagonal Equations

Programm | Ichizo Ninomiya, April 1977
ed by

Format Subroutine language: RFORTRAN; size: 39 and 40 lines respectively

(1) Outline
TRIDGS/D solves a tridiagonal equation or a system of linear equations with a tridiagonal
matrix as a coefficient matrix, using the Gauss’ elimination accompanied by row interchange for

pivot selection,

BB ¢, 0 0 - 0O O O X1 Dy
Ay B2 C2 0 - O 0O o0 X2 Do
O A2 B3 C3 -~ O 0 o0 X3 D3
H H i P e H H i H = H
0 0 0 O « Bp2Cp2 O Xn-2 Dr-2
0 0 O O « Ap2 Bp1 Ci Xn-1 -1
0O 0O 0 0O o 0 A B Xn n
(2) Directions
CALL TRIDGS/D(A, B, C, D, N, EPS, ILL)
Argument | Type anﬂ - | Attribut Content
kind (1) |e
A Real type | Input Input N-1 lower diagonal elements of a coefficient matrix in
One-dimens the order of the upper left to the lower right., Destroyed,
ional
array
B Real type | Input Input N diagonal elements of a coefficient matrix in the
One-dimens order of the upper left to the lower right. Destroyed,
ional
array
C - | Real type [ Input’ Input N-1 upper diagonal elements of a coefficient matrix in
One-dimens the order of the upper left to the lower right, Destroyed,
ional
array
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Argument | Type and Attribut Content
kind (1) |e
D Real type | Input/ou| If the right side column of the equation is input, the
One-dimens | tput solution vector calculated by this routine is output,
ional
array
N Integer Input Order of equation, N=3
type
EPS Real type | Input Criterion constant for singularity,” If the absolute value of
a pivot element is smaller than this constant, the equation
is decided to be singular and the calculation is interrupted,
Stored, EPS>(
ILL Integer Output ILL=0: Normal termination,
type ILL=30000: When limits on N and EPS are violated,
If an equation is decided to be singular, its pivot element
number is output,

1+ For double precision subroutines, all real types are changed to be double precision real

types.

(3) Performance

Because precision depends on problems, nothing can be said generally, Computation time is only
proportional to the order of equation, If the same problem is solved using a general
sinultaneous linear equation subroutine (LEQLUS, CHOLFS, GAUELS, etc.), it takes very long time

because the computation time is proportionil to the cubic power of the order of equations,

(4) Remarks
1. Tridiagonal equations can be solved even with a general simultaneous equation routine,
However, it is reasonable to use this routine from the standpoint of computation time,
2. If the typical absolute value of elements in a coefficient matrix is a,
ax10(ax107%) is adequate for the standard value of BPS for TRIDGS (TRIDGI).
3. It is more advantageous for a symmetric positive definite tridiagonal equation to use the

special-purpose routines TRDSPS and TRDSPD or TDSPCS and TDSPCD,

(1987. 06. 17)
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GINVS/D (Generalized inverse matrix by singular value decomposition)

Generalized Inverses (Pseudo-inverses) by Singular Value Decomposition

Making Ichizo Ninomiya; March 1979

Form Subroutine language; FORTRAN, Size; 30 lines each

(1) Outline
Matrix X with n rows m columns which satisfies the following relations is called the
generalized inverse to matrix A with m rows n columns,
AXA=A
XAX=X
(A T=Ax
(XA)T=XA
For a given A, such X is determined uniquely, This X is denoted by A", Suppose that
singular value decomposition
A=UDVT
of A is given, where U is a matrix with m rows and n coluons, £ and V each are a matrix withn
rows and n columns, and the following relation holds:
UTU=V'V=VVT=1,(n-digensional unit patrix)
L=diag(q1,92, -+ *Qqn)
qizqez---2qnz0
and Q;, i=1,2,...,n are singular values of A (positive square root of eigenvalue of ATA)_
Then, A" is given by:
A=veyT
Where,
L'=diag(q1”,q2",+++,qn")

and

+_J1/qi q:>0
w={'g" %%
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is assumed to be satisfied,

The purpose of this subroutine is to determine A" by singular value decomposition when A is

given,

(2) Directions

CALL GINVS/D(A, KA, M, N, @, V, KV, EPS, W, ILL)

Argument | Type and | Attribut Content
kind (1) |e

A Real type | Input/ou | When A is input, transposed matrix (/K*)T of the
Two-dimens | tput generalized inverse ﬁatrix is generated,
ional
array

KA Integer Input Value of the first subscript in array declaration of AKA=M
type

| Integer Input Number of rows in AM21
type

N Integer Input Number of columns in AN=1
type

a Real type | Output Singular values of A are.generated in descending order,
One-dimens One-dimensional array of size,
ional
array

v Real type | Output | Orthogonal transformation matrix V for singular value
Two-dimens decomposition is generated, Two-dimensional array with N
ional rows and N columns,
array 3

KV Integer Input Value of the first subscript in array declaration of VKV=N
type
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Argument | Type and Attribut Content
kind (1) |e
EPS Real type | Input Constant ¢ used for convergence and ( test I1J(l

determined when A is once converted into double diagonal
matrix J by bilateral Householder tr.ansformation is used to
make €llJ [l o+u a threshold of convergence test for
singular value decomposition and ( test of singular valu‘es.
Where, u denotes the unit of round-off errors, u is used as

€ when BPS<(0. 0 is input,

W Real type | Work One-dimensional array of size N,

One-dimens | area

ional
array
ILL Integer Qutput ILL=0: Normal end,

type ILL=30000: The argument violates the limit,
ILL=20000: Singular value decomposition of A does not

converge even after iteration of 30N times,

%] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Performance

The following is described on page 418 of bibiiography D, For a problem having matrix B
with 8 rows and 3 columns at the right-hand side and using matrix A of rank 3 having 8 rows and 5
columns and singular values ~1248,20,+/384,0,0 as a coefficient, A' is first
determined by GINVS, and A'B is then used to calculate the least squares minimal norm
solution, When EPS=10"% the accuracy for singular value Q, transformation matrix V, general

matrix A", and solution vector A'B was about six decimal digits,

(4) Example

A program to examine the above description is shown below.
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1 DIMENSION A(8,5),B(8,3),V(5,5),Q(5),W(8),R(5)
2 . M=8

3 N=5

4 NB=3

5 KA=8

é Kv=5

7 EPS=1.E-6

8 R(1)=SQRT(1248.)

9 R(2)=20.

10 R(3)=SQRT(384.)

11 R(4)=0.

12 R(5)=0.

13 READ(5,500) (CACI,J),J=1,N),1=1,M)

14 500 FORMAT(5F4.0)

15 READ(5,510) ((B(I1,J),J=1,NB),I=1,M)

16 510 FORMAT(3F4.0)

17 WRITE(6,600) M,N,NB,(CACI,J),0=1,N),1I=1,M)
*,((BC1,J),d=1,NB),1=1,M)

18 600 FORMAT(1H1//710X,'M =',12,2X,*'N =',12,2X,"'NB ="',
*x12//8(10X,1P5E13.5/7)/(10X,3E13.5))

19 CALL GINVS(A,KA-M,N,Q,V,KV,EPS,W,ICON)

20 DO 30 J=1,NB

21 PO 10 I=1,-M

22 10 W(IX>=B(1.,J)

23 PO 30 I=1,N

24 S=0.

25 DO 20- K=1,M

26 20 S=A(K,I)x*W(K)+S

27 30 B(I,J)=S

28 WRITE(6,610) EPS,ICON,C(QCJI,RCJD,JI=1,N)
x,((V(I,0),d=1,N),1=1,N),CCACI,d),1=1, M), d=1,N)
*,((BC(I,J),J=1,NB),1I=1,N)

29 610 FORMAT(//10X,"EPS =',1PE10.2,2X,'ICON =',16//
*5(10X,2E13.5/)/5C(10X,5E13.5/)/5(10X,8E13.5/)
*x/(10X,3E13.5))

30 STOP

31 . END

(5) Notes

1. The constant EPS used for theiconvergence test of singular value decomposition and the {
test of singular values must be specified carefully, If the BPS is too small for the accuracy of
data A, unnecessarily and wastefully precise calculation may be done and a singular value which
should normally be discarded as { may be taken for a significant value, On the contrary, if the
EPS is too large, a singular value which is small but significant may be discarded as (.

2. If the least squares minimal norm solution is calculated only once for a given coefficient
matrix A, it is not wise to use this routine GINVS or GINVD to determine A" except when A"
itself is required, This is because the routine requires large quantity of calculation,  LSMNS

or LSMND should be used for this case,
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MINVS/D/Q/C/B/2Z (Inversion of Matrices)

Inversion of Matrices

Prograam | Ichizo Ninomiya, April 1977

ed by
Format. | Subroutine language: FORTRAN; size: 96, 97, 96, 95, 96, and 96 lines
respectively '
(1) Outline

MINVS/D/Q/C/B/Z generates an inverse matrix of a given matrix in place of the given matrix,

using the LU-decomposition method, The rows are interchanged if necessary for pivot selection,

(2) Directions

CALL MINVS/D/Q/C/B/Z(A, KA, N, EPS, ILL)

Argument | Type and | Attribut Content
kind (x1) |e :
A Real type | Input/ou | If a matrix is input, its inverse matrix is output,
Two-dimens | tput
ional
array
KA Integer Input Value of the first subscript in the array-A declaration,
type KA=N .
N Integer Input Order of A, 2=N=<1000
type
EPS Real type | Input Criterion constant for matrix singularity, If the absolute

value of a pivot element is smaller than this constant, the
input matrix is decided to be singular, and the calculation

is interrupted, EPS>(

ILL Integer Output [LL=0: Normal termination,
type ILL=30000: Limits on KA, N, and EPS are violated,
The number of the pivot element whose absolute value is

smaller than EPS,

=1 For MINVD (MINVQ, MINVC, MINVB, MINVZ), A is a double precision real type (quadruple
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precision real type7 complex type, double precision complex type, and quadruple precision complex
type).
For MINVD (MINVQ, MINVC, MINVB, MINVZ), EPS is a double precision real type (quadruple
precision real type, real type, double precision real type, and quadruple precision real

type) .

(3) Calculation method

1. The permutation matrix P corresponding to row interchanges accompanying to pivoting is
applied to A and then PA is decomposed into a2 lower unit triangular matrix L and an upper
triangular matrix, PA=LU

9. Generates L} in place of L,

3. Generates U~! in place of U.

4. Generates A'=UILP in place of A,

In case of MINVS, all the necessary inner sum computation are done by partial double precision

arithmetic operation,

(4) Remarks

1. If the absolute values of matrix elements differs significantly, it is desirable to
normalize the matrix in advance by MNORMS and MNORMD to insure precision in the result, For the
required post-processing, see the explanation of MNORMS,

2. If the typical value of matrix elements is a, ax10;6(0x10"6,aX10'30) is adequate
as the standard value of EPS for MINVS and (MINVD, MINVQ),

3. It is very disadvantageous from the gtandpoint of computation time and precision to
calculate the inverse matrix of A for the calculation of matrix product of the form of A'B .
By all means, the simultaneous linear equation routines LEQLUS and LEQALUD should be used,

4, When the inverse matrix of a symmetric positive definite matrix is to be found, it is wise

to use the special-purpose routines MINVSP and MINVDP.

(1987. 06. 17) (1987. 08. 07)
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MINVSP/MINVDP/MINVQP (Inversion of Symmetric Positive Definite Matrices)

Inversion of Symmetric Positive Definite Matrices

Programn | Ichizo Ninomiya, April 1977
ed by '

Format Subroutine language: FORTRAN; size: 41, 41, and 4] lines respectively

(1) Outline
MINVSP/MINVDP/MINVQP generates the inverse matrix of a symmetric positive definite matrix A in

place of the input matrix using the Cholesky decomposition method,

(2) Directions

CALL MINVSP/MINVDP/MINVQP (A, KA, N, EPS, ILL)

Argument | Type and Attribut Content
- |kind (1) |e
A Real type | Input/ou | If a symmetric positive definite matrix is input, its inverse
Two-dimens | tput matrix is output, This argument processes only the upper
ional right half including the diagonal lines because of symmetry,
array The lower left half is preserved,
KA Integer Input Value of the first subscript in the array-A declaration,
type KAZN *
N Integer Input Order of A, N2
type
EPS Real type | Input Constant for determining the positivity of matrix A, If the
value of a pivot element is smaller than this constant, the
input matrix is decided to be non positive definite, and the
calculation is interrupted, EPS>(
ILL Integer Output ILL=0: Normal termination,
type ILL=30000: Limits on KA, N, and EPS are violated, The number
of the pivot element whose absolute value is smaller than EPS

=] For MINVDP (MINVOP), all real types are changed to double (quadruple) precision real types,

(3) Calculation method
1. Generates the Cholesky decomposition element U of A, that is, the upper triangular matrix U
such that A=U'U in the upper right triangular part of A,

2. Generates the inverse matrix u! of U, that is, the upper triangular matrix V such that
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UV=I in place of U,
3. Genmerates the upper right half of the inverse matrix A=W of A in place of V.

In case of MINVSP, execute all necessary inner sum calculations by partial double precision

arithmetic operation,

(4) Remarks

1, If the typical absolute value of matrix elements is ‘a, a><10'6(a><10'16,ax10'3°) is
adequate as the standard value of EPS for MINVSP, MINVDP, and MINSQP.

2. Itis v;zry disadvantageous from the standpoint of computation time and precision to
calculate the inverse matrix of A for the calculation of matrix product of the form of A'B .

By all means, the simultaneous linear equation routines CHOLFS and CHOLFD should be used,

(1987. 06. 16)
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MINVV/W/XZ7Y (lnversion of Matrix - Vector Version -)

Inversion of Matrix -Vector Version-

ed by

Programm | Ichizo Ninomiya and Yasuyo Hatano, March 1985

Format Subroutine language: FORTRANT7; size: 112, 113, 111, and 113 lines

respectively

(1) Outline

MINVV/W/X/Y obtains an inverse matrix using the Gauss-Jordan elimination, It is for single

precision (double precision, single precision complex type, or double precision complex type).

(2) Directions

CALL MINVV/W/X/Y (A, KA, N, EPS, LIST, W, IND)

Argument | Type and | Attribut Content
kind (1) |e
A Real type | Input/ou | The input matrix is processed with this routine, and its
Two-dimens | tput inverse is generated,
ional
array
KA Integer Input Value of the first subscript in the array-A declaration,
type KA=N
N ' Integer Input Order of A, N=2
type
EPS Real type | Input Matrix singularity criterion, If the absolute value of pivot
elements is smaller than this constant, it is determined to
be singular, and the computation is interrupted,
EPS>0
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Argument | Type and | Attribut Content
kind (x1) |e
LIST Integer Work One-dimensional array containing N elements,
type area
one-dimens
ional
array
W Real type | Work One-dimensional array of size 2N,

one-dimens | area

ional
array

IND Integer Output | The value ( is assumed if computation terminates normally,
type and 30000 is assumed if computation is not executed at all

because limits on the argument are exceeded,
Value of K is assumed if computation is stopped at the K-th

step because of singularity,

x] For MINVW(X, Y), A and W are changed to double precision real types (complex type or double
precision complex type).
For MINVW/Y, EPS is changed to a double precision real type.

(3) Calculation methed

The Gauss-Jordan elimination accompanied by row exchange fbr partial pivoting is used,

(4) Note
1. If the typical absolute value of matrix elements is a, aXIO's(QXIO"'s) is adequate as

the standard value of EPS for MINVV(K).

(1987. 06. 19) (1987. 08. 07)
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4. Eigenvalue analysis

[Method of choice of eigenvalue analysis routines]

NUMPAC provides a variety of effective eigenvalue analysis routines that you can select
depending on the type, characteristics, and structure of each target matrix, By carefully
selecting them based on the guideline shown below, you can enjoy much of their superiority in all
aspects of precision, speeds, and storage capacities, To make the following explanation simple,
the name of each recommended routine is represented by the one for single precision, In addition
to the routines below, the high-speed eigenvalue analysis package NICER is also available,

1. Non-symmetry: HEQRVS
2. Symmetry
(1) Dense matrix
(a) To obtain all eigenvalues and eigenvectors: HQQRVS
(b) To obtain all eigenvalues and all or part of eigenvectors: HQRIIS
(c) To obtain part 6f eigenvalues and eigenvectors: HOBSVS
(d) To obtain a limited part of eigenvalues and eigenvectors:  JENNFS
(2) Band matrix
(a) To obtain all eigenvalues: RHARVS
(b) To obtain a limited part of eigenvalues and eigenvectors:  JENNBS
3. General problems of symmetric matrices

(1) Dense matrix

(a) To obtain all eigenvalues and eigenvectors: GHQRVS
(b) To obtain all eigenvalues and part of eigenvectors: GHQRIS
(c) To obtain part of eigenvalues and eigenvectors: GHBSVS

(2) Band matrix
(a) To obtain a limited part of eigenvalues and eigenvectors: GJENBS

4. Singular value decomposition: SVDS
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CGHBSS/D/Q (Rigenvalue analysis of the type Ax=2ABx by Householder-bisection Method

(Hermitian matrices))

Eigenvalue Analysis of the Type Ax=ABx by Houscholder-Bisection Method (Hermitian Matrices)

Progracm | Ichizo Ninomiya; December 1983

ed by

Format Subroutine language; FORTRAN, Size; 54, 55, and 55 lines respectively

»

(1) Outline

When Hermitian syametric matrix A and Hermitian symmetry positive definite matrix B are
given, CGHBSS/D/Q obtains a specified number of eigenvalues and eigenvectors of an eigenvalue
problem z&1;=&lii by Householder bisection methed, CGHBSS/D/Q is a single (double, quadruple)

precision subroutine,

(2) Directions

CALL CGHBSS/D/Q(A, B, KA, N, E, NE, V, NV, BPS, W, Z, ILL)

/37

Argument | Type and Attribut Content
kind (%1) |e

A Complex Input | The upper right half of the Hermitian symmetric matrix
type including the diagonal is input, After processing of this
Two-dimens routine, A is generated (see the calculation method), The
ional lower left half is preserved,
array

B Complex Input The upper right half of the Hermitian syametric positive
type definite matrix including the diagonal is input, After
Two-dimens processing by this routine, Cholesky decomposition component
ional U is generated (see the calculation method)., The lower left
array half is preserved,
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Argument | Type and Attribut Content
kind (x1) |e
KA Integer Input Adjustable dimension of A, B, and V (value of the first
type subscript in array decl&ration)KA;:N
N Integer Input , 1 Order of A and BThis is also the number of rows of V. N=2
type
B Real type | Output Eigenvalues are generated and arranged, In descending order
Two-dimens if NE > (0, and in ascending orde; if B<O
ional
array
NE Integer Input The number of the eigenvalue to be obtained is specified by
type the absolute value, The largest (smallest) |NE| eigenvalues
are obtained if NE > 0 (NE < (). NE+#0
V- Complex Uutput' The eigenvector corresponding to eigenvalue B (I) is
type normalized in the meaning of x*Bx=1 anﬁ output in the
Two-dimens column I,
ional
array
NV Integef Input The number of eigenvectors to be obtained is specified by the
type | absolute value, The eigenvectors corresponding to the first
INV] eigenvalues in the order determined by NE are obtained,
0= INV|<|NE|
EPS Real type | Input Convergence criterion constant of bisection methodWhen the
tridiagonal matrix generated from A is denoted by T,
IITIl +|EPS| is used for convergencé test, Cholesky
decompo;ition for B is omitted when EPS < 0, EPS#0
W Real type | Work One-dimensional array with the size of 3N or more
one-dimens | area
ional
array
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Argument | Type and Attribut Content
kind (1) |e
Z Complex Work One-dimensional array with the size of 5N or more
type area
ne-dimens
ional
array
ILL Integer Output | ILL = 0: Normal end
type ILL = 1: B is decided to be non-positive definite,
ILL = 30000: The input arguments violated the limit,

2] For double or quadruple precision subroutines, all single precision types are changed to

double or quadruple precision types,

(3) Calculation method

Positive definite matrix B is Cholesky-decomposed by an upper triangular matrix U as

B=U*U. hen 3=(U"‘)"AU'I is formed from A using U, the generalized eigenvalue problen

Ax=ABx becomes a standard eigenvalue problem Z:?:-=K:.i‘, This problem is solved by

Householder-bisection method and eigenvector x is determined by 1:4]"5,

(4) Notes

1. When all eigenvalues are to be determined, it is more advantageous to use subroutine

CGHQRS/D/Q or CGHAIS/D/Q which uses Householder-QR method.

2. For repeated calculation with B fixed and with only A changed from time to time, it is

better to reuse the Cholesky-decomposed components of B, Refer to the description of EPS in

the argument table,

Bibliography

1) Yoshitaka Beppu and Ichizo Ninemiya; “Comparisons of Matrix Solutions for Standard Eigenvalue

Problems, * Nagoya University Computer Center News, Vol 11, No.3, and pp. 265-274 (1980)

(1987. 08. 07)
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CGHQIS/D/Q (Eigenvalue Analysis of the Type Ax=ABx by Householder-QR-Inverse lteration

Method (Hermitian Matrices))

Bigenvalue Analysis of the Type Ax=ABx by Householder-QR-Inverse Iteration Method

(Hermitian Matrices)

Programm | Ichizo Ninomiya, December 1983

ed by

Format Subroutine language: FORTRAN; size: 52, 53, and 53 lines

respectively,

(1) Outline

CGHAIS/D/a obtains all of'the eigenvalues and a part of the eigenvectors of the eigenvalue
problen Ax=ABx using Householder-QR-inverse iteration method if a Hermitian matrix A and a
Hermitian positive definite matrix B are given, It is for single (double or quadruple)

precision,

(2) Directions

CALL CGHQIS/D/a(A, B, KA, N, B, V, NV, EPS, §, Z, ILL)

Argument | Type and Attribut ' Content
kind (1) |e
A Complex Input/du The upper right half containing the diagonal lines of a
type tput Hermitian matrix is input, It is processed and converted to
Two~dimens A in this routine, The lower ]eff half is retained,
ional
array
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Argument | Type and Attribut Content
kind (1) |e

B Complex Input The upper right half containing the diagonal of a Hermitian
type positive definite matrix is input, It is processed and )
Two-dimens converted to the Cholesky decomposition element U (see the
ional calculation method),  The lower left half is retained,
array .

KA Integer Input Adjustable dimensions of A, B, and V (value of the first
type subscript in the array declaration), KA=N

N Integer Input Order of A and B, It also represents the number of rows of
type V. N=2

B Real type | Output Eigenvalues are output in the order of size, If NV=0,
One-dimens eigenvalues are arranged in descending order, If NV<(,
ional eigenvalues are arranged in ascending order,
array

V Complex Qutput Bigenvectors corresponding to the eigenvalue E(I) are output
type to the I-th column, They are normélized in the sense of
Two-dimens *Bx=1,
ional
array

NV Integer Input | NV | represents the number of eigenvectors to be obtained,
type If NV>0 (NV<0), eigenvectors are numbered in algebraically

descending (ascending) order from the maximum (minimum),
| NV | <N
EPS Real type | Input Convergence criterion of GR method, If the tridiagonalized

matrix is denoted by T, |ITIl -

EPS | is used for the
criterion, If EPS<), the Cholesky decomposition of B is

omitted, EPS#(
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Argument | Type and Attribut Content
kind (x1) |e
W Real type | Work One-dimensional array of size N,
one-dimens | area
ional
array
YA Complex Work One-dimensional array of size 5N,
| type area
One-dimens
ional
array
ILL Integer Qutput { ILL=0: Normal termination,
type ‘| ILL=1: B is decided to be not positive definite,
ILL=30000: The input argument exceeded the limit,

1= For double (quadruple) precision subroutines, all single precision types are cahnged to

double (quadruple) precision types,

(3) Calculation method

The Hermitian positive definite matrix B is Cholesky-decomposed to B=U*U with the upper
triangular matrix U. If ;\=(U")"AU'I is generated from A using this U, the generalized
eigenvalue problém-Ax=KBx becones the standard eigenvalue problen AX=AX., If this

problem is solved using Householder-QR-Inverse iteration method, the eigenvector X is

obtained with x=U"'x,

(4) Notes

1. When up to about one-fourth of the entire eigenvalues is to be obtained, it is more

advantageous to use the subroutine CGHBSS based on Householder bisection method,

9. When the calculation is to be repeated with B kept constant and only A changed, it is

better to reuse the Cholesky decomposition elements of B,

the list of arguments,
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Bibliography
1) Yoshitaka Beppu and Ichizo Ninomiya: “Comparison of Matrix Solutions of Standard Eigenvalie
Problems, ” Nagoya University Computer Center News, Vol 11, No.2, pp.265-274 (1980)

(1987. 06. 22)

143



R

-CGHQRS/D/Q (Eigenvalue Analysis of Ax=ABx by Householder-QR Method (Hermitian Matrices))

Eigenvalue Analysis Ax=ABx by Householder-GR Methed (Hermitian Matrices)

Programm | Ichizo Ninomiya, December 1983

ed by

Format Subroutine language: FORTRAN; size: 53, 54, and 54 lines respectively

(1) Outline

CGHARS/D/Q obtains the entire eigenvalues and, if required, the entire eigenvectors of the
eigenvalue problem Ax=ABx if a Hermitian matrix A and a Hermitian positivé definite matrix B
are given, It converts A to .3=(U")"AU_l by executing Cholesky decomposition with B=U*U,
and solves the standard eigenvalue problem Zy=&y using Householder-QGR method, If

eigenvectors are required, it converts the eigeavector y of A by x=U" Iy,

(2) Directions

CALL CGHQRS/D/Q(A, B, KK, N, E, F, EPS, IND)

Argument | Type and Attribut Content
kind (1) |e

A Complex Input/ou | Only the upper right half of a Hermitian matrix is input, It
type tput s processed in this routine, and Ais generated in the
Two-dimens upper right half, . If eigenvectors are obtained, they are
ional entered in each column, The vectors are normalized in the
array : sense of x'Bx=1,

B Complex Input/ou | Only the upper right half of a Hermitian positive definite
type tput matrix is input, It is processed ih this routine, and the
Two-dimens Cholesky decomposition element U of B is entered in the upper
ional right half, The lower left half is retained,
array

KK Integer Input Value of the first subscript in the declaration of arrays A
type and B: KK=N
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Argument | Type and Attribut Content
kind (x1) {e
N Integer Input Order of arrays A and B, N=2
type
E Real type | Input One-dimensional array containing N elements, Eigenvalues are
One-dimens arranged in algebraically descending order,
ional
array
F Complex Work One-dimensional array containing N elements,
type area
One-dimens
ional
array
EPS Real type | Input | BPS | is the convergence criterion of the QR method, It is
also the positivity criterion for-Cholesky decomposition of
B. If this routine is called with EPS<), the Cholesky
decomposition elements of B are reused, EPS+#(
IND Integer Input/ou | This argument has has the following meaning as an input
type tput argument, IND=0: Only eigenvalues are calculated, IND#0:

Eigenvectors are also calculated, This a;gument has thé
following meaning as an output argument,

IND=0: Calculation is normaliy executed; IND=1: B is decided
to be not positive definite,

IND=30000: Limits on the input argument were exceeded,
Because this argument is both input'and output, éonstants

must not be used.

1= For double (quadruple) precision subroutines, all single precision types are changed to

double (quadruple) precision types.

(3) Calculation method
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The Hermitian positive definite matrix B is Cholesky-decomposed to B=U*U with the upper
triangular matrix U, If A=UHAUT s generated from A using this U, the generalized
eigenvalue problem Ax=ABx becomes the standard eigenvalue problem 35:=R§:, This problem

is solved using Householder QR method, and the eigenvector x is obtained with x=U" ':'f:,

(4) Notes
1. If only selected eigenvectors are to be obtained, it may often be advantageous to use
Householder-QR-inverse iteration method (CGHAIS).
2. If calculation is iterated with B kept consfant and only A changed, it is better to
reuse the Cholesky decomposition elements of B, See the explanation for the argument EPS.

(1987. 06. 22) (1987. 08. 07)
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CGKLZ2S/D/Q (Bigenvalue Analysis of the Type Ax=ABx by LZ Method (Complex Matrices))

Eigenvalue Analysis of the Type Ax=ABx by LZ Method{(Complex Matrices)

Programm | Ichizo Ninomiya, July 1984
ed by
Format | Subroutine language: FORTRAN; size: 256 and 256 lines respectively

(1) Outline

CGKLZS/D/Q obtains all the eignevalues of the eigenvalue problem Ax=ABx using the LZ method

for given complex matrices A and B, -and obtains specified eigenvectors using the inverse

iteration,

It is for single (double or quadruple) precision,

(2) Directions

CALL CGKLZS/D/Q(A, B, KA, N, B, IE, V, NV, EPS, ¥, Z, ILL)

Argument | Type and | Attribut Content -
kind (1) |e

A Complex Input Complex matrix A, It is processed with this routine, and
type transforoed to A (see the calculation method),
Two-dimens
ional
array

B Complex Input Complex matrix B, It is processed with this routine, and
type transformed to B (see the calculation method),
Two-dimens
ional
array

KA Integer Input Adjustable dimensions of A, B, and V (value of the first
type subscript in the array declaration), KA=N

147



|43

Argument | Type and | Attribut Content
kind (x1) |e
N Integer Input Order of A and B, It also represents the number of rows of
type V. N22
B Complex Qutput Eigenvalues are output in the order of absolute values, If
type NV=0, eigenvalues are arranged in descending order, If
One-dimens NV<0, eigenvalues are arranged in ascending order.
ional
array
IE Integer Output | The condition code of the I-th eigenvalue is input in IE(I).
type 1B=0: Normal, IE=1: Bigeavalues do not exist,
one-dimens IB=2: Bigenvalues are indeterminate,
ional
array
v Complex Output | An eigenvector to the eigenvalue B(I) is normalized to a
type length of 1 and placed to the I-th column,
Two-dimens
ional
array
NV Integer Input The number of eigenvectors to be obtained is represented by
type the absolute value, and how to arrange eigenvalues is
represented by the sign, (See the item of E.)
0| M| = ||
EPS Real type | Input Convergence criterion of bisection method,
oax([lAll, IBI)%|EPS| is used as fhe Eriterion,
W Complex Work One-dimensional array of size NsN,
type area
one-dimens
ional
array
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Argument | Type and | Attribut Content
kind (x1) |e
yA Complex Work One-dimensional array of size N,
type area
One-dimens
ional
array
ILL -Integer Qutput ILL=0: Normal terminmation,
type ILL=K: K:Number of abnormal eigenvalues,
ILL=20000: LZ method does not result in convergence,
ILL=30000: The input argument exceeded the limit,

1x For double (quadruple) precision subroutines, all single precision types are changed to

double (quadruple) precision types,

(3) Calculation method
1. The matrix A and B are transformed to upper Hessenberg matrix A=LAM and B=LBM
respectively using the stabilized elementary row transformation L, and the stabilized elementary

column transformation M,

2. All the eigenvalues of the eigenvalue problem Ay=&l-3y are obtained using the LZ method with
origin shift, and the specified eigenvectors Y are obtained using the inverse iteration,

3. Bigenvectors are obtained by x=My, and normalized to length 1.

(4) Note
1. If A is Hermitian, and B is Hermitian positive definite, it is more advantageous to use

CGHBSS, CGHQIS, and CGHARS,

Bibliography

1) Kaufman L; ®The LZ Algorithms to Solve the Generalized Bigenvalue Problem®, Stanford Computer
Science Report PB-222099, p. 103 (1973)

(1987. 08. 07) (1988. 04. 22)
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CHEQIS/D/Q (Eigenvalue Analysis for Complex Matrices by QR and Inverse Iteration Method)

Eigenvalue Analysis for Complex Matrices by QR and Inverse Iteration Method

Programm | Ichizo Ninomiya, October 1983

ed by

Format | Subroutine language: FORTRAN; size: 207 and 208 lines respectively

(1) Outline

CHEQIS/D/Q transformed a complex matrix to an upper Hessenberg matrix using the stabilized
elementary transformation, obtains all the eigenvalues using the QR method, and calculates the
eigenvectors as many as requested using the inverse iteration methed, It is a singie {double or

quadruple) precision subroutine,

(2) Directions

CALL CHEQIS/D/Q(A, KA, N, B, V, NV, EPS, I4, W, Z, ILL)

Argument | Type and | Attribut Content
kind (x1) |e

A Complex Input Matrix whose eignevalue analysis is to be executed, It is
type ‘ processed with this routine, and transformed to an upper
Two-dimens Hessenberg type,
ional
array

KA Integer Input Adjustable dimensions of A and V (value of the first
type subscript in the array declaration); KA=N

N Integer Input Order of A, Number of rows of V. It also represents the
type size of E, N1

150 -



Argument | Type and Attribut Content
kind (x1) |e
E Complex Output | Eigenvalues, The I-th eigenvalue is E(l).
type
One-dimens ,
ional
array
v Complex Output | The [-th eigenvector is outputito the I-th coluan of V. The
type length is normalized to 1.
Two-dimens
ional
array
NV Integer Input The number of eigenvectors is represented by the absolute
type value, If NV=0, eigenvalues are arranged in the descending
order of absolute values, If Nv<h, eigenvalues are arranged
in the ascending order of absolute values, Then, vectors to
the first |NV| eigenvalues are obtained,
EPS Real type | Input A1l “EPS is used as the convergence criterion of QR, EPS>0
I Integer Work One-dimensional array of size N,
type area
one-dimens
ional
array
W Real type | Work One-dimensional array of size 3N,
one-dimens | area
ional
array
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Argument | Type and Attribut ' Content
kind (£1) |e
A Complex Work One-dimensional array of size fVZ,
type area
One-dimens
jonal '
varray
ILL Integer Output Condition code,
type IND=0: Normal,
IND=1: N=1 or the elements in A are all (.
IND=2: The OR method or the inverse iteration does not
result in convergence,
IND=30000: The input argument exceeded the Iimit,

%] For double precision subroutines, all real types are changed to double precision real types,
and all complex types to double precision complex types, For quadruple precision subroutines,
all real types are changed to quadruple precision real types, and all complex types to quadruple

precision complex types,

@ Calculation method

The complex matrix A is transformed to an ubper Hessenberg matrix H=S"'AS using the
stabilized elementary transformation S, that is, Gauss's elimination accompanied by row
exchange,

All the eigenvalues of H ﬁre obtained using the QR method with origin shift,

A specified number of eigenvectors of H are obtained using the inverse iteration, These

eigenvectors are placed in U Eigenvectors of A are calculated as V=SU froam U,

(4) Notes
1 It is reasonable to process the Hermitian matrix with the special-purpose routine,
2. If an eigenvector is not to be obtained (NV=0), the area to V and Z is not used, and thus

need not be prepared, Anything can be written for these arguments,
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CHEQRS/D/Q (Bigenvalue Analysis for Complex Hatrices by QR Hgthod)

Eigenvalue Analysis for Complex Matrices by QR Method

Programm | Ichizo Ninomiya, October 1983
ed by
Format Subroutine language: FORTRAN; size: 191 and 192 lines respectively

(1) Outline

CHEQIS/D/@ transforms a complex matrix to an upper Hessenberg matrix using the stabilized

elementary transformation, obtains all the eigenvalues using the QR method, and, if required,

calculates all the corresponding eigenvebtors_ This subroutine is for single (double or

quadruple)

(2) Direct

precision,

ions

CALL CHEQRS/D/Q(A, KA, N, E, V, EPS, IW, IND)

Argument | Type and Attribut Content
kind (1) |e

A Complex Input Matrix whose eigenvalue analysis is to be executed, It is
type processed with this routine, and transformed to a Hessenberg
Two-dimens type,
ional
array

KA Integer Input Adjustable dimensions of A and V. (value of the first
type subscript in the array dec]aration); KA=N

N Integer Input Order of A, Number of rows of V. It also represents the
type size of E. N21

Cisa -




Argument | Type and Attribut Content
kind (x1) |e
E Complex Qutput | Eigenvalue, The I-th eigenvalue is E(I).
type
One-dimens
ional
a;ray
v Complex Output The I-th eigenvector is output to the I-th column of V. The
type length is normalized to 1.
Two-dimens
ional
array
EPS Real type | Input IlAll -EPS is used as the convergence criterion of @R EPS>0
I Integer Work One-dimensional array of size N,
type area
one-dimens
"ional
array
IND Integer Input/ou { Input: Whether to calculate eigenvectors and how to array
type tput eigenvalues are specified,

IND=0: Eigenvectors are not calculated.

IND#0: Eigenvectors are calcu]aied,

- .155
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Argument | Type and Attribut ~ Content

kind (x1) |e

. IND=0: Bigenvalues are arranged in the descending order of
absolute values,

IND<Q: Eigenvalues are arranged in th; ascending order of
absolute values,
Output: Condition code,

IND=0: Normal,

IND=1: N=1 or the elements of A is all (.

IND=2: The QR method does not result in convergence,

IND=30000: The input argument exceeded the limit,

1x For double (quadruple) precision subroutines, all single precision types are changed to

double (quadruple) precision types,

(3) Calculation method

The real matrix A is transformed to an upper Hessenberg matrix H=S"'AS using stabilized
elementary transformation S, that is, Gauss' elimination accompanied by row exchange, H is
converted into an upper triangular matrix using QR gethod with origin shift, Eigenvalues are
given as the diagonal elements, Eigenvectors are obtained from the eigenvectors of the upper
triangular matrix using the inverse transformation of the stabilized elementary and QR

transformations,

(4) Notes
1. It is reasonable to process the Hermitian matrix with the special-purpose routine,
2. If eigenvector are not to be obtained (IND=0), the area for V is not used, and thus need

not be prepared. Anything can be wfitten for it,

(1987. 06. 19) (1987. 08. 07)
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CHOBSS/D/Q (Bigenvalue Analysis for Hermitian Matrix by Householder-Bisection Method)

Eigenvalue Analysis for Hermitian Matrices by Householder-Bisection Method

Programm | Ichizo Ninomiya, October 1983
ed by
Format Subroutine language: FORTRAN; size: 188 and 189 lines respectively

(1) Outline

CHOBSS/D/Q tridiagonalizes a Hermitian matrix using Householder’s reflexion transformation,

obtains the eigenvalues of the tridiagonalized matrix using the bisection method based on Sturm

sequence, and calculates the eigenvectors using the inverse iteration, It is for single (double

or quadruple) precision,

(2) Directions

CALL CHOBSS/D/Q(A, KA, N, E, NE, V, NV, EPS, W, Z, ILL)

Argument | Type and Attribut Content
kind (1) |e

A Complex Input The upper right half containing the diagonal of a Hermitian
type matrix is inpﬁt_ It is processed with this routine, The
Two-dimens left lower half is retained,
ional
array

KA Integer Input Adjustable dimensions of A and V (value of the first
type subscript in the array dec]aration); KA=N

N 'lnteger Input Order of A, It also represents the number of rows of V. N=|]
type
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Argument | Type and | Attribut Content
kind (1) |e |
E Real type | Dutput Eigenvalues are output in the order of size, If NE>(,
One-dimens | eigenvélues are arranged in descending order, If NE<(,
ional eigenvalues are arranged in ascending 6rder,
array
NE Integer Input The nuﬁber of eigenvalues to be obtained is represented by
type the absolute value, If NE>) (NE<0), eigenvalues are numbered
in algebraically descending (ascending) order from the
maximum (minimum)., NE#(0
v Complex Qutput Bigenvectors to the eigenvalue E(I) are normalized to length
type 1, and placed to the I-th column,
Two-dimens
ional
array
NV Integer Input The number of eigenvectors to be obtained is represented by
type the absolute value, Eigenvalues are numhered‘from the end in
the order defined by NE. 0<|NV|<|NE]

BPS Real type | Input Convergence criterion of bisection methed, If the
tridiagonalized matrix is denoted by T, [Tl -EPS is used as
the criterion, EPS>0

W Real type | Work One-dimensional array of size 3N,

One-dimens | area
ional
array

A Complex | Hork One-dimensional array of size SN,

type area
One-dimens

ional

array
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Argument | Type and Attribut Content
kind («1) |e
ILL Integer Qutput ILL=0: Normal termination,
type ILL=30000: The input argument exceeded the limit.

1+ For double precision subroutines, all real types are changed to double precision real types,
and all complex types to double precision complex types, PRor quadruple precision subroutines,
all real types are changed to quadruple precision real types, and all complex types to quadruple

precision complex types,

(3) Calculation methed

The matrix A is transformed to a tridiagonal matrix T=H*AH using the Householder
transformation H,

The eigenvalues of T are obtained by the bisection methed based on Sturm sequence, They are
numbered as many as specified from the end in a specified order, The eigenvectors corresponding
to the eigenvalues specified as counted from the end are obtained using the inverse iteration,
The matrix containing these eigenvectors in columns is denoted by U, then the eigenvector V of A

can be obtained by V=HU,

(4 Note

When all the eigenvalues of a Hermitian matrix are to be obtained, it is better to use the
routine CHOQRS/D based on the QR ﬁethod than this routine, When all of the eigenvalues and all
or part of the corresponding eigenvectors are to be obtained, it is more reasonable to use the

routine CHQRIS/D based on the QR-inverse iteration,

(1987. 06. 22)

159



160

CHOQRS/D/Q (Bigenvalue Analysis for Hermitian Matrices by Householder-GR Method)

Eigenvalue Analysis for Hermitian M&trices by Houssholder-QR Method

Programnm | Ichizo Ninomiya, October 1983

ed by

Format | Subroutine language: FORTRAN; size: 133, 134, and 134 lines

respectively

(1) Outline

CHBQRS/D/Q obtains all the eigenvalues and, if required, all the corresponding eigenvectors of

an Hermitian matrix, using the Householder’s tridiagonalization and OR method with origin shift,

(2) Directions

CALL CHOQRS/D/Q(A, KA, N, B, F, EPS, ILL)

Argument | Type and Attribut ’ Content
kind (1) |e

A Complex Input/ou | The upper right half containing the diagonal lines of a
type ' tput Hermitian matrix is input, Anything can be input in the
Two-diaens lower left half, If eigenvectors are to be obtained,
ional eigenvectors are output in A, That is, eigenvectors to the
array eigenvalues B(l) are normalized to length 1, and is placed in

the I-th column of A,

KA Integer Input Value of the first subscript in the array-A declaration,
type KA=N

N | Integer Input Order of A, N22
type
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Argument | Type and Attribut Content
‘kind (1) |e
E Real type | Output One-dimensional array containing N elements, Eigenvalues are
One-dimens arranged in algebraically descending order,
ional
array
F Complex Work One-dimensional array containing N elements,
type area- )
One-dimens
ional
array
EPS Real type | Input Convergenée criterion for GR method, If all the non-diagonal
elements become smaller than || Al <EPS in magnitude,
convergence is judged to have occurred, EPS>(
ILL Integer Input/ou | If ILL=0 is given, only eigenvalﬁes are calculated, If
type tput ILL#0 is given, both eigenvalues and eigenvectors are
calculated, If calculation terminates normally, 0 is
output, If limits on the input argument are exceeded, 3000
is output, Constants must not be used for the actual
argument, .

x] For double precision subroutines, all real types are changed to double precision real types,

and all complex types are changed to double precision complex types,

For quadruple precision

subroutines, all real types are changed to quadruple precision real types, and all complex types

are changed to quadruple precision complex types,

(3) Performance

As with real symmetric matrices, this routine is high in speed,

It can be used without

troubles even for the case of multiple or close eigenvalues,

(4) Notes
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1. This routine is 6ptimum when all eigenvalues (and corresponding eigenv.ectors) are to be
obtained with a small storage requirement,

2. 1f only part of eigenvalues or eigenvectors is to be ohtained. Householder-Givens’ method
{bisection method) is desirable, Subroutines that are currently registered are CHOBSS/D.

(1987. 06. 22) (1987. 08. 07)




CHQRIS/D/Q (Bigenvalue Analysis of Hermitian Matrices by Householder-QR-Inverse Iteration

Method)

Eigenvalue Analysis of Hermitian Matrices by Householder-QR-Inverse Iteration Method

Programm | Ichizo Nincmiya, October 1983

ed by

Format | Subroutine language: FORTRAN; size: 188 and 189 lines respectively

(1) Outline
CHAQRIS/D/Q obtains all the eigenvalues of a Hermitian matrix using Householder-QR method, and

calculates specified eigenvectors using the inverse iteration,

(2) Directions '

CALL CHQRIS/D/G(A, KA, N, E, V, NV, EPS, W, Z, ILL)

Argument | Type and Attribut Content
kind (x1) |e

A Complex Input The upper right half containing the diagonal of a Hermitian
type matrix is input, It is processed with this routine, The
Two-dimens lower left half is retained,
ional
array

KA v Integer Input Adjustable dimensions of A and V (value of the first
type subscript in the array declaration). KA=N

N Integer Input Order of A, It also represents the number of rows of V. N=2
type

B Real type | Output All eigenvalues are output in the order of size. If NV=0,
One-dimens eigenvalues are arranged in descending order, If NV<(,
ional eigenvalues are arranged in ascending order,
array

63 - -
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Argument | Type and Attribut Content
kind (1) |e

v Complex Output | Eigenvectors to the eigenvalue E(I) are normalized to length
type 1, and placed to the I-th column,
Two-dimens |
ional
array

NV Integer Input INV| represents the number of eigenvectors to be obtained,
type If NV>0 (NV<0), eigenvectors are numbered in algebraically

descending (ascending) order from the maximum (minimum),

INVI=N

EPS Real type | Input Convergence criterion of QR method, If the tridiagonalized

matrix is denoted by T, [IT|| -EPS is used as the criterion,

EPS>0
W Real type | Work Dne-dimensional array of size N,
One-dimens | area
ional
array
z Complex Work One-dimensional array of size SN,
type area |
One-dimens
ional
array
ILL Integer Output | ILL=0: Normal termination,
type ILL=30000: The input argument exceeﬁed the limit,

%] For double precision subroutines, all real types are changed to be double precision real
types, and all complex types to double precision complex types, For quadruple precision
subroutines, all real types are changed to quadruple precision real types, and all complex types

to quadruple precision complex types,
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(3) Calculation method

The Hermitian matrix A is transformed to a tridiagonal matrix T=H*AH using the Householder

transformation H,
All the eigenvalues 6f T are calculated using the QR method, A specified number of

eigenvectors of T are obtained using the inverse iteration, They are gathered in the matrix U,

The eigenvectors of A are calculated by V=HU,

() Notes

1. The routine is adequate when all the eigenvalues are obtained quickly, and all or part of the
eigenvectors are obtained,
2. If up to about one-fourth of the eigenvalues is to be obtained, it is more advantageous to

use CHOBSS/D based on Householder-bisection methed,

(1987. 06. 22)

165



166

GHBSVS/D (Eigenvalue analysis of the type Ax=A4Bx by Householder-bisection method)

Bigenvalue Analysis of the Type Ax=ABx by Householder-Bisection Method

Programm | Ichizo Ninomiya; April 1981
ed by
Format | Subroutine language; FORTRAN Size; 230 lines each

(1) Outline

When a reai symmetric matrix A and a real symmetric positive definite matrix B are given,

GHBSVS/D determines the specified number of eigenvalues and eigenvectors of eigenvalue problem

Ax=ABx by using the Householder-bisection method,

(2) Directions

GHBSVS (D) is for single (double) precision,

CALL GHBSVS/D(A, B, KK, N, E, V, NV, EPS, ¥, ILL)

Argument | Type and | Attribut Content
kind (1) |e

A Real type | Input The upper right half of the real symmetric matrix including
Two-dimens the diagonal is input, After processing by this routine, A
ional is generated (see the calculation method), The lower left
array half is preserved,

B Real type | Input | The upper right upper of the real symmetry positive definite
Two-dimens matrix including the diagonal is inbut, The matrix is
ional processed by this routine to become Cholesky decomposition
array component U (see the calculation method). The lower left

half is preserved,

KK Integer Input Adjustable dimensions of A, B, and V (value of the first
type subscript in array declaration)KK=N
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Argument | Type and | Attribut Content
kind (=1) {e
N Integer Input Order of A and BThis is also the number of rows of V. N=2
type
E Real type | Output Bigenvalues are generated and arranged, In descending order
Two-dimens if NE > 0, and in ascending order if NE < 0
ional
array
NE Integer Input The number of eigenvalues to be obtained is specified by the
type absolute value, The largest (smallest) |NE| eigenvalues are
obtained if NE > 0 (NE < 0). NE#0
v Real type | Output | The eigenvector corresponding to eigenvalue E(I) is
Two-dimens normalized in the meaning of JJ =1 and output in the
ional column I,
array
NV Integer Input The number of eigenvectors to be determined is specified by
type the absolute values, The eigenveétors corresponding to the
first |NV| eigenvalues in the order determined by NB are
obtained, O;SINVI:EINBI
EPS Real type | Input Convergence criterion constant for bisection methodWhen the
tridiagonal matrix generated from A isAdenoted by T,
T -|BPS| is used for convergence test. Cholesky
decomposition for B is omitted if EPS < 0. EPS#(
W Real type | Work One-dimensional array with the size of 6N or more
one-dimens | area
ional
array
ILL Integer Output ILL = 0: Normal end
type ILL = 1: B is decided to be non-positive definite,

ILL = 30000: The input arguments violated the limit,
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%] Por double precision subroqtines, all real types are changed to double precision real types,

(3) Calculation method
Positive definite matrix B is Cholesky-deconposed by an upper triangular matrix U as
B=UU. ¥hen A=UTAU™ is fron A using U, the generalized eigenvalue problem Ax=ABx
becomes a standard eigeanvalue problem Ai-&i, This problem is solved by

Householder-bisection method and eigenvector X is determined by x:if"i,

(4) Notes
1. When all eigenvalues are to be determined, it is more advantageous to use subroutine
CGHARS/D/Q or CGHAIS/D/@ which uses Householder-GR method,
2. For repeated calculation with B fixed and with only A changed from time to time, it is
better to reuse the Cholesky-decomposed components of B, Refer to the description of EPS in

the argument table,

Bibliography
1) Yoshitaka Beppu and Ichizo Ninomiya; “Comparisons of Matrix Solutions for Standard Eigenvalue
Problems, ” Nagoya University Computer Center News, Vol 11, No.3, and pp. 265-274 (1980)

(1987. 08. 10) (1988. 04. 04)
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GHBSVV/W (EBigenvalue Analysis of the Type Ax=ABx by Householder-Bisection Method: Vector

Version)

Eigenvalue Analysis of the Type Ax=ABx by Houscholder-Bisection Method : Vector Version

Programm | Ichizo Ninomiya, March 1988
ed by
Format Subroutine Language: FORTRAN; Size: 156 lines

(1) Outline

GHBSVV/W obtains the specified number of eigenvalues and corresponding eigenvectors of the

eigenvalue problem Ax=ABx by the Householder-Bisection method when a real symmetric matrix A

and a real symmetric positive definite matrix B are given,

precision,

(2) Directions

GHBSVV (W) is for single (double)

CALL GHBSVV/W(A, B, KK, N, E, V, NV, EPS, W, ILL)

Argunient Type and Attribut Content
| kind (1) (e

A Real type | Input The upper right half containing the diagonal of a real
Two~dimens symmetric matrix is input, This routine turns it into A
ional (see "Calculation method™), " The lower left half should be
array used as a work area,

B Real type | Inmput The upper right half containing the diagona1 of a real
Two-dimens symmetric positive definite matrix is input, This routine
ional decomposes it into Cholesky component U (see “Calculation
array method”), The lower left half is retained,

KK Integer Input Adjustable dimensions of A, B, and V (value of the first
type subscript in the array declaration). KK=N
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Argument | Type and | Attribut Content
kind (1) |e
N Integer Input Order of A and B or the number of rows of V. N2=2
type
E Real type [ Qutput Eigenvalues are output in the order of size, If NE>), they
Two-dimens are arranged in decreasing order, If NE<(, they are arranged
ional in increasing order,
array -
NE Integer Input Represents the number of eigenvalues to be obtained by the
type absolute value, If NE>Q(NE<(), they are numbered from the
maximum (minimum) in algebraically decreasing (increasing)
order, NE#0 |
v Real type | Output Bigenvectors to eigenvalues E(l) are normalized and placed to
Two-dimens . the 1-th coluan in the sense of x'Br=1,
ional
array
NV Integer Input Represents the number of eigenvectors to be obtained by the
type absolute value, Eigenvalues are numbered from the end in the
order defined by NE. 0< |NV| < | NE]|
EPS Real type | Input Convergence criterion of bisection method, If the
tridiagonalized matrix is denoted by T, |ITIl-|EPS| is used
as the criterion, If EPS<0, the Cholesky decomposition of B
is omitted, EPS#0
W Real type | Work One-dimensional array of size 6N,
one-dimens | area
ional
array
ILL Integer Dutput | ILL=0: Normal termination,
type ILL=1: B is decided to be not a positive definite,

ILL=30000: Input argument exceeded the limit,
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%] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Calculation method R
This routine decomposes the symmetric positive definite matrix B into B=U'U with an
upper triangular matrix U by Cholesky decomposition gethod, 1f A=UTAU! is generated
from A by using this U, the generalized eigenvalue problem Ax=ABx turns into the standard
eigenvalue problem Z:E=-7\5:, By solving this problem by the Householder-bisection methed,

the eigenvector X is obtained by :r=U"'5:_

(4) Note
1. When all eigenvalues are to be obtained, it is more advantageous to use the subroutine
GHQRVY/W or GHQRIV/W based on the Householder-QR method,
2. When calculation is to ﬁe repeated with only B kept constant and A changed, it is more
advantageous to reuse the Cholesky decomposition elements of B.. See the explanation for

"BPS” in the argument list,

Bibliography
1) Yoshitaka Beppu and Ichizo Ninomiya; “Comparison of Matrix Methods for Standard Eigenvalue
Problems”, Nagoya University Computer Center News, Vol.11, No.3, pp. 265-2741980).

(1987. 08. 10) (1988. 04. 08)
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GHQRIS/D (Eigenvalue Analysis of the Type Ax=ABx by Householder-GR-Inverse Method)

Eigenvalue Analysis of the Type Ax=ABx by Householder-QR-Inverse Iteration Method

.

Programm | Ichizo Ninomiya, April 1981
ed by
Format Subroutine language: FORTRAN; size: 250 lines

(1) Outline

GHARIS/D obtains all of the eigenvalues and a part of the corresponding eigenvectors of the

eigenvalue problem Ax=ABx using the Householder-QR-Inverse iteration method when a real

symmetric matrix A and a real symmetric positive definite matrix B are given,

(double) precision,

(2) Directions

It is for single

CALL GHQRIS/D(A, B, KK, N, E, V, NV, EPS, W, ILL)

Argument | Type and | Attribut Content
kind (:1)' e

A Real type | Imput/ou | Only the upper right half containing the diagonal lines of a
Two-dimens | tput real symmetric matrix is input. It is processed with this
ional routine, and converted to A (see "Calculation method”), The
array lower left half is retained,

B Real type | Input Only the upper right half containing the diagonal lines of a
Two-dimens real symmetric positive definite mafrix need be input, It ié
ional processed with this routine, and converted to the Cholesky
array decomposition element U (see “Calculation method®),  The

left lower half is retained,

KK Integer Input Adjustable dimensions of A, B, and V (value of the first
type subscript in the array declaration)., KK=N

172




Argument | Type and | Attribut Content
kind (x1) |e
N Integer Input Order of A and B, It also represents the number of rows of
type V. N=2 i
E Real type | Output Eigenvalues are output in the order of size, If NV=,
One-dimens eigenvalues are arranged in descending order, If NV<(,
ional eigenvalues are arranged in ascending order, .
array
v Real type | Output | Bigenvectors corresponding to the eigenvalue E(I) are output
Two-dimens to the I-th column, They have been normalized in the meaning
ional of x’ =1,
array
NV Integer” | Input | NV | represents the number of eigenvectors to be obtained.
type If NV>0 (NV<0), eigenvectors are counted in algebraically
descending (ascending) order from the maximum (minimum),
| V| <N
EPS Real type | Input Convergence criterion of QR methed, If a tridiagonalized
matrix is denoted by T, | T|l-|EPS| is used as the
criterion, IF EPS<0, Cholesky decomposition of B is omitted,
EPS#0
W Real type | Work One-dimensional array of size 6N,
one-dimens | area
ional
array
ILL Integer Output [ ILL=0: Normal termination,
type ILL=1: B is decided to be not definite positive,
ILL=30000: The input argument exceeded the limit.

*] For double precision subroutines, all real types should be changed to double precision real

types,
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(3) Calculation method
The symmetric positive definite matrix B is Cholesky-decomposed to B=UU using the upper
triangular matrix U, If A=UTAU! is ade fron A by using this U, the generalized
eigenvalue problen Ax=ABx becomes the standard eigenvalue problem Ai—&i. By solving
this broblem using Householder-GR-inverse iteration method, the eigenvector x is obtained

with x=U"'x,

(4) Note
1 If up to about one-fourth of the entire eigenvalues is to be obtained, it is better to use
the suhrqutine GHBSVS based on Householder bisection method,
2. If calculation is to be iterated with B kept constant and only A changed, it is desirable
to reuse the Cholesky decomposition‘elements of B. See the explanation for EPS in the list

of arguments,

Bibliography
1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparison of Matrix Solutions of Standard Eigenvalue
Problems, ” Nagoya University Computer Center News, Vol 11, No. 3, pp.265-274 (1980)

(1987. 08. 10) (1988. 04. 04)
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GHQRIV/W (Bigenvalue Analysis of the Type Ax=ABx by Householder-QR-Inverse Iteration

Method: Vector Version)

Bigenvalue Analysis of fhe Type Ax=ABx by Householder-QR-Inverse Iteration Method : Vector

Version

Programm | Ichizo Nincmiya, March 1988

ed by

Format | Subroutine Language: PORTRAN; Size: 153 lines
(1) Outline

GHGRIV/W obtains all of eigenvalues and part of the corresponding eigenvectors of the

eigenvalue problem Ax=ABx when a real symmetric matrix A and a real symmetric positive

definite matrix B are given,

(2) Direct

ions

GHARIV(W) is for single (double) precision,

CALL GHQRIV/H(A, B, KK, N, E, V, NV, EPS, W, ILL)

Argument | Type and Attribut Content
kind (¢1) -|e

A Real type | Input/ou | The upper right half containing the diagonal of a real
‘Two-dimens | tput symmetric matrix is input, fhis routine turns it into A
ional (see "Calculation Method”)., The lower left half is used as a
array work area,

B Real type | Input The upper right half containing the diagonal of a real
Two-dimens symmetric positive definite matrix is input, This routine
ional turns it into the Cholesky decomposition component U (see
array "Calculation method”), The left lower half is retained,
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Argument | Type and Attribut Content
kind (x1) |e
KK Integer Input Adjustable dimensions of A, B, and V (value of the first
type subscript in declaration of array), KK=N
N Integer Input Order of A and B or the number of rows of V, N22
type
E Real type | Qutput Eigenvalues are output in the order of size, If NV=0, they
Cne-dimens are arranged in decreasing order, [If NV<(, they are arranged
ional in increasing order,
| array
v Real type | Output Eigenvectors to eigenvalues E(I) are output to the I-th
Two-dimens column, They are normalized in the sense of xl =1,
ional
array
NV Integer Input | NV | represents the number of eigenvectors to be obtained,
type If NV>Q(NV<0), they are numbered in algebraically decreasing
(increasing) order from the maximun (vinimum), | NV | <N
EPS Real type | Input Convergence criterion of QR method, If the tridiagonalized
matrix is denoted by T, |IT|l+|EPS| is used as the
criterion, If EPS<0, Cholesky decomposition of B is omitted,
EPS#0
W Real type | Work One-dimensional array of size 6N,
one-dimens | area
ional
array
ILL Integer Output [ ILL=0: Normal termination,
type ILL=1: B is decided to be not a positive definite,
ILL=30000: Input argument exceeded the limit,

#] For double precision subroutines, all real types should be changed to double precision real

types,
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(3) Calculation method
This routine decomposes the symmetric positive definite matrix B into B=U'U with an
upper triangular matrix U by Cholesky decomposition, 1f A=U" TAU! s generated from A
using U, a generalized eigenvalue problem Ax=ABx is handled as a standard eigenvalue'
problem Zi-&i, By solving this problem with the Householder-QR-iteration method, the

eigenvector x is obtained with x=Uz .

(4) Note
1. When_up to one-fourth of all eigenvalues are to be obtained, it is more advantageous to
use the subroutine GHBSVS/W based on the Householder bisection method,
2. When calculation is to be repeated with only B kept constant and A changed, the Cholesky
decomposition elements of B should be reused, See the explanation for "EPS” in the argument

list,

Bibliography
1) Yoshitaka Beppu and Ichizo Ninomiya; “Comparison of Matrix Methods- for Standard Eigenvalue
Problems, ° Nagoya University Computer Center News, Vol 11, No.3, pp. 265-274(1980)

(1987. 08. 10) (1988. 04. 08)
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GHQRVS/D and GHQRUS/D (Eigenvalue Analysis Ax=A4Bx by Householder-QR Method)

Bigenvalue Analysis Ax=ABx by Householder-GR Method

Programm | Ichizo Ninomiya, April 1977

ed by

Format Subroutine language: FORTRAN; size: 60, 60, 60, and 60 lines

respectively

(1) Outline

GHARVS/D and GHARUS/D obtain the entire eigenvalues and, if required, the entire eigenvectors
of the eigenvalue problen Ax=ABy if a real symmetric matrix A and a real symmetric positive
definite matrix B are given, It converts A to A=UTAU™! by Cholesky decomposition with
B=UU , and solves the standard eigenvalue problen Ay=Ay using Householder OR method, If

eigenvectors are required, the eigenvector y of A is converted as x=U" 1y,

(2) Directions
CALL GHORVS/D (A, B, KK, N, E, F, EPS, IND)

CALL GHQRUS/D(A, B, KK, N, E, F, EPS, IND)

Argument | Type and | Attribut | 7 Content
kind (x1) |e

A Real type | Input/ou | The entire real symmetric matrix (not the upper right half)
Two-dimens | tput is input, It is processed ip this routine, and A is
ional generated in the upper right half, If eigenvectors are
array obtained, they are input in each col-umn, The vectors are

normalized in the sense of x'Bxr=1 .

B Real type | Input/ou | Only the upper right half of a symmetric positive definite
Two-dimens | tput matrix is input, It is processed in this routine, and the
ional upper right half contains the Cholesky decomposition element

array U of B. The lower left half is retained,
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Argument | Type and | Attribut Content
kind (1) |e
KK Integer Input Value of the first subscript in the declaration of arrays A
type and B. KK=N
N Integer Input Order of arrays A and B, N=2
type
E Real type | Output | One-dimensional array containing N elements, In GHARVS/D,
.One-dimens eigenvalues are arranged in algebraically descending order,
ional In GHQRUS/D, they are arranged in descending order of the
array absolute value,
F Real type | Work One-dimensional array containing N elements,
One-dimens | area
ional
array
EPS Real type | Input | BPS | is the convergence criterion of the GR method, It is
also the positivity criterion for the Cholesky decomposition
of B, If this routine is called with EPS<(, it reuses the
Cholesky decomposition elements of B,
EPS#0
IND Integer Input/ou | This argument has the following meaning as an input argument,
type tput

IND=0: Only eigenvalues are calculated,

IND#0: Eigenvectors are also calculated,

This argument has the following meaning as an output
argument,

IND=(: Calculation is normally executed,

IND=1: B is decided to be.not a positive definite,
IND=30000: Limits on the input argument are exceeded,
Because this argument is both input and output, constants

must not be used as an actual argument,
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%] Por double pr'ecision subroutines, all real types are changed to double precision real types,

(3) Calculation method
The symmetric positive definite matrix B is Cholesky-deconposed to B=UTU using an upper
triangular matrix U, If A=UTAU! is generated from A by using this U, the generalized
eigenvalue problem Ax=ABx becomes the standard eigenvalue problen A X=X, By solving
this problen using Householder-@R method, the eigenvector X is obtained with x=U" 1z

(4) Notes
1. If only selected ‘eigenvectors are obtained, Householder-QR-inverse iteration (GHQRIS/D)
may be advantageous,
2. If calculation is iterated with B kept ‘constant and only A changed, it is better to reuse
the Cholesky decomposition elements of B; See the explanation for EPS in the list of

arguments,

(1987. 08. 10) (1988. 04. 04)
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GHQRVV/W (Eigenvalue Analysis Ax=ABx by Householder-QR Method: Vector Version)

Eigenvalue Analysis Ax=ABx by Householder-GR Method: Vector Version

Programm | Ichizo Ninomiya, March 1988

ed by

Format | Subroutine language: FORTRAN; size: 155 lines"

(1) Outline

GHORVV/W obtains all of the eigenvalues and, as required, all of the corresponding eigenvectors '
of the eigenvalue problem Ax=ABXx when a real symmetric matrix A and a symmetric positive
definite matrix B are given, It executes Cholesky decomposition with B=UTU , and solves the
standard eigenvalue problen Ay=Ay using Householder-QR method by converting A to AzUTAU ',

If eigenvectors are required, the eigenvector y of A is converted using x=U"y.

(2) Directions

CALL GHQRVV/W(A, B, KK, N, E, EPS, W, IND)

Argument | Type and Attribut Content
kind (x1) |e

A Real type Input/m; Only the upper right half of a real symmetric matrix is -
Two-dimens | tput entered, It is processed in this routine, and A is
ional generated in the upper right half, The lower left half is
array ' used as a work area, If eigenvectors are obtained, they are

entered in each column, The vectors are normalized in the

meaning of x'Bzr=1 .

B Real type | Input/ou | Only the upper right half of a symmetric positive definite ~
Two-dimens | tput matrix is input, [t is processed in this routine, and the
ional Cholesky decomposit‘;ion element U of B is entered in the upper
array right half, The lower left half is retained,




[#2

Argument | Type and | Attribut Content
kind (s1) |e
KK Integer Input Value of the first subscript in the declaration of arrays A
type and B, KK=N
N Integer Input Order of arrays A and B, N=2
type
E Real type | Output | One-dimensional array containing N elements, In GHQRVV/W,
One-dimens eigenvalues are arranged in algebraically descending order,
ional
array
EPS Real type | Input | BPS | is the convergence criterion of the OR method, It is
also the positivity criterion at the Cholesky decomposition
of B, If this routine is called with EPS<), the Cholesky
decomposition elements of B are reused,
EPS#0
W Real type | Work One-dimensional array containing 2N elements,
One-dimens | area
ional
array
IND ‘| Integer Input/ou | This arguﬁent has the following meaning as an input argument,
type tput

IND=0: Only eigenvalues are calculated,

IND#0: Eigenvectors are calculated,

This argument has the following meaning as an output
argument, .

IND=0: Calculation was normally executed,

IND=1: B is decided to be not positive definite,
IND=30000: Limits on the input argument are exceeded,
Because this argument is used for both input and cutput,

constants must not be used as real arguments,
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x] For single precision subroutines, all real types should be changed to double precision real

types,

(3) Calculation method
The symmetric positive definite matrix B is Cholesky-decomposed to B=UU using the upper
triangular matrix U, If A=UTAU™! is made froo A by using this U, the generalized
eigenvalue problen Ax=ABT becomes the standard eigenvalue problem AX=AX. By solving
this problem using Householder QR method, the eigenvector x is obtained with x=U" Iz .

(4) Note
1, If only a part of eigenvectors is to be obtained, it may be advantage(;us to use
Householder-QR-inverse iteration method (GHQRIV/W).
2. If calculation is to be iterated with B kept constant and only A changed, it is desirable

to reuse the Cholesky decomposition elements of B, See the explanation for argument EPS.

- (1987. 08. 10) (1988. 04. 04)
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HEQRVS/D/Q (Eigenvalue analysis for real nonsymmetric matrices oy double GR method)

Eigenvalue Analysis for Real Nonsymmetric Matrices by Double QR Method

Programm | Ichizo Ninomiya; Revised in April 1977, April 1981

ed by

Format | Subroutine languagé: FORTRAN Size; 391 lines each

(1) Outline

A real non-;ymmetric matrix is transformed into an upper Hessenberg matrix by stabilizéd
elementary transformation, The double QR method-is then applied to this to determine all
eigenvalues, and a specified number of corresponding eigenvectors are determined by the inverse

iteration methed, The HBQRVS/D/Q subroutine is used for single (double, quadruple) precision,

(2) Directions

CALL HEQRVS/D(A, KA, N, E, F, G, H, NV, EPS, IW, ¥, IND)

Argument | Type and Attribut Content
kind (21) |e

A Real type | Input Matrix subjected to eigenvalue analysis, This matrix is
Two-dimens transformed by this routine into an upper llessenberg type,
ional
array

KA Integer Input Adjustable dimensions of A, G, and H (value of the first
type subscript in array declaration), KA=N

N Integer Input Order of A, Number of rows of G and H, It is also the size of
type Eand F, N23

E Real type | Qutput Real part of eigenvalues, The Ith eigenvalue is given by
one-dimens E(I) + iF(D). /
ional
array
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Argument | Type and | Attribut Content
kind («1) |e

F Real type | Qutput Imaginary part of eigenvalues, The Ith eigenvalue is given by
one-dimens B(I) + iR(I).
ional
array

G Real type | Qutput The real part of the Ith eigenvector is output in the Ith
two-dimens coluan of G, It must have the area for NV+1 coluamns,
ional |
array

H Real type | Output | The imaginary part of the Ith eigenvector is output in the
two-dimens Ith colunn of H, Moreover, it is necessary to prepare the
ional region of the size with N rows and N+1 columns for use as a
array work area,

NV Integer Input Number of eigenvectors to be determinedBecause conjugate
type eigenvectors are generated in pairs, number of actually

generated vectors can be NV+1. (Q<NV=<N
EPS Real type | Input A ]l -EPS/N is used as a convergence criterion constant for
QR method., EPS>(0

W Integer Work One-dimensional array with the size of 2N or more,
type area
one-dimens
“ional
array

W Real type | Work One-dimensional array with the size of 2N or more,
one-dimens | area
ional
array

185

|35



Aréument Type and Attribut Content
kind (x]) |e
IND Integer Input/ou | Input: A mode for arrangement of eigenvalues is specified,

type tput IND = 0: Eigenvalues are arranged as they are calculated,

IND > 0: Eigenvalues are crranged in éescending order of
the absolute values,

IND < 0: Eigenvalues are arranged in ascending order of
the absolute values,
Qutput: Condition code

IND = 0: Normal

IND = 1: All elements of A are 0,

IND = 2: Convergence did not occur even if the QR method
was repeated 100N times,

IND = 30000: The input argument violated the limit,

x] For double precision subroutines, all real types are changed to-douhle precision real types.

(3) Calculation methed

Real matrix A is transformed into an upper Hessenberg matrix H=S"1AS by stabilized
elementary transformation S, that is, Gaussian elimination involving row exchange, All
eigenvalues of H are determined by the double OR method with origin shift,

The specified number of eigenvectors of H is determined by the inverse iteration method, Let

they be grouped into a matrix U, Eigenvectors of A are calculated by V=SU using U.

(4) Note
1. It is reasonable to process symmetric matrices by special routines HOQRVS/D, HGRIIS/D, and
HOBSVS/D,
2. If no eigenvectors are to be determined (NV=0), the areas for G and H are not used and need
not be prepared, and anything can be written for them,

(1987. 07. 20)
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HEQRVV/W (Ei;enva]ue Analysis for Real Nonsyammetric Matrices by Double QR Method - Vector

Version -)

Bigenvalue Analysis for Real Nonsymmetric Matrices by Double QR Method -Vector Version-

Progranm | Ichizo Ninomiya, December 1984

ed by

Format | Subroutine language: FORTRANT7; size: 485 and 486 lines respectively

(1) Outline

HEQRVV/W transforms a real nonsymmetric matrix to an upper Hessenberg matrix using the
stabilized elementary transformation, obtains all the eigenva]ueé using the double QR method, and
calculates the eigenvectors as many as requested using the inverse iteration, It is a single

(double) precision subroutine,

(2) Directions

CALL HEQRVV/W(A, KA, N, E, F, G, H, NV, EPS, I®, W, IND)

Argument | Type and Attribut Content
kind (1) |e

A Real type | Input Matrix whose eigenvalue analysis is to be executed, The
Two-dimens matrix is processed with this routine, and transformed.to a
ional Hessenberg type,
array

KA Integer Input Adjustable dimensions of A, G, and H (value of the first
type ‘ subscript in the array declaration); KA=N

N 'Integer Input Order of A, Number of rows in G and H, It also represents
type the size of E and F. N23
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Argument | Type and | Attribut Content
kind (xI) |e
B Real type | Output | Real part of eigenvalues, The I-th eigenvalue is E(I)+iF(I).
one-dimens
ional
array
F Real type | Qutput Imaginary part of eigenvalues, The I-th eigenvalue is
one-dimens E(D)+iF (D).
ional
array
G Real type | Cutput Real part of the I-th eigenvector is output to the I-th
two-dimens column of G, Space for NV+1 columns must be provided,
ional
array
| Real type | Qutput Thg imagin&ry part of the I-th eigenvector is output to the
two-dimens I-th colunn of H, Because this argument is used as a work
ional area, the area of size NX (N+1) oust be providéd,
array
NV Integer Input Number of eigenvectors to‘be obtained, Because conjugate
type eigenvectors are output as a paif, the number of vectors that
are actually .output may be NV+1, 0=<NV=N
EPS Real type | Input [IAll <EPS/N is used as the convergence criterion of QR, EPS>()
IW Integer Work One-dimensional array of size 2N
type area
one-dimens
ional
array
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Argument | Type and Attribut Content
kind (1) |e
W Real type | Work One-dimensional array of size 2N,

one-dimens | area

ional
array
IND Integer Input/ou | Input: Arrangement of eigenvalues is specified,
type tput IND=0: Eigenvalues are kept in the state as calculated,

IND>0: Eigenvalues are arranged in the descending order of
absolute values,

IND<(: Eigenvalues are put in the ascending order of
absolute values,
Output: Condition code,

IND=0: Normal,

IND=1: The elements in A are all zeros,

IND=2: Convergence may not occur even if the OR method is
iterated 100N times,

IND=30000: The input argument exceeded the limit,

x1 Por double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

The real matrix A is transformed to the upper Hessenberg matrix H=S'AS using the stabilized
elementary transformation S, that is, Gauss’ elimination accompanied by row exchange, All the

eigenvalues of H are obtained using the double OR method with origin shift.
Specified number of eigenvectors of H are obtained using the inverse iteration and are placed

in the matrix U,  The eigenvectors of A are calculated by V=SU from U,

(4) Notes

1. It is reasonable to process symmetric matrices with the special-purpose routines HOQRVV/W,

HORIIV/W, and HOBSVV/W.
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2. If eigenvectors are not to be obtained (NV=0), the area to G and i is not used, and thus
" need not be prepared. Anything can be written for these arguments,

(1987. 06. 19)

190



/2

HOBSVS/D/Q (Bigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Methed)

Eigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method

Pfogramm Ichizo Ninomiya, April 1977, revised in April 1981

ed by

Format Subroutine language: FORTRAN; size: 173 and 171 lines respectively
(1) Outline

HOBSVS/D/Q tridiagonalizes a real symmetric matrix using Householder’s reflexion

transformation, obtains the eigenvalues of the tridiagonalized matrix using the bisection method

based on Sturm sequence, and calculates the eigenvectors using the inverse itgration, It is for

single (double) precision,

(2) Direct

ions

CALL HOBSVS/D/Q(A, KA, N, E, NE, V, NV, EPS, , ILL)

Argument | Type and Attribut Content
kind (1) |e

A Real type | Input Only the upper right half containing the diagonal lines of a
Two-dimens real symmetric matrix is input, It is processed with this
ional routine, The lower left half is retained.
array

KA Integer Input Adjustable dimensions of A and V (value of the first
type subscript in the array declaration), KA2N

N Integer Input Order of A, It also represents the number of rows of V, N=1
type |

E Real type | Qutput Eigenvalues are output in the order of size, If NB>0,
One-dimens eigenvalues are arranged in descending order, 1f NE<O,
ional eigenvalues are arranged in ascending order,
array
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Argument | Type and | Attribut ’ Content
kind (=) |e
NE Integer Input The number of eigenvalues to be obtained is represented by
type therabsolute value, If NE>) (NE<0), eigenvalues are numbered
in algebraically descending (ascending) order from the
maximun (minimum), NE#0
) Real type | Output Bigenvectﬁrs corresponding to the eigenvalue E(I) are
two-dimens normalized to a length of 1 and output to the I-th coluan,
ional
array
NV Integer Input The number of eigenvectors to be obtained is represented by
type the absolute value, Eigenvalues are numbered from the end in
the order defined by NE. 0= |NV|<|NE|
EPS Real type | Input Convergence criterion of bisection method, If a
tridiagonalized matrix is denoted by T, 1ITIf~EPS is used for
the criterion, EPS>0
W Real type | Work One-dimensional array of size ON,
One-dimens | area
ional
array
ILL Integer Output lLL=0: Normal termination,
type ILL=30000: The input argument exceeded the limit.

1 For double precision subroutines, all real types are changed to double precision real types,

(3) Calculation method

The matrix A is transformed to the tridiagonal matrix T=H'AH using the Householder

transformation H.

The eigenvalues of T are obtained by the bisection method based on Sturn sequence, They are

numbered as many as specified from the end in a specified order, The eigenvectors corresponding

to the eigenvalues are obtained by the inverse iteration,

The matrix containing these
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eigenvectors in columns is denoted by U. Because U is the eigenvector of T, it is converted to

the eigenvector V of A by V=HU,

(9 Note

When all the eigenvalues of a symmetric matrix are to be obtained, it is better to use the
routine HOGRVS/D based on the QR method, When all of the eigenvalues and all or a part of the
eigenvectors are to be obtained, it is more reasonable to use the routine HARIIS/D based on the

QR-inverse iteration method,

Bibliography
1) Yoshitaka Beppu and Ichizo Ninomiya: “Comparison of Matrix Solutions of Standard Eigenvalue
Problems, ® Nagoya University Computer Center News, Vol. 11, No. 3, pp.265-274 (1980).

(1987. 08. 10) (1987. 08. 21)
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HOBSVV/W (EBigenvalue Analysis for Real Symmetric Matrices by Householder-Bisection Method -

Vector Version -)

Eigenvalue‘Analysis for Real Symmetric Matrices by Householder-Bisection Method -Vector Version-

Programm | Ichizo Ninomiya, December 1984

ed by

Format Subroutine language: FORTRANTT; size: 345 and 346 lines respectively

(1) Outline
HOBSVV/W tridiagonalizes a real symmetric matrix using Householder’s reflexion transformation,
obtains the eigenvalue of the resultant tridiagonal matrix using the bisection method based on

Sturm sequence, and calculates the eigenvectors using the inverse iteration, It is for single

(double) precision,

(2) Directions

CALL HOBSVV/W(A, KA, N, E, NE, V, NV, EPS, W, ILL)

Argument | Type and | Attribut Content
| kind (1) |e
A Real type | Input Whole of a real symmetric matrix is input, It is processed
Two-dimens with this routine,
ional .
array
KA Integer Input Adjustable dimensions of A and V (value of the first
tﬁpe subscript in the array declaration).> KA=N
N » | Integer Input Order of A. It also represents the number of rows of V. N=2
type
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Argument | Type and | Attribut Content
kind (1) |e
B Real type | Output | One-dimensional array of size N,
One-dimens Eigenvalues are output in the order of size, If NEDO,
ional eigenvalueé are arranged in 6escending order, If NE<O0,
array eigenvalues are arranged in ascending order,
NE Integer Input The number ;f eigenvalues to be obtained is represented by
type the absolute value, If NE>0 (NE<0), eigenvalues are numbered
in algebraical]y descending order (ascending order) from the
maximum (minimum), NE#(Q
v Real type | Output Eigenvectors to the eigenvalue E(I) are normalized to length
two-dimens 1 and placed to the I-th column,
ional
array
NV Integer Input The number of eigenvectors to be obtained is represented by
type the absolute value, Eigenvalues are numbered from the end in
the order specified by NE, 0<|NV|<|NE|
EPS Real type | Input Convergence criterion of bisection method, If a
tridiagonalized matrix is denoted by T, |ITI|f -EPS is used as
the criterion, EPSX0
W Real type | Work One-dimensional array of size 6N.
One-dimens | area
‘jonal
array
ILL Integer Output ILL=0: Normal termination,
type ILL=30000: The input argument exceeded the limit,

%] For double precision subroutines, all real types are changed to double precision real types.

(3) Calculation method

The matrix A is transformed to a tridiagonal matrix T=H"AH using Householder's
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transformation H.

The eigenvalues of T are obtained using the bisection method based on Sturm sequence, They
are numbered as many as specified from the end in a specified order. The eigenvectors
corresponding to the specified number of eigenvalues numbered from the end are obtained using the
inverse iteration, A matrix containing these eigenvectors in its columns is denoted by U, then

the eigenvector V of A can be obtained by V=HU,

(4 Notes

When all the eigenvalues of a symmetric matrix are to be obtained, it is better to use the
routine HOQRVV/W based on the QR method than this routine, wheﬁ all of eignevalues and all or
part of eigenvectors are to be obtained, it is more reasonable to use the routine HQRIIV/W based

on the QR inverse iteration,

Bibliography
1) Yoshitaka Beppu and Ichizo Ninomiya; "Comparison of Matrix Solutions of Standard Bigenvalue
Problems, ” Nagoya University Computer Center News, Vol, 11, No.3, pp. 265-274 (1980)

(1987. 06. 19) (1988. 02. 22)
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HOQRVS/D/Q aqd HOQRUS/D/Q (Eigenvalue analysis for real symmetric matrix by

Householder-QR method)

Eigenvalue Analysis for Real Symmetric Matrices by Householder-GR Method

Programm | Ichizo Ninomiya April, 1977

ed

Format [ Subroutine Language; FORTRAN Size; 142, 141, 142, 141 lines

(1) Outline
All eigenvalues of the real symmetric matrix and all eigenvectors, if necessary, are calculated

by Householder’s tridiagonalization and QR methed with origin shift

(2) Directions
CALL HOQRVS/D/Q(A, KA, N, E, F, EPS, ILL)

CALL HOQRUS/D/Q(A, KA, N, E, F, EPS, ILL)

Argument | Type and Attribut Content
Kind = e

A Real type | Input Only the right upper half which contains the diagonal of the
Two-dimené real symmetri§ matrix need be input, Anything can be input
ional in the left lower half, When eigenvectors aré calculated,
array . they are stored in each column of A, Precisely, the

eigenvector normalized to the unit length corresponding to

the eigenvalue E(l) is stored.in the Ith column,

KA Integer Input/Ou | Value of the first subscript in the array declaration of A,
iYPe tput KA=N

N Integer Input Order of A, N22
type
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Argument | Type and Attribut Content

Kind % e

E Real type | Output One-dimensional array name with N elements, In HOQRVS/D,
One-dimens eigenvalﬁes are arranged in the decreasing algebraic order, -
ional and in HOQRUS/D, they are arranged in the decreasing order of
array absolute value,

F Real type | Work One-dimensional array name with N elements,

One-dimens | area

ional
array
EPS Real type | Input Convergence criterion for QR method, When a nondiagonal
element becomes smaller than ||A|l -EPS, it is regarded to
have converged to (, EPS>)
ILL Integer Input/0u | If ILL=0 is input, only eigenvalues are calculated, If ILL#0
type tput is input, eigenvalues and eigenvectors are calculated, 0 is

output for normal end, 30000 is output if the input argument
limit is exceeded, Constants should not be used for the

actual argument corresponding to this argument,

x All real types should be changed to double precision real types in the case of the subroutine

for double precfsion_

(3) Performance
Compared with Jacobi method, this subroutine has high speed and can be used for the multiple or

close e;genva]ues without any trouble,

(4 Note

1. This subroutine is optimal to calculate all eigenvalues (and eigenvectors) using small memory
space,

9. Householder and Givens’ method (bisection) are better in case of calculating only a part of

eigenvalues and eigenvectors, The appropriate subroutine is HOBSVS/D.
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3. Subroutine GHQRVS/D is recommended to solve generalized eigenvalue problems Ax=A4Bx.
Bibliography

1) Hayato Togawa; ”Numefical calculation of matrix”,  Ohm-sha (1971).

(1987. 08. 10) (1987. 08. 21)
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HOQRVV/W (Eigenvalue Analysis for Real Symmetric Matrices by Householder-@GR Method - Vector

Version -)

Bigenvalue Analysis for Real Symmetric Matrices by Householder-QGR Method -Vector Version-

Programm

ed by

Ichizo Ninomiya, December 1984

Format

Subroutine language: FORTRANT7; size: 233 and 234 lines respectively

(1) Outline

HOQRVV/W obtains all the eigenvalues and, if required, all the corresponding eigenvector of a

real symmetric matrix, using the Householder’'s tridiagonalization and the QR method with origin

shift,

(2) Directions

It is for single (double) precision,

CALL HOQRVV/W (A, KA, N, E, EPS, W, ILL)

Argument | Type and Attribut Content
kind (x1) |e

A Real type | Input Whole of a real symmetric matrix is input, [If eigenvectors
Two-dimens are obtained, they are entered to columns of A, Thaé is,
ional eigenvectors corresponding to the eigenvalue EB(I) is
array normalized to length | and placed to the [-th column,

KA Integer Input/ou Value of the first subscript in the array-A declaration,
type tput KAZN |

N Integer Input Order of A. N22
type

E Real type | Qutput One-dimensional array containing N elements, Eigenvalues are
One-dimens arranged in algebraically descending order,
ional
array
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Argument | Type and | Attribut Content
kind («1) |e
EPS Real type | Input Convergence criterion for QR method, If all the non-diagonal
elements become smaller than ||All -EPS in magnitude,
convergence is judged to have occurred, EPS>(
W Real type [ Work One-dimensional array with 2N elements,
One-dimens | area
ional
array
ILL Integer Input/ou | If ILL=0 is given, only eigenvalues are calculated, If
type tput ILL#0, eigenvalues and corresponding eigenvectors are
calculated. If calculation terminates normally, 0 is
output, If limits on input arguments are exceeded, 30000 is
output, Constants must not be used for actual arguments for
this argument,

x] For double precision subroutines, all real types are assumed to be double precision real

types,

(3) Calculation method

The symmetric matrix A is transformed to a tridiagonal matrix T=H"AH using the Householder

transformation H. The matrix T is diagonalized to D=Q'TQ using the QR transformation, The

eigenvectors of A are calculated as V=HQ,

(4) Notes

1. This routine is optimun if all eigenvalues (and corresponding eigenvectors) are to be

obtained with a small size of storage,

2. If only part of eigenvalues and eigenvectors is to be obtained, Householder-Givens' method

(bisection)

Bibliography

is better,

HOBSVV/W is a suitable subroutine,
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HQRIIS/D/Q (Bigenvalue Analysis of Symmetric Matrices by Householder-QR-inverse Iteration

Method)

Eigenvalue Analysis of Symmetric Matrices by Householder-QR-Inverse Iteration Methed

Programm | Ichizo Ninomiya, April 1981

ed by

Format | Subroutine Language: FORTRAN; Size: 198 and 196 lines respectively

(1) Outline
HQRIIS/D/@ obtains all eigenvalues of real symmetric matrices by Householder-QR-methed, and

calculates specified eigenvectors by the inverse iteration method,

(2) Directions

CALL HQRIIS/D/Q(A, KA, N, B, V, NV, EPS, W, ILL)

Argument | Type and | Attribut Content
kind (s1) |e

A Real type | Input The right upper half containing the diagonal of a real
Two-dimens | symmetric matrices is input, It is processed by this
ional routine, The lower left half is retained,
array

KA Integer Input Adjustable dimensions of A and V (value of the first
type subscript in the array declaration), KA=N

N Integer Input Order of A or the number of rows of V. N=2
type '

E Real type | Output | All eigenvalues are output in the order of size, If NV=(,
One-dimens they are arranged in decreasing order, If NV<0, they are
ional arranged in increasing order,
array
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Argument | Type and | Attribut ~ Content
kind (1) |e
[} Real type | Output Eigenvectors to eigenvalues E(I) are normalized to 1, and -
Two-dimens placed to the I-th column,
ional
array
NV Integer Input INV| represents the number of eigenvectors to be obtained,
type If NV>0 (NV<0), the eigenvectors are numbered in
algebraically decreasing (or increasing) order from the
maxioun (or minimum), |NV|<N
EPS Real type | Input Convergence criterion of OR method, If the tridiagonalized
matrix is denoted by T, [/ T| +EPS is used as the criterion,
EPS>0
L] Real type | Work One-dimensional array of size 6N,
One-dimens | area
ional
array
ILL Integer Qutput | ILL=0: Normal termination,
type ILL=30000: Input argument exceeded the limit.

x] Por double precision

types,

(3) Calculation method

subroutines, all real types should be changed to double precision real

Transform the symmetric matrix A to a tridiagonal matrix T=HTAH by louseholder

transformation H,

Obtain all eigenvalues of T by the QR method without square root, Obtain a specified number

of eigenvectors of T by the inverse iteration method,

The eigenvectors of A are calculated by V=HU,

(4) Note
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1L It is hest to .use this routine to obtain all of eigenvalues and all or part of the
corresponding eigenvectors quickly,
2. It ié better to use HOBSVS/D based on the Householder bisection method to obtain up to

one-fourth of all eigenvalues,
Bibliography

- 1) Parlett and B, N;°The Symmetric Eigenvalue Problen” Prentice-Hall (1980).

(1987. 08. 10) (1987. 08. 21) (1988. 02. 22)

205



HQRIIV/W (Eigenvalue Analysis of Symmetric Matrices by Householder-Inverse-QR [teration

Method - Vector Version -

Eigenvalue Analysis of Symmetric Matrices by Householder-QR-Inverse Iteration Method

-Vector Version-

Programa | Ichizo Ninomiya, December 1984

ed by

Format Subroutine language: FORTRANTT; size: 345 and 346 lines respectively

(1) Outline
HARIIV/W obtains all the eigenvalues of real symmetric matrices using the Householder-QR
method, and calculates the specified eigenvectors based on the inverse iteration, It is for

single (double) precision,

(2) Directions

CALL HQRIIV/W(A, KA, N, B, V, NV, EPS, W, ILL)

Argument | Type and Attribut Content
kind (1) |e

A Real type | Input Whole of a real symmetric matrix is input, It is processed
Two-dimens with this routine,
ional
array

KA Integer Input Adjustable dimensions of A and V (value of the first
type . subscript in the array declaration). KA=N

N Integer Input Order of A, It also represents the number of rows of V, N=2
type
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Argument | Type and | Attribut Content
kind (x1) |e
E Real type | Output All eigenvalues are output in the order of size, If NV=(,
One-dimens eigenvalue; are arranged in descending order, If NV<Q,
ional éigenva]ues are arranged in ascendiné order,
array
v Real type | Output Eigenvectors to the eigenvalue B(l) are normalized to léngth
Two-dimens 1 and placed to the I-th column,
ional
array
NV Integer Input INV| represents the number of eigenvectors to be obtained,
type. If NV>0 (NV<0), eigenvectors are numbered in algebraically
: descending (ascending) order from the maximum (minimum)
value, |NV|=N
EPS Real type | Input Convergence criterion constant of QR method, If a
tridiagonalized matrix ‘is denoted by T, ||/T||-EPS is used as
the convergence criterion, EPS>0
W Real type | Work One-dimensional array of size 6N,
One-dimens | area
ional
array
ILL Integer Output | ILL=0: Normal termination,
type ILL=30000: Input arguments exceeded the limit,

x] For double precision subroutines, all real types are changed to double precision real types,
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(3) Calculation method

The symmetric matrix A is transformed to a tridiagonal matrix T=HTAH using the Householder
transformation H,
All the eigenvalues of T are calculated using the square-root-less QR method, A specified

number of eigenvectors of T are obtained using the inverse iteration and are placed in a matrix

'll, The eigenvectors of A are calculated by V=HU.

(4) Notes

1. This routine is optimum when all of eigenvalues are obtained quickly, and all or part.of
corresponding eigenvectors are obtained,

2. When up to about one-fourth of the entire eigenvalues is to be obtained, it is more

advantageous to use HOBSVV/W based on Householder-bisection method,

Bibliography

1) Parlett, B. N; “The Symmetric Bigenvalue Problem” Prentice-Hall (1980).

(1987. 06. 19) (1987. 08. 07) (1988. 02. 22)
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JACOBS/D (EBigenvalue Analysis for a Real Symmetric Matrix by Threshold Jacobi Method)

Eigenvalue Analysis for a Real Symmetric Matrix by Threshold Jacobi Method

Programm | Ichizo Ninomiya, April 1977
ed by
Format Subroutine language: FORTRAN; size: 88 and 88 lines respectively

(1) Dutline

4

JACOB/D calculates all the eigenvalues and eigenvectors of a given real symmetric matrix using

the threshold Jacobi method,

(2) Directions

CALL JACOBS/D(A, KA, N, EPS, V, ILL)

Argument | Type and Attribut Content
kind (¢1) |e
A Real type | Input/ou | Real symmetric matrix, Only the upper right half including
Two-dimens | tput the diagonal lines need be given, Eigenvalues are output on
ional the diagonal, The lower left half is preserved,
array
KA Integer Input Value of the first subscript in the array-A declaration,
type KA=N
N Integer Input Order of A and V. N=2
type
EPS Real type | Input Convergence criterion constant, The average absolute value
of nondiagonal elements of the input matrix A is assumed as
standard, This value multiplied by EPS is used as the
standard of convergence decision, EPS>(
v ‘Real type | Output Each column stores an eigenvector for the corresponding
Two-dimens diagonal element A,
ional
array
ILL Integer Output ILL=0: Normal termination,
type ILL=30000: Limits on K, N, and EPS are violated,

x] For double precision subroutines, all real types are changed to double precision real

types,

(3) Performance
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This routine was believed to be advantageous for multiple or close eigenvalues as a method of
finding all the eigenvalues and engenvectors of a symmetric matrix, However, since Householder
OR method with the same advantage for the same purpose appeared, this routine became obsolete

recently,

(4 Remarks

1. Bigenvalues are arranged in descending order along the diagonal of A

9. A value of 108(107!%) is adequate as the standard value of EPS for JACOBS (JACOBD).

3. Bxcept for small-size problems of about 10, it is advantageous to use the subroutines HOQR
and VS using Householder OR method for the same purpose because computation time is significantly

saved,

(1987. 06. 17) (1987. 08. 07)
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JENNFS/D, JENNBS/D., and GJENBS/D (Eigenvalue analysis of real symmetric

matrices by Jennings’ simultaneous iteration method)

Eigenvalue Analysis for Real Symmetric Matrices by Jennings’ Simultaneous [teration Method

(Eigenvalue analysis of real syametric matrices by Jennings’ simultaneous iteration method)

Programm | Ichizo Ninomiya; April 1981
ed by .

Format Subroutine language: FORTRAN, Size; 141, 142, 151, 152, 184, and
185 lines respectively

(1) Outline

A part of eigenvalues and corresponding eigenvectors of real symmetric matrices are determined
by the Jennings’ simultaneous iteration method accompanying the Jennings’ vector acceleration
method, JENNPFS/D is used to solve standard eigenvalue problen (A-AI)x=0 where A is a dense
matrix, anﬁ JENNBS/D is used to solve the same problem where A is a band matrix, GJENBS/D is
used to solve generalized eigenvalue problen (A-AB)x=0 where A is a band matrix and B is a
positive definite band matrix, JENNFS, JENNBS, and GJENBS are single precision subroutines and

JENNFD, JENNBD, and GJENBD are double precision subroutines,

(2) Directions .
" CALL JENNFS/D(A, KA, N, L, M, V, E, C, W, EPS, ITER, ILL)
CALL JENNBS/D(A, KA, N, NB, L, M, V.- KV, B, C, W, EPS, ITER, ILL)

CALL GJENBS/D(A, B, KA, N, NB, L, M, V, KV, E, C, W, EPS, ITER, ILL)
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Argument | Type and Attribut ‘Content
kind (21) |e

A Real type | Input The entire symmetric matrix is input for JENNPFS/D. For
Two-dimens JENNBS/D and GJENBS/D, the lower left half which contains the
ional diagonal of 5and matrix is input after it is madé to a
array rectangle as shown in the figure, That is, elements I and J

of the matrix are put in A(I-J+1,J). When eigenvalues are
determined in ascending order of their absolute values,
Cholesky decomposition is done by this routine,

B Real type | Input A band matrix is input in the same way as for A. When
Two-dimens eigenvalues aré detérmined in descending order of their
ional absolute values, Cholesky decomposition is done by this
array " | routine,

KA Integer Input Adjustable dimension of A and V in case of JENNFS/DKA=N
type Adjustable dimension of A in case of JENNBS/D

' . _ _ D] KA=NB
Adjustable dimension of A and B in case of GJENBS/!

N Integer Input Order of A and B, N2
type

NB Integer Input Half band width of A and B, NB=2
type |

L Integer . | Input IL] indicates the number of eigenvalues and eigenvectors to
type be obtained, L>) (L<0) indicates that they should be

arrﬁnged in the descending (ascending) order of absolute
values, 1=|LI=N

M Integer Input Number of trial vectors|L|<M<N
type

v Real type | Input/ou | The M initial eigenvectors are input, Eigenvectors are
Two-dimens | tput generated to the first [L| columns,
ional
array
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Argument | Type and Attribut Content

kind (1) |e
Kv Integer Input Adjustable dimension of V, KV=N

type
E Real type | Output Bigenvalues are generated in the order specified by L.

One-dimens

ional

- array
C Real type | Work One-dimensional array with a size of M? or more

One-dimens | area
ional

array

W Real type | Work One-dimensional array with a size of 3N or more for JENNFS/D

One-dimens | area and JENNBS/D and 4N or more fer GJENBS/&

ional
array
EPS Real type | Input Convergence criterion constant, EPS>(
ITER Integer . Input/ou | Input: Upper bound of repetition numberWhen it is less than
type tput N, it is put to 1000,
Output: Actual repetition number
ILL Integer Output ILL=0: Normal,
type ILL=1: The repetition number exceeded the upper bound.

ILL=2: Cholesky's decomposition was impossible,

ILL=30000: The input argument violated the limit,

%] For double precision subroutines, all real types are changed to double precision real types,

(3) Calculation method
To simplify description, a standard type problew is abbreviated as T and a general type problem
is abbreviated as 6. Similarly, L indicates the case of determining an eigenvalue with a large

absolute value, and S indicates the case of determining an eigenvalue with a small absolute
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value,

1. The initial eigenvectors are grouped into a matrix, V with n rows and m coluans, that is,
the m vectors are put together into the matrix, Select m such that I <m<n where I is the
number of eigenvalues to be ohtainéd (see the notes for selection of initial vectors).

(T, 8) A is processed by the modified Cholesky' s decomposition to produce A=R'DR .
G S) A is pro.cessed by the Cholesky' s decomposition to preduce A=ATA . AV is
generated and overwritten on V.
(G, L) B is processed by the Cholesky' s decomposition to produce B=B"B . BV is
generated and overwritten on V,
2. (T S) Compute U=R'D'RTV(=A"YY) |
(T, L) Compute U=AV .
@ S) Compute U=ATBA°'V |
@ L) Copute U=BTAB7'V .

3. Form G=VlU . G is a synmetric matrix with m rows and m columns,

4. G is diagonalized into PTG'P=Q , where Q is a diagonal matrix with diagonal element

pisppece--pa( || 2 | 2| Ze--++2 | Ma|) which is the eigenvalue of G, and P is an

orthogonal matrix having eigenvectors as rows;

5. Conmpute W=UP . |

6. Compute WTW and process it by the Cholesky's decomposition to obtain Ww=S'S . sis
an mXm upper triangular matrix;

i V=S s formed, V is an orthogonal matrix in the sense of VTV=I;. (unit matrix of
the order m),

8. Convergence test is made (see the notes below). If convergence has not been attained,
Jennings’ vector acceleration is applied. The result is used as new V and processing returns to
step 2.

9. If convergence has been completed:

5) 1/m1,1/u2,+++,1/u; are assumed to be eigenvalues,
(L) m1,p2,++-,p1 are assumed to be eigenvalues,

(1) The first 1 colunns of V are assumed to be eigenvectors,
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G, S The first 1 colums of A'V are assumed to be eigenvectors,

(G, L) The first I columns of B~V are assumed to be eigenvectors,

N

NB

NB "//

KA

(9 Notes

1. It is desirable that the initial vectors are closed to true eigenvectors. If there is no
information available for the initial value, however, a common way is to use a fragment of the
unit matrix, For selection of m, it should be as close to 1l as possible and also satisfy

| &z | 7 | Ame1| »1 (or | Ra| /7 | Rer1| «<1) when eigenvalues are arranged as

A1,R2, <+ ,&n in order of the}r absolute values, The quantity of cafculaiion for each .
iteration is generally propqrtional tom,

2. A convergence test is made for the components of eigenvectors, In general, eigenvalues
converge in much better precision than eigenvectors, Especially, when separation of eigenvalues
is good, precision is about twice as good as that for eigenvectors, From this reason, therefore,
it is safer to select a little larger value than usual for criterion cbnstant EPS. |

3. A standard value of ITER indicating the upper limit of the repetition number is a few
hundreds, Do not write a constant as an actual argument for this variable because this variable

is used for both input and output,

Bibliography

1) A, Jennings; *Matrix Computation for Engineers and Scientists”, John Wiley, London, (1977)
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NGHOUS/D (Analysis of Av=2Bv type eigenvalue by bi-triangular decomposition, Householder,

bisection-QR, and inverse iteration methods)

Nicer for Generalized Eigenvalue-Problem by Householder Method

Programm | Yoshitaka Beppu and Ichizo Ninomiya; December 1981
ed by

Format Subroutine language; FORTRAN  Size; 104 and 105 respectively

(1) Outline
NGHOUS and NGHOUD solve generalized eigenvalue problem concerning real symmetric dense matrix A

and real symmetric positive definite dense matrix B by the semi-direct method,

(2) Directions

CALL NGHOUS/D(AB, NMAX, N, NE, NV, EPS, 10RD, ICHO, BD, E, V, ILL, W1, W2, W3, W4, W5, W6, W7)

Argunment | Type and Attribut Content
kind (x]) |e
AB Real type | Input/ou| A;;j(i=j) is input to the upper right half including

Two-dimens | tput | diagonal elements, The upper right half changes, If ICHi]=0,
ional B;j(1>j) is input to the lower left half, If ICHO=l,
array non-diagonal eiement Lij(1>J) of Cholesky decomposition
component L of B is input to
the lower left half, L;; is output to the lower left

half,

NMAX Integer Input Adjustable dimensions of AB and V. N=NMAX

type

N Integer Input Order of A and B, 2=N

type
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Argument | Type and Attribut Content
kind (%1) |e

NE Integer Input Number of eigenvalues to be détermined, OKNE=N
type

NV Integer Input Number of eigenvectors to be determined, (Q=NV<NE<N
type .

EPS Real type | Input Tolerance for convergence test, The default value is 10

(NGHOUS) or 107 (N-GHOUD).

10RD Integer Input The output order of eigenvalues is specified, If I0RD>(,
tyhe they are output in algebraically descending order, If

10RD<0, they are output in algebraically ascending order,

ICHO Integer Input The input mode of real symmetric positive definite matrix B
type is specified, Refer to the descriptions of AB and BD.

BD Real type |Input/ou| I f ICHO=(0, diagonal element Bj;
One-dimens | tput of B is input to BD(I). If ICHO=1, the inverse number of
ional L's diagonal element L;; is input to it
array Lii™! is output to BD(I).

E Real type | Output | The Ith eigenvalue is output to E(I). If IORD is positive,
One-dimens then E(1)>E(2)>------>B(NE). If IORD is negative, then
ional E(D)<E(2)<-----<E(NE).
array

v Real type | Output | The eigenvector which corresponds to E(I) is normalized as
Two-dimens y'By=1 and output to column I,
ional
array

ILL Integer Output ILL=0: Normal termination
type ILL=100: B is a non-positive definite,

ILL=300: The argument is abnormal,
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Argument | Type and Attribut . Content

kind (x1) |e

WI~NT7 Real type | Work The size must be N or more,
One-dimens | area
ional

array

(3) Calculation method

First of all, generalized eigenvalue problen (Avu=ABuv) is transformed into standard
eigenvalue problen (Au=Au) by the bi-triangular decomposition method,
That is, matrix A is decomposed to the sum of upper right triangular matrix R and lower left
triangﬁlar matrix R' (14=1?+l?r), and matrix B is decomposed to the product of lower left
triangular matrix L and upper right triangular matrix L’ (B=LLT), K=L"(R+RT)L'T can
thus be calculated efficiently, Because A is a real symmetric matrix, & énd ortho-normal
vector U are determined by NSHOUS/D, and generalized orthogonal vector v is determined by

v=L"Tu,

(4) Notes

1. NGHOUS or NGHOUD is 1,05 times as fast as GHQRID and GHBSVD of NUMPAC, If 1 is specified
for ICHO when L is known, it becomes about 5% fastcr,

2. NGHOUS and NGHOUD are useful when approximate solutions are unknown,

3. These routines are also components of NICER.

(1987. 06. 16)
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NGJENS/D (Analysis of Av=ABv type eigenvalues by bi-triangular decomposition and Jennings

method)

Nicer for Generalized Eigenvalue-Problem by Jennings Method

Programm | Yoshitaka Beppu and Ichizo Ninomiya; December 1981
ed by

Format Subrputine language; FORTRAN Size; 89 and 90 lines respectively

(1) Outline
NGJENS and NGJEND solve generalized eigenvalue problems concerning real symmetric dense matrix

A and real symmetric positive definite dense matrix B by the simultaneous iteration method,

(2) Directions

CALL NGJENS/D (AB, NMAX, N, NE, NV, EPS, BD, IUV, ITER, ESHIFT, E, V, U, ILL, W1, W2)

Argument | Type and Attribut Content
kind (x1) |e
AB Real type | Input/ou| Aij(i=j) is input to the upper right half including
Two-dimens | tput diagonal elements,
ional The upper right half changes,
array | Off diagonal element L;;(i>j) of B's Cholesky-decomposed

component L is input to the lower left half. The lower left

half does not change,

NMAX Integer Input Adjustable dimensions of AB, V, and U, N=NMAX

type

N Integer Input Order of A and B, 2=N

type
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Argument | Type and Attribut Content
kind (x1) |e
NE Integer Input Number of eigenvalues to be determined, They are counted in
type absolutely descending order,
O<NE<N
NV Integer Input Number of eigenvectors to be determined, Q<NENV<N
type .
EPS Real type lgput Tolerance for convergence test, The default value is 10'6
(NSJENS) or  107'0 (usJEND).
BD Real type | Input Reciprocal LuJOstdn@mlﬂmwt Li; is input to
One-dimens BD(I).
ional
array
10y Integer Input The initial-vector reference mode is specified, [If 1UV=(,
type approximate generalized
orthogonal vector wvp input to array V is used as the
initial vector for the simultaneou; iteration method, If
IUV=1, approximate
ortho-normal vector ug input to array U is used likewise,
The content of array U when 1UV=0 is not referred, and the
content of array V at 1UV=1 is not referred, -
ITER Integer Input/ou | The upper limit for the number of Jennings iterations
type tput (standard value ranges from 1 to 10) is input, The number of
actual iterations is output,
ESHIFT Real type | Input Origin shift o, In these routines, the simultaneous

iteration method is applied
not to A but to ;1'=;4—0-I, Therefore, eigenvalues
which are close to 0 are rapidly diminished and the other

eigenvalues are rapidly enhanced, The standard value is an

approximate value of 0, 5% (BE(NV+1)+E(N)).
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Argument | Type and Attribut Content
kind (1) |e
E Real type | Input/ou | The approximate value of the eigenvalue whose absolute value
.| One-dimens | tput is the Ith largest of all in absolute form is input to E(I).
ional The eigenvalue whose absolute value is the Ith l;rgest of all
array is output to B(I).
IECD) I>IE(2) [>---->|E(NE) |
v Real type | Input/ou| If IUV=0, approximate generalized orthogonal vectors vp by
Two-dimens | tput the number specified by NV is input, If IUV=], an arbitrary
ional quantity is input, The generalized orthogonal vector which
array corresponds to E(I) is normalized to vBu=1 and output to
the Ith column,
U Real type | Input/ou’| If IUV=0, an arbitrary quantity is input, If IUV=],
Two-dimens | tput approximation ortho-normal vectors ug by the number
ional specified by NV is input, The ortho-normal vector which
array corresponds to E(I) is normalized to u'u=1 and output to
the Ith column,
ILL Integer Output | ILL=0: Normal termination
type ILL=100: L;; input error
ILL=200: Convergence does not occur because of poor
precision of approximation vectors,
ILL=300: The argument is abnormal,
W1~W2 Real type | Work The size must be N or more,
One-dimens | area
ional
array

(3) Calculation method: Approximate solutions are iteratively improved according to the
following procedure:
1 ;i=li'|(l?+1?T)LfT is generated by the bi-triangular decomposition method

(A=R+RT,B=I.LT), and Av=ABuv is transformed into Au=Au.
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2. Initial ortho-normal vector ug is prepared, If IUV=0, approximation wide-sense orthogonal
vector vQ input to array V is pre-multiplied by LT to deternine ug., If 1UV=], wup input to

array U is used without modification,

N

3. Au=Au is solved by NSJENS or NSJEND by using uo as an initial vector.
4 v=L"Tu is calculated,
5. The NB number of A& is output to array B, the NV number of v is output to array V, and

the NV number of u is output to array V,

(4 Notes |

1. NGJEND is faster than NGHOUD when (ITERXNV/N)<0.4. If IUV=1 when initial ortho-normal
vector uo is known, it becomes faster about 5% |

2. NGJBNS and NGJEND are suitable for use if good approximate solutions are known, that is, to

diagonalize a lot of similar real symmetric matrices,

<Example of using NICER> The program which solves generalized eigenvalue problen Avu=4Bv, 10
times, with B fixed and A varied is shown below, This example indicates the calculation
procedure of the wave function by the sequential approximation method,

C ITERATIVE COMPUTATION OF AxV=BxV=xE BY NICER
IMPLICIT REAL#*8(A-H,0-2)
DIMENSION AB(10,.10),.BD(10)
DIMENSION E(C10)>,V(10,10)
- DIMENSION W1(¢10),W2(10),W3(10),W4(10),W5(10),W6C(10),W7
*(10)
DIMENSION U(10.10)
NMAX=10
N=8
EPS=1.E-10

DO 10 I=1,N
AB(I,I)>=7.2
BD(I)=N+1-1
DO 10 J=1,N :
IF(J.GT.I) AB(I,J)=3.0 / (FLOAT(I-J))x%x2
IFCI1.GT.J) AB(I,J)=N+1-MAX(I,J)
10 CONTINUE
CALL NGHOUD(CAB,NMAX,N,N,N,EPS,1,0,BD,E,V,ILL,W1,W2,W3,
*WaL, WS, WE6,W7)
WRITE(6,100) ILL
100 FORMAT(1H1 //20X,4HILL=17)
WRITE(6,200) ( ECI),I=1,N )
200 FORMAT(1H / 10(2%X,10E12.3 /) )
WRITE(6,300) ¢ (C V(I,I,J=1,N DJ,1I=1,N )
300 FORMAT(1H / 10C 8F12.37 ) )

DO 1000 K=2,10

223

223



227

FK=0.5xFLOAT(K-1)
DO 20 I=1,N
AB(I,1)=7.2 + FK
DO 20 J=1,N
IFC(J.GT.I> ABCI,J)=(3.0+FK) / (FLOAT(I-J))=%xx%2
20 CONTINUE
NE=N/2
NV=N/2
ESHIFT=0.5x( E(NV+1)+E(N) )
ITER=10
CALL NGJEND(AB-NMAX-N,NE-NV,EPS,BD,O,ITER,ESHIFT,E,V,U,
*ILL,W1,W2)
WRITE(6,400) K, ITER,ILL
400 FORMAT(1H /10X,3H K=,12,3X,S5HITER=,15,6H 1ILL=,15)
" WRITE(6,200) ( ECI>,I=1,NE )
WRITE(6,500) (C (€ V(I,J),J=1,NV ),I=1,N )
500 FORMAT(1H 7/ 10(C 4F12.3/7 ) )
1000 CONTINUE
sToP
END

<Part of result of NICER>
ILL= 0

0.126D+02 0.116D+02 0.109D+02 0.102D+02

0.057 0.355 -0.040 -0.595
0.005 ~0.723 -0.464 0.838
-0.266 0.049 1.083 0.061
0.169 0.941 -0.398 -0.209
0.448 -0.632 -0.617 -0.069
-0.567 -0.450 0.562 -0.664
-0.511 0.652 -0.420 0.837
1.225 -0.156 0.584 -0.006

0.952D+01 0.729D+01 0.345D+01 0.465D+00

-0.260 0.545 0.364 0.131
0.708 -0.216 0.083 0.067
-0.816 -0.277 0.017 0.076
0.828 -0.420 -0.133 0.062
-0.978 -0.087 -0.218 0.052
0.786 ' 0.197 -0.247 0.039
-0.440 0.440 -0.217 0.027

0.295 0.204 -0.083 0.007

PACKAGE-NAME

NICER(NAGOYA ITERATIVE COMPUTATION EIGENVALUE

ROUTINES) (VERSION-1,LEVEL-3) MODIFIED ON MARCH
' 1981

REFERENCE

: Y.BEPPU AND I.NINOMIYA;QUANTUM CHEMISTRY
PROGRAM EXCHANGE,NO0.409(1980)
K= 2 ITER= 4 ILL= 0

0.131D+02 0.117D+02 0.112D+02 0.988D+01

0.099 0.203 -0.456 -0.444
-0.124 -0.663 0.340 0.973
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-0.202
0.328
0.281

-0.666

-0.323
1.184

K=
0.136D+02

0.093

- =0.172
-0.119
0.383
0.151
-0.697
~0.199
1.156

K=
0.143D+02

0.067
-0.180
-0.041

0.392

0.046
-0.701
-0.108

1.135

3

4

0.718
-0.856
-0.245

0.718
-0.266

ITER=
0.120D+02

-0.151
-0.235
0.740
0.190
-0.952
-0.013
0.647
-0.118 -

ITER= 6
0.126D+02

0.322
-0.077
-0.770

0.137

0.866
-0.128
-0.555

0.074

3

0.808
-0.665
-0.399

0.281
-0.104

0.532

ILL=

0.115D+02

-0.511
0.773
0.311

=0.922
0.158
0.279

-0.371
0.592

ILL=

0.117D+02

0.395
-0.829
0.024
0.923
-0.425
-0.245
0.471
-0.620

225

0

-0.616
0.094
0.183

-0.790
0.946

-0.339

0.935D+01

"-0.297

0.897
-0.800
0.192
0.173
-0.742
0.966
-0.404

0.918D+01

0.126
0.498
-0.884
0.164
-0.054
-0.393
0.969
-0.288
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NSHOUS/D (Bigenvalue analysis of Av=24v type by Householder's bisection QR and inverse

iteration method)

Nicer for Standard Rigenvalue-Problem by Householder Method

Programm | Yoshitaka Beppu and Ichizo Ninomiya; December 1981
ed by .

Format | Subroutine language; FORTRAN Size; 271 and 272 lines respectively

(1) Outline
NSHOUS and NSHOUD solve standard eigenvalue problems concerning real symmetric dense matrix A

by using the semi-direct method,

(2) Directions

CALL NSHOUS/D (A, NMAX, N, NE, NV, EPS, 10RD, B, V, ILL, W1, W2, W3, W4, W5, W6, WT)

Argument | Type and Attribut Lontent
kind (1) |e

A Real type | Input - Aij(isJ) is input to the upper right half including
Two-dimens diagonal elements, The lower left half is preserved although
ional the upper rigﬁt half changes,
array

NMAX Integer Input Adjustable dimensions of A and V. NNMAX

type.

N Integer Input Order of A, 2=N

type

NE Integer Input Number of eigenvalues to be obtained, (<KNE<N

type

NV Integer Input Number of eigenvectors to be nbtained, (=<NV=NE=N

type
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Argument | Type and Attribut Content
kind (1) |e
EPS Real type | Input Tolerance for convergence test. The default value is 1078
(NsHous) or 107" (nshouD).
10RD Integer Input The output order of eigenvalues is specified, When IORD>0,
type they are output in algebraically descending order. When
I0RD<0, they are output in algebraically ascending order;
E Real type | Output | The Ith eigenvalue is output to E(I). When I0RD is positive,
One-dimens B(1)>E(2)>---- >E(NE). When IORD is negative,
ional B(1)<B(2)<-----<E(NE),
array |
v Real type | Output The eigenvector corresponding
Two-dimens to B(I) is-normalized as vTv¥1 and output to column I,
ional
array
ILL Integer Output | ILL=0: Normal termination
type ILL=300: Argument error,
W1~H7 Real type | Work The size must be N or more,
One-dimens | area
ional
array

(3) Calculation method

Matrix A is transformed into tridiagonal matrix T by Householder conversion, If (NE/N)<O0. 12,

eigenvalues by the number specified by NE are determined by the bisection methed, If

(NE/N) =0. 12, the N number of eigenvalues are determined by the square root-free QR method,

Then, eigenvectors by the number specified by NV are determined by the inverse iteration method,

(4) Notes

1. This routine is useful when an approximate solution is unknown,
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2. As shown in the figure below, NSHOUS/D together with NGHOUS/D, NSJENS/D, and NGJBNS/D form
the fast eigenvalue routine package NICER (Nagoya Iterative Computation Bigenvalue Routines).

3. The user of NICER should quote the documents listed in the bibliography below,
<Configuration of NICER>

The element enclosed by broken lines is used for calling

M A I N
! l
T E S T S T E S T D
............ T R T TRt
! ! ! !
NGHOUS NGJENS NGHOUD NGJEND

T T T T

1 1l [ 1l
NSHOUS NSJENS NSHOUD NSJEND

Bibliography
1) Y. Beppu and I, Ninomiya; "Manual of NICER®, Quantum Chemistry Program Bxchange (Indiana
University), No, 409 (1980) '

2) Y. Beppu and [, Ninomiya; "NICER-Fast Eigenvalue Routines®, Computer Physics Communications,
Vol, 23, pp. 123-126 (1981)

3 Y. Beppu and I, Ninomiya; "HQRII-A Fast Diagonalization Subroutine®, Computers and Chemistry,
Vol. 6, No.2, pp.87-91 (1982)
(1987. 06. 16) (1987. 08. 08)
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NSJENS/D (Analysis of Av=24v type eigenvalue by Jennings method)

Nicer for Standard Eigenvalue-Problem by Jennings Method

Programm | Yoshitaka Beppu and Ichizo Ninomiya; December 1981
ed by

Format Subroutine language; FORTRAN Size; 334 and 335 lines respectively

(1) Outline .
NSJENS and NSJEND solve standard eigenvalue problems concerning real symmetric dense matrix A

by the simultaneous iteration method,

(2) Directions

CALL NSJENS/D(A, NMAX, N, NE, NV, EPS, ITER, ESHIFT, E, V, ILL, W1, W2, U)

Argument | Type and Attribut Content
kind (x1) |e

A Real type | Input A;j(isj) is input to the upper right half including
Two-dimens diagonal elements,
ional The upper right half is referred to but not changed, The
array lower left half is neither referred to nor changed.

NMAX Integer Input Adjustable dimensions of A, V, and U, N=NMAX

type
N Integer Input Order of A, 2=N
type
NE Integer 'lnput Number of eigenvalues to be determined, They are counted in
type absolutely descending order.
O<NE<N
NV Integer Input Number of eigenvectors to be determined, Q<NENV<N
type
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Argument | Type and | Attribut | Content
kind (x1) |e

EPS Real type | Input Tolerance for convergence test, The default value is 1078

(NSJENS) or 10710 (nsJEND).

ITER Integer Input/ou | The upper limit of the number of Jennings iterations
type tput (standard value ranges from ] to 10) is input. The number of

| | actual iterations is output,

ESHIFT | Real typé Input Quantity of origin shift o, In these routines, the

simultaneous iteration method is applied not to A but io
A'=A-0-1. Therefore,

eigenvalues which are close to ¢ are rapidly diminished

and the other eigenvalues are rapidly enhanced, The standard

value is an approximate value of 0. 5% (E(NV+1)+B(N)).

E Real type | Input/ou | The approximate value of the eigenvalue whose absolute value
One-dimens | tput is the Ith largest of all is input to E(I). .The eigenvalue
ional whose absolute value is the Ith largest of all is ou;put to
array E(D).

[E(1) [>]E(2) |>-+--->|E(NE) |

'l Real type | Input/ou | Approximate ortho-normal vectors by the number specified by
Two-dimens | tput NV is inéut, The eigenvector which corresponds to Eil) is
ional normalized to vrv=1 and output,
array

ILL Integer Uutpui ILL=0: Normal termination
type 1LL=200: Conversion does not occur because of poor precision

of approximate vectors, | |
ILL=300: The argument is abnormal.
W1~W2 Real type | Work The size must be N or more,
One-dimens | area
ional
array
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Argument | Type and Attribut Content
kind (x1) |e
u Real type | Work The row size must be NMAX or more and the column size must be
Two-dimens | area A NV or more, |
ional
array

(3) Calculation method

An approximate solution is iteratively improved according to the following procedure:

1. Approximate eigenvector matrix Vo is prepared,

2. Vo is pre-multiplied by A'=A-oI to generate X, At this time, the absolutely dominant
eigenpairs of A’ are enhanced by the principle of the power method, X=A.Vo=(A—oI Wo

3. G=Vo'X is generated,

4 Bigeﬁvector matrix X and eigenvalue matrix lZ'o of G are determined, kﬂtﬂi=lz'o

5. Y=XW is generated,

6. S=Y'Y is generated,

7. S is Cholesky-decomposed, S=7'7

8. Vio=YZ! is generated, V'o is nearer V than Vjp,

9. If permissible accuracy is reached, the calculation is finished with V=V'o, E=Eo.
Con&ersely, if convergence does not occur, processing returné to 2. with V0=V6, Here, I is a
unit matrix with N rows and N colﬁmns, V0, X,Y,V'o are natrices each with N rows and NV

columns, and G,W,S,Z are matrices each with NV rows and NV columns,

(4) Notes

1. NSJEND .is faster than NSHOUD when (ITERXNV/N)<O.5.

2. Like JENNFS and JENNFD of NUMPAC, these routines are also suitable for use when good
approximate solutions are known,

3. These routines are also components of NICER.

Bibliography
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RHBSVS/D (Rigenvalue analysis of symmetric band matrices by Lutishauser-Bisection method)

Eigenvalue Analysis for Syametric Band Matrices by Lutishauser-Bisection Methed

Programm | Ichizo Ninomiya; Revised in April 1977; April 1981
ed by
Format Subroutine language; FORTRAN Size; 250 lines each

(1) Outline

RHBSVS or RHBSVD reduces a symmetric band matrix into a tridiagonal from using the

Lutishauser-Schwarz method, and applies the bisection and inverse iteration methods to it to

perform eigenvalue analysis,

(2) Directions

CALL RHBSVS/D(A, KA, N, NB, E, NE, V, KV, NV, VW, EPS, #, ILL)

Argument | Type and Attribut Content
kind (1) |e

A Real type | Input The lower left half including the diagonal of the symmetric
Two-dimens band matrix is turned to a rectangle as shown in the figure,
ional That is, elements I and J of the matrix are put in
array A(1-J41, J).

KA Integer lnbut Adjustable dimension of A (value of the first subscript in
type array declaration), KA=NB

N Integer Input Order of A, N=3
type

NB Integer Input Half band width of A, NB22
type

E Real type | Output Eigenvalues are output in the order of size, [f NE>0, in
One-dimens descending order, and in ascending order otherwise,
ional
array

NE Integer Input The number of eigenvalues to be determined is indicated by
type the absolute value, When NE>0 (NE<0), they are counted in

algebraically descending (ascending) order from the maximum
value (minimum value), NE#0
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Argument | Type and | Attribut Content
kind (1) |e
v Real type | Qutput The eigenvector for the eigenvalue E(I) is normalized to
Two-dimens length 1 and output to column I,
ional
array
KV Integer Input Adjustable dimensions of V and VW, KV=N
: type
NV Integer Input The number of eigenvectors to be determined is indicated by
type the absolute value, They are counted starting with an
eigenvalue from either side in the order determined by NE.
0= |NV|<|NE|
Vi Real type | Work Two-dimensional array of size N X N. This argument is not
Two-dimens | area needed if no eigenvectors are calculated (NV = ().
ional
array
EPS Real type | Input Tolerance for convergence test by bisection method,
I TIl -EPS, where T is a tridiagonal matrix, is used for test,
EPS>0
W Real type | Work One-dimensional array of size 6N or more,
One-dimens | area
ional
array
ILL Integer Output ILL=0: Normal termination
type ILL=30000: The input argument violated the limit,

%] For double precision subroutines, real types are all changed to double precision real

types,

(3) Calculation method

Symmetric band matrix A is transformed into the tridiagonal matrix T=R'AR by
Lutishauser-Schwarz orthogonal transformation R, The eigenvalue problem j31=llt for T is
solved by the bisection and inverse iteration methods, The eigenvector of A is determined as

v=Ru from the eigenvector u of T.

The Lutishauser-Schwarz method has the advantage that the calculation can be performed within
the interior of a band matrix.
On the other hand, however, it has the disadvantage that when band width expands, quantity of
calculation will increase, Furthermore, to determine eigenvectors, transformation matrix R nmust
be saved, This requires a square matrix of NXN where N is the order, From the above

viewpoint, the significance of the existence of this routine is to calculate only eigenvalues of
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high dimensional matrices with small band width,

(4 Notes

1. If no eigenvectors need to be calculated, any value can be assigned to V and VW as far as
the condition KV=N is satisfied,

2. If it is desired to save storage capacity when eigenvectors are calculated, A and V can be
connected by an equivalence statement, This is because A and V are not used-at the same time,

(1987. 06, 16) (1987, 08. 08)
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RHQRVS/D (eigenvalue analysis of real symmetric band matrices by Rutishauser-QR method)

Eigenvalue Analysis for Real Symmetric Band Matrices by Rutishauser-QR Method

Programm | Ichizo Ninomiya; April 1977
ed by
Format Subroutine language; FORTRAN Size; 150 and 152 lires respectively

(1) Outline

RHQRVS or RHGRVD reduces real symmetric band matrix B to a tridiagonal matrix by using the

Lutishauser-Schwarz method, and applies the QR method to this to perform eigenvalue analysis,

(2) Directions

CALL RHQRVS/D(B, KB, N, NB, V, KV, E, F, EPS, IND)

Argument | Type and Attribut Content
kind (x1) |e

B Real type | Input The lower left half including the diagonal of the real
Two-dimens symmetric band matrix is reduced to a rectangle shown in the
ional figure, It is not preserved,
array :

KB Integer Input Value of the first subscript in array declaration of B,
type KB=NB

N Integer Input Order of B (number of columns), This is also the sizes of E
type and F, 3=N

NB Integer Input - | Half band width of B (number of rows), 3J<NB=N
type

'} Real type | Qutput The eigenvector which corresponds to the eigenvalue (J) is
Two-dimens normalized to length 1 and output to column J,
ional
array

KV Integer Input Value of the first subscript in array declaration of A, KV=N
type

E Real type | OQutput Bigenvalues are arranged in algebraically descending order
One-dimens from the maximum one and output sequentially.
ional
array
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Argument | Type and Attribut Content
kind (1) |e
F Real type | Work One dimensional array with N elements,
One-dimens | area
ional
array
EPS Real type | Input Tolerance for convergence test, When B is turned to
tridiagonal T, this argument is used in the form of
Il T -EPS/N. EPS>0
Integer Input/ou | When used for input, this argument has the following meanings:
IND type tput IND=(: Eigenvectors are not calculated,
IND#0: All eigenvectors are calculated,
When used for output, this argument has the following
meanings: .
IND=0: The calculation ended normally,
IND=30000: The limits on the input argument are violated,
Note: Do not use a constant as the actual argument for this
argument,

s] For double precision subroutines, real types are all changed to double precision real

types,

(3) Performance

Tridiagonalization by Householder’s mirror image transformation is a very excellent method,

However, it has one problem:

- full matrix during transformation,

even if a real symmetric band matrix is given, it is expanded to a

The Lutishauser-Schwarz method can solve the above problem

because it reduces a band matrix to a tridiagonal without expanding it from the original

position,

However, it requires more quantity of calculation as band width is increased,

Furthermore, to determine eigenvectors, it is necessary to calculate an orthogonal matrix which

represents transformation from a band matrix to a tridiagonal matrix, This requires an

additional square matrix of N X N where N is the order, From the viewpoint of the above, the

significance of the existence of this routine is to calculate eigenvalues of big matrices with

relatively small band width,
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B~

NB

(4) Note
If no eigenvectors need to be determined, any value can be assigned to V as far as KV=N is
satisfied,

(1987. 06. 17)
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SVDS/D/@ (Singular value decomposition)

Singular Value Decomposition

Programm | Ichizo Ninomiya; March 1979
ed by

Format Subroutine language; FORTRAN Size; 205 lines each

(1) Outline
SVDS, SVDD, or SVDQ uses mXn orthogonal matrix U, mXn orthogonal matrix V, and nXxn
diagonal matrix L to decompose mXn matrix A (m=n=]) into
A=UEVT
Where, UTU=VTV=VV"=I,(n-degree unit matrix),

):=diag(q1yq2, e 'Qn)

U consists of n orthogonal eigenvectors corresponding to the firstlargest n eigenvalues of
AAT, and V is made up of the orthonormal eigenvectors of ATA, The diagonal elements of E
are the positive square root of the eigenvalues of ATA and arranged such that
qizq2z - - - 2qn20

The rank of A is given by the number of q; which are not 0.

(2) Directions

CALL SVDS/D/Q(A, KA, M, N, ISH, @, U, KU, V, KV, K, ILL)

Argument | Type and Attribut Content
kind (x1) |e

A Real type | Input | Matrix subjected to singular value decomposition, The value
Two-dimens is preserved unless this argument is used as a U or V storage
ional | area,
array

KA Integer Input Value of the first subscript in array declaration of A, KA=M
type

| Integer Input Number of rows of A, M=N
type
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Argument { Type and Attribut Content
kind (1) |e
N Integer Input Number of columns of A, N=21
type
ISW Integer Input 0=ISH=3
type ISW=0: Neither U nor V is calculated,
ISW=1: Only V is calculated,
ISW=2: Only U is calculated,
1SH=3: Both U and V are calculated,
Q Real type | Output Singular values are output in descending order from the
One-dimens largest one, One~dimensional array of size N,
ional :
array
U Real type | OQutput Transformation matrix U, This can be written over A,
Two-dimens Array with M rows and N columns,
ional )
array
KU Integer Input Value of the first subscript in array declaration of U, KU=M
type
v Real type | Output Transformation matrix V, This can be written over A,
Two-dimens Array with N rows and N columns,
ional
array
KV Integer Input Value of the first subscript in array declaration of V. KV=N
type
W Real type | Work One-dimensional array of size N,
One-dimens | area
ional
array
ILL Integer Output 1LL=0: Normal"termination
type 1LL=20000: Singular value decomposition does not converge in
30N or more iterations,
ILL=30000: The argument exceeded the limit.

%] For double precision suhroﬁtines, real types are all changed to double precision real types,

(3) Performance

We experimented with an § x 5 matrix of rank 3 with singular values ~'1248,20, /384 ,0,0

given on page 418 in the bibliography ! .

) The precision of the singular value Q and .

transformation matrix V (the two last columns are two independent solution vectors of homogeneous

linear equation Ax=0 ) obtained by SVDS was about six decimal digits,

(4) Bxample
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The program to examine the above test is as follows,

1 DIMENSION A(8,5),U(8,5),V(5,5),@(5),W(5),R(5)
2 M=8

3 N=5

4 KA=8

5 KU=8

6 KV=5

7 ISW=3

8 R(1)=SQRT(1248,)

9 R(2)=20, -

10 R(3)=SQRT(384,)

11 RC4)=0,

12 R(5)=0,

13 READ(S5,500) ((ACI,J),J=1,N),I=1,M)

14 500 FORMAT(SF4.,0)

15 CALL SVDSCA,KA,M,N,ISW,Q,U,KU,V,KV,W,ICON)

16 WRITE(6,600) M,N,ISW,EPS,ICON,CCACI,J),J=1,N),I=1,M)

x,(QCJI,RUII,I=1,NI) - (CUCI L), I=1,N),I=1, M)
¥, ((V(1,d)rd=1,N),I=1,ND

17 600 FORMAT(C1H1///10X,'M=',12,2X,'N=",12,2X,"'ISW =',12
*,2X,'EPS=",1PE10,2,2X,*ICON=",16//8(10X,5E13,5/)
*/5(10X,2E13,5/>/8(10X,5E13,5/)/5(¢10X,5E13,57/))

18 STOP

19 END

(5) Notes

1. Even when M<N, A=ULVT is also obtained if AT is input instead of A, M is replaced by
N, U is replaced by V.

2. Singular value decomposition is a very useful method for matrix A which is of ill condition
or suffers a rank deficiency, But its weak point is the need for large quantity of calCu]atiom
Therefore, it is desirable to avoid calculating U and V uniess they are needeq,

3. U orV can be written over.A, So, if A need not be retained, it is preferable to write
the same data as A as U or V to save the storage capacity, |

4. Because the special subroutines are prepared for generalized inverse matrices and least

squares minimal norm solutions, select most suitable one for each case,

Bibliography
1) G. H. Golub, C. Reinsch; "Singular Value Decomposition and Least Squares Solutions”,

Numerische Mathematik, 14, pp. 403-420, (1970)
(1987. 06. 16) (1987. 08. 21)
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5. Polynomial equation and nonlinear ‘equation
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BROYDS/D (Solution of systems of nonlinear equations by Broyden’ s method)

Solution of Systems of Nonlinear Bquations by Broyden’s Method

Programm | Ichizo Ninomiya; April 1977
ed by
Format | Subroutine language; FRORTRAN Size; 59 and 71 lines respectively

(1) Outline

BROYDS and BROYDD are subroutine subprograms to solve non-linear equations

Ji(xyyoe,20)=0 (i=1,2,+--,n) using the Broyden’s iteration method when an initial

solution vector is given,

(2) Directions

CALL BROYDS/D(X, N, H, KH, FN, LF, NF, EPS, FM, ILL)

Argument | Type and Attribut Content
kind (1) |e
X Real type | Input/ou | When an initial vector is input, the solution vector is
One-dimens | tput generated,
ional
array
N Integer Input Number of unknowns of equation, (<N=<1000
type
H Real type | Work The size of KHXN is required,
Two-dimens | area
ional
array
KH Integer Input Value of the first subscript in array declaration of H. KH=N
type
FN Subroutine | Input FEN (X, Y) type subroutine used to calculate vector Y which
consisting of values of N equations when position vector X is
given, The actual argument for this argument needs an
EXTERNAL declaration in the program unit which calls this
routine,
LF Integer Input Upper bound of the number of function calls, LFON+1
type
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Argument | Type and Attribut Contenf
kind (1) |e
NF Integer Output Number of function calls,
type
EPS Real type | Input Convergence criterion, EPS>(
M Real type | Qutput Square root of mean square residuals of equations,
ILL Integer Output ILL=0: Normal end,
type ILL=1: No convergence even when NFOLE
ILL=30000: The input argument does not satisfy the
requirenents,

%] For double precision subroutines, all real types are changed to double precision real types,

(3) Calculation method

Refer to bibliography l).

(4) Example

The main part of a program to solve the Freudenstein-Roth’s problem is shown below,

DIMENSION H(2,2),X(2)

EXTERNAL FREUDE

KH=2

N=2

LF=1000

EPS=1.E-S

X(1)=15.0

X(2)= 3.0

CALL BROYDS(X,N,H,KH,FREUDE,LF,NF,EPS,FM,ILL)

END

SUBROUTINE FREUDE(X,F)

DIMENSION X(2),F(2)
FC1)=X(1)-13.+C(5.-X(2))%xX(2)-2.)*xX(2)
F(2)=X(1)-29.4+((X(2)+1.)%xX(2)-14.)%X(2)

RETURN
END

(5) Notes
1. Because non-linear equations generally have a lot of solutions, it must be checked to see if

the obtained solution is really the desired one, Good initial values must be selected to ensure
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convergence to the target solution,

2. The minimization problem when the minimum value (or the maximum value) is an extremum
becomes non-linear equations concerning the gradient vector. 0On the contréry, non-linear
equations fi=0 (i=1,---,n) become a minimization problea if Zf? is considered, This
must be taken into consideration to select a calculation method and program depending on the
case,

3. This routine internally calls inverse matrix routine MINVS or MINVD,

Bibliography
1) C.G.Broyden; "A Class of Methods for Solving Nonlinear Simultaneous Equations®, Math,

Comp., Vol.19, pp.577-593 (1965)
(1987. 06. 16) (1987. 08. 07)
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BROYDV/W (Solution of systems of nonlinear equations by Broyden's method - vector version-)

Solution of Systems of Nonlinear Equations by Broyden’s Method -Vector Version -

Programm | Ichizo Ninomiya and Yasuyo Hatano; March 1985
ed by
Format | Subroutine language; FORTRAN Size; 153 and 154 lines respectively

(1) Outline

. BROYDV and BROYDW are the subroutine subprograms used to solve non-linear simultaneous

equations fi(x1s--+,Tp)=0(1=1,2,---,n) by the Broyden's iteration method when an initial

value is given, BROYDV is for single precision and BROYDW is for double precision,

(2) Directions

CALL BROYDV/W(X, N, H, KH, FN, LF, NF, EPS, FM, I, ¥, ILL)

Argument | Type and | Attribut Content
kind (1) |e
X Real type | Input/ou | When an initial vector is input, the solution vector is
One-dimens | tput output,
ional
array
N Integer Input Number of unknowns of equation, (<N<1000
type
i Real type | Work Size NXN is required,
Two-dimens | area
ional
array
KH Integer Input Value of the first subscript in array declaration of H, KH=N
type
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Argument | Type and Attribut Content
kind (x1) (e
BN Subroutine | Input Subroutine in the form of FN(X,Y), which calculates vector Y
consistin; of N equation values when position vector X is
given, The real argument for this érgument needs to be
declared under EXTERNAL in each program that calls this
routine, .
LF Integer Input Upper linit of the number of times the function subroutine is
type called, LP>N+1
‘| NF Integer Output Number of times the function subroutine is called,
type |
EPS Real type | Input Tolerance for convergence test, EPS>(
FM Real type | Gutput Square root of mean square residuals of equations,
W Integer Work One-dimensional array with N elements,
type area
one-dimens
ional
array
W Real type | Work Size 4#N is required,
One-dimens | area
ional
array
ILL Integer Qutput ILL=0: Normal termination,
type ILL=1: Convergence does not occur even when NF>LF,
ILL=30000: The input arguments violéte the limits for them,

x] Por double precision subroutines, real types are all changed to double precision real types,

(3) Calculation method

(4) Example

See the bibliography D.
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The major part of a program that solves the Freudenstein-Roth probles (solution: X(1) = 5.0,

X(2) = 4.0) is shown below:

DIMENSION H(2,2),XC2),1IW(2),HW(4,2)

EXTERNAL FREUDE '

KH=2

N=2

LF=1000

EPS=1.E-5

X(1)=15.0

X¢2)= 3.0

CALL BROYDV(X,N,H,KH,FREUDE,LF,NF,EPS,FM,IW,W,ILL)

END

SUBROUTINE FREUDE(X,F)

DIMENSION X(2),F(2)

FC1)=X(1)-13.+((5.-X(2))%xX(2)-2.)%X(2)

FC2)=X(1)-29.+C(X(2)+1.)%xX(2)-14.)%X(2)

RETURN

END
(5) Notes
1. Because non-linear simultaneous equations usually have a lot of solutions, it is needed to
check to see if the obtained solution is }he target solution, A proper initial value must be
given to make calculation converge to the target solution,
2. A minimization problem for a minimum value that is an extremal value (not a boundary value)
amounts to non-linear simultaneous equations for gradient vectors, On the contrary, non-linear
simultaneous equations f;=0(i=1,--+,n) amount to a minimization problem in terms of Ef?
This should be considered to select a calculation method and program most appropriate to the case

in equation,

3. This routine internally calls inverse matrix routine MINVV or MINVW.

Bibliography

1) C. G. Broyden; "A Class of Methods for Solving Nonlinear Simultaneous Bquations,”
Math, Comp,, Vol.19, pp.577-593 (1965)

(1987. 06. 22) (1987. 08. 07) (1988. 06. 01)
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FLPOWS/D

- 2¢7

(Minimization of functions by Davidon-Fletcher-Powell method)

Minimization of Functions by Davidon-Fletcher-Powell Method

Programm | Ichizo Ninomiya; July 1977
ed by
Format Subroutine language; FORTRAN Size; 92 and 105 lines respectively

(1) Outline

FLPOWS and FLPOWD are subroutine subprograms which determine the minimum point of a

multivariable function by the Davidon-Fletcher-Powell method when an initial value is given, In

addition to a function value, a gradient vector value needs to be given,

(2) Directions

CALL FLPOWS/D(X, N, B, KB, FUNC, GRAD, LF, NF, FLB, EPS, FM, ILL)

Argument | Type and Attribut Content
kind (x1) | e
'x Real type | Input When an initial vector is input, the solution vector (minimum
One-dimens point) is output,
ional
array
N Integer Input | Nuaber of variables, or number of elements of X, 0<N=1000
B Real type | HWork The size of NXN is required, A unit matrix is first set
Two-dimens | area and, through updating by iterations, it converges to the
ional inverse of the Hessian matrix at the minimum point,
array :
KB Integer Input Value of the first subscript in array declaration of B, KB=N
type
FUNC Real type | Input Target function for minimization, The user prepares this as
Function a function subprogram in the form of FUNC(X). The actual
subprogram argument name must be declared in an EXTERNAL statement,
GRAD Subroutine | Input Subroutine used to calculate gradient vector G of function
FUNC. )
The user prepares this as a subroutine in the form of
GRAD(X,G). The actual argument name must be declared in an
EXTERNAL statement,
LF Integer Input Upper limit of the number of the function calls, LF=N
type
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Argument | Type and Attribut Content
kind (21) |e
NF Integer Output Number of the function calls (The number of calls for FUNC
| type and GRAD are the same,)
FLB Real type | Input Lower limit of minimum value of function,
EPS Real type | Input Tolerance for convergence test, EPS>0
FM Real type | Output Minimum value of function,
JLL Integer Output ILL=0: Normal termination,
type ILL=1: Convergence does not occur even when NF becomes
greater than LF,
1LL=30000: The input argument does not satisfy the limits for
then,

x] For double precision subroutines, real types are all changed to double precision real types,

(3) Calculation method

Refer to bibliography l)'?),

(4) Example
The major part of a program for solving the Rosenbrock problem (minimum point: X(1)=1.0,

X(2)=1.0) is shown below:

DIMENSION X(2),B(2,2)

EXTERNAL ROSEN,GROSEN

N=2

KB=2

LF=1000

FLB=0.

EPS=1.E-5

X(1)=-1.2

X(2)=1.0

CALL FLPOWS(X,N,B,KB,ROSEN,GROSEN,LF,NF,FLB,EPS,FM,ILL)

- END

FUNCTION ROSEN(X)

DIMENSION X(2)
ROSEN=100.* (X (1)xX(1)-X(2))**2+(X(1)-1.)%%2
RETURN

END

SUBROUTINE GROSEN(X,G)
DIMENSION X(2),G(2)
G(2)=200.%x(X(2)-X(1)%xX (1))
G(1)=2.%x(X(1)-1.-G(2)%xX(1))
RETURN
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END
(5) Notes
1. This routine can generally obtain a local minimum value only, A proper initial value is
required to secure a true minimum value,
2. If it is impossible or very hard to calculate gradient vectors, a method which does not

require calculation of gradient vectors should be used,

Bibliography

1) R FRletcher & M. J. D. Powell; "A Rapidly Convergent Descent Method for Minimization,”
Computer Journal, Vol 6, pp. 163-168 (1963)

2) P. J. Reddy, H. J. Zimmermann & Asghar Hussain; “Numerical Bxperiments on DFP-Method, A
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GJMNKS/D/Q (Solution of.polynomial equations with real coefficients by Garside-Jarrat-Mack

method)

Solution of Polynemial Bquations with Real Coefficients by Garside-Jarrat-Mack Method

Programm | Ichizo Ninomiya; April 1977
ed by

Format | Subroutine language; FORTRAN Size; 128, 130, and 130 lines
respectively

(1) Outline

GJMNKS, GJMNKD, and GJMNKQ are single, double, and quadruple precision subroutines respectively
used to determine all roots of a polynomial equation wifh real coefficients, The
Garside-Jarrat-Mack method" is widely acknowledged as an effective method for solution of
polynomial equations Qith complex coefficients, These subroutines are created by Ninomiya and
Kadowaki 2 by improving it as a solver of equations with real coefficients, These subroutines
combine robustness of the original method and the speeds realized by using real numbers for
complex calculation, They also incorporate the Cardano’s and Ferrari’s methods for solutions of
third- and fourth-degree equations, They can thus be recommended as general-purpose polyncmial

equation routines,

(2) Directions

CALL GJMNKS/D/Q(A, N, X, Y, ILL)

Argument | Type and Attribut Content
kind (x1) (e
A Real type | Input Coefficients of a polynomial equation is input in descending
One-dimens order of degree, Input values are destroyed,
ional A1) #0
array
N Integer Input Degree of polynomial equation, N1}
type
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Argument | Type and Attribut Content
kind (=1) |e
X Real type | Qutput The real parts of roots of a polynomial equation are output,
One-dimens Roots are generally determined in ascending order of their
ional absolute values and stored in reverse order like X(N),
array X(N-D)...
Y Real type | Output | The imaginary parts of roots of a polynomial equation are
One-dimens output, Order of computation and storage method are same as
ional with X,
array
ILL Integer Output ILL=0: Normal termination,
type ILL=30000: N<1 or A(1)=0.
ILL=K: Convergence does not occur even after 200 iterations
during processing of a deflated Kth-degree equation,

x] For double (quadruple) precision subroutines, real types are all changed to double

(quadruple) precision real types,

(3) Calculation method

These subroutines inherit the advantage of the original method that the convergence rate
basically does not change evenlfor multiple roots and adjacent roots, This explains why they
practically never fail to solve equations and provide as accurate roots as the condition of

equation permits, In this sense, they can be said very robust,
(4) Notes

1. Polynomial equations often fall in ill conditions, Therefore, unless they are in very low
degrees, it is safe to use the double precision routine GJMNKD,

2. To solve second-, third-, or fourth-degree equations, use of each specific routine is more
advantageous than these routines,

Bibliography

1) 6. R Garside, P. Jarrat and C, Mack; "A New Method for Solving Polynomial Equations,”

Computer Journal, Vol 11 (1968)
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coefficients,” Preprints of the 16th meeting of ‘Information Processing Sop_ of Japan, p, 445 (1975)
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MINSXS/D (Minimization of Functions by Simplex Method)

Minimization of Functions by Simplex Method

Programm | Ichizo Ninomiya; July 1977
ed by
Form Subroutine language; FORTRAN Size; 98 and 99 lines respectively

(1) Outline

MINSXS or MINSXD subroutine determines the minimum point of a multivariate function by the

Nedler-Mead’ s simplex method when an initial value is given, It requires only function values,

The function values just need to be continuous but need not be smooth,

(2) Directions

CALL MINSXS/D(X, N, P, KP, FUNC, LF, NF, EPS, FM, ILL)

Argument | Type and Attribut Content
kind (1) |e

X Real type | Input/ou | When an initial value for a minimum point is given, the
One-dimens | tput minimum point is output,
ional
array

N Integer Input Number of variables, or number of elements of X. (0<N=<100
type

p Real type | Work N rows and N+] columns, .The coordinates of the N + 1 -points
Two-dimens | area which form a simplex are entered in these individual columns,
ional The initial simplex is made of initial value X and N points
array in which individual coordinate elements of X are increased by

10¥ (increased by 0.1 if the element is (). Instead of this,
however, the user can prepare it before calling the routine,
The option can be specified by argument NF,

KP Integer Input Value of the first subscript in array declaration of P, KP=N
type . .

FUNC Real type | Input Target function for minimization, The user prepares a
Function function subprogram in the form of FUNC(X) as the actual
subprogram argument for it, This function name must be declared in an

EXTERNAL statement,

LF Integer Input Upper limit of the number of evaluations of function, LF>N

type
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Argument | Type and Attribut ' Content
kind (21) (e

NF Integer Input/ou | Input: NF=( means that formation of the initial simplex is
type tput left to the routine, and NF<) means that the initial simplex

is prepared by the user, Output: The nuaber of evaluations
of the function is output, Because this argument is used for
both input and output, do not specify a constant as the
actual argument,

EPS Real type | Input Tolerance for convergence test, EPS>0)
FH Real type | Output Minimum value of function,
ILL Integer Output ILL=0: ‘Normal termination
type ILL=1: Convergence does not occur even if NF becomes greater
than LF,

ILL=30000: The input argument does not satisfy the
restrictive conditions,

x] For double precision subroutines, real types are all changed to double precision real types,

(3) Methed of calculation Refer to bibliography V.
(4) Example

The major part of a program for solving the Rosenbrock problem (minimum point: X(1) = 1.0, X(2)
= 1.0) "is shown below:

DIMENSION P(2,3),X(2)
EXTERNAL ROSEN

N=2

KP=2

NF=1

LF=1000

EPS=1.E-5

X(1)=-1.2

X(2)=1.0 ‘

CALL MINSXS(XerP'KP'ROSEN/LF;NFrEPSrFMrILL)
END
FUNCTION ROSENC(X)
DIMENSION X(2)
ROSEN=100.%x(X(1)xX(1)-X(2))%%2+(1.-X(1))xx%x2
RETURN
END

(5) Notes

1. This routine can generally obtain local minimum values only, A proper initial value is ’

required to secure a true minimum value,
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2. Because of slow convergence, this routine is not suitahle for problems of higher dimension,

3. The function name as the actual argument must be declared in an EXTERNAL statement in each
program which calls this routine,

4, For a smooth function, the calculation of whose gradient is easy, it is more advantageous to
use subroutine FLPOWS using the DFP method than to use this routine,

9. When this routing is used for solving non-linear simultaneous equations

F1=0,f2=0,---,f,=0 as a minimization problem, F=Z | fi| is preferable rather than

F=) % .

Bibliography

1) J. A Nedler & R, Mead; “A Simplex Method for Function Minimization”, Computer Journal, Vol.7,.
pp. 308-312 (1965)

(1987. 06. 17)
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NOLEQS/D/Q (Solution of Nonlinear Bguations)

Solution of Nonlinear Equations

Programmed Ichizo Ninomiya, March 1983

by

Format Subroutine language: FORTRAN; size: §5, 56, and 56 lines

respectively

(1) Outline
If an interval of existence is given, a root of a given nonlinear equation in the interval is

obtained,

(2) Directions

CALL NOLEQS/D/Q(A, B, FUN, EPS, NMAX, X, FX, N, ILL)

Argument | Type and | Attr Content
kind (1) | ibut
e
A Real type | Inpu | Left end of an interval of existence,
t
B Real type | Inpu | Right end of an interval of existence,
t
FUN Real type | Inpu| A function program for computing f(x) if the equation
functi;)n t to be solved is f(x)=). The user must prepare it as a
subprogram function subprogram,
EPS Real type | Inpu | Precision criterion for root,
t
NMAX Integer Inpu | Upper limit of number of evaluations of function FUN,
type t NMAX =3
X : Real type | Outp | Starting approximation for the root,
ut
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Argument Type and Attr Content

kind (%1) | ibut

e
FX Real type | Qutp | Value of f(x) for X,
ut
N Integer Dutp | Number of evaluations of function FUN,
type ut
ILL Integer Outp | ILL=0: Normal termination,
type ut | ILL=20000: When convergence is not attained even if the

function evaluation count reached NMAX.

ILL=30000: When no root exists in the interval (A, B),

or NMAX<3.

x] For double (quadruple) precision subroutines, all real types are changed to double (quadruple)

precision real types,

(3) Calculation method

Refer to 1) in Bibliography,

(4) Example of use
This program is used to calculate the root in (0, #) of the equation f (x)=cosx-x=0,

c TEST FOR NOLEGS
EXTERNAL FUN
EPS=1.E-5
NMAX=100
A=0.0
B=1.5708
CALL NOLEQSCA,B,FUN,EPS,NMAX,X,FX,N,ILL)
WRITE(6,600) A,B-EPS,X,FX,N,ILL

600 FORMAT(1H ,2E13.5,E11.3,E13.5,E11.3.,216)

STOP
END

c FUNCTION SUBPROGRAM
FUNCTION FUNCXD
FUN=COS (X)-X
RETURN
END

(5) Notes

1. Because the calculation method of this routine is based on the bisection method, convergence
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is assured,
9. Because the first or second inverse interpolation is used as required, convergence is fast.
3. The function f(x) must be continuous, but need not be smooth,

4, It is more advantageous for algebraic equations to use the special-purpose subroutine

GJMNKS/D,
Bibliography

1)D. B. Popovski;”A Note on King's Method for Finding a Bracketed Root®, Computing

Vol. 29, pp.355-359 (1982) ‘
{1987. 06. 22) (1987. 08. 07) (1987. 08. 08)
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NOLLS1 (Subroutjne for non-linear least squares by quasi Newton method)

Subroutine for Nonlinear Least Squares by a Quasi-Newton Method

Programm | Kunio Tanabe and Sumie Ueda; March 1981
ed by

Format | Subroutine language; FORTRAN Size; 772 lines

(1) Outline

NDLLS1 obtains xi,1=1,--+,n, which minimizes

Y- a0

i=1
for the function f;j(x1+<-xp),j=1,+<-,m, which is nonlinear about the n number of

variables xi,i=1,---,n,,

It is specially effective for problems involving a high degree of nonlinearlity,

The user is only requirt_zd to prepare a subroutine (MODELF) to calculate the value of
fi(x1,--+,xn),j=1,---,m,. To obtain more accurate results, however, the user is also
requested to prepare another subroutine MODELD which calculates the f 'irst order derivative

ofi/dxi for xi of fj.

(2) Directions
CALL NOLLSI(MAXM, MAXN, M, N, X, ITMAX, NFEMAX, FTOL, XTOL, LDER1Y, NPRINT, FF2, F, DF, ITER,

NFE, NDE, INFORM, X0, DX, F0, DFO, H, SL, D, S, Y, R, W1, W2, 43, W4)

Argument | Type and Attribut Content
kind (x1) |e

MAXM Integer Input Adjustable dimension of DF (value of the first subscript in
type array declaration), MAXH=N

MAXN Integer Input Adjustable dimension of H, MAXN=N
type
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Argument | Type and Attribat Content
kind (x1) |e

M Integer Input Number of nonlinear functions f;i(x), m

type

N Integer Input Number 6f unknown parameters Xi, n

type
X Real type | Input/ou | When an initial value of unkuown parameter Xx; is put, the
One-dimens | tput final value is generated,
ional (i=1 )2)"',71)
array

ITHAX Integer Input Upper bound of the number of iterations,

type

NFEMAX Integer Input Upper bound of the number of times function evaluation can be

type done,

FTOL Real type | Input Convergence criterion concerning function value, If all
values of f;(x) become FTOL or less, iteration ends,
0=<FTOL

XTOL Real type | Input Convergence criterion concerning unknown parameter Xj.
0=<XTOL

LDERIV Integer Input Specify whether to prepare subroutine MODELD which gives the

type first order derivative for x; of fj.
1: MODELD is used.
0: MODELD is not used,
Even if LDERIV = 0, dummy subroutine MODELD must be prepared,
NPRINT Integer Input Specify what is to be printed by each iterative calculation,
type 0: Nothing is printed, )
1: Sum of squares and X; are printed,
2: Sum of square and Xi, f; are printed,
3: Sum of squares and x;i, fj, 98f;/x;i are printed,
FF2 Real type | Output Value of sum.of squares,
F Real type | Output Value of residual f;.
One-dimens )
ional
array
DR Real type |Output | Value of first order derivative & f;/xi. DF(MAXM,N).
Two-dimens
ional
array
ITER Integer Qutput Number of actual iterations,
type

NFE Integer Qutput Actual number of function evaluations,

type

NDE Integer Output Number of evaluations of actual first order derivative

type (calling frequency of MODELD),
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Argument | Type and Attribut Content
kind (1) |e
INFORM Integer Output Information on the convergence state is generated., When
type INFORM = 1, the condition in (2) in item (3), °“Calculation
method”, is satisfied. Otherwise, INFORM = 0,
X0, Real type | Work X0 (N), DX (V)
DX One-dimens | area
ional
array
FO Real type | Work FO (M)
One-dimens | area
-ional
array
DFO Real type | Work DFO (MAXM, N)
Two-dimens | area
ional
array
B, SL Real type | Work H(MAXN, N), SL (MAXN, N)
Two-dimens | area
ional
array -
D, S, Y, R, | Real type | Work DN), S(N), Y(N), R(N), WI(N), W2(N)
W1, W2 One-dimens | area
ional
array
W3, W4 Real type | Work W3¢, W
One-dimens | area
ional
array

(3) Calculation method

A local minimum value is determined based on the Biggs' quasi-Newton iteration method,

convergence test is controlled by the values of arguments XTOL and FTOL.

one of the following conditions are met:

(1) If](x) I < max(FTOL,E)’j‘_'l )2,"'9"!

@ |£&@D,0;f(xM))| sanf@)uz00;f(x") 12(5=1,2,---,m)

And,

Ix*-xlosoomax(lx* e, 1.0)
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Conversion ends when



o {165% ----- (1)
laze el )

difi(xd)=(of;/oxi)
(1) is the treatment when f is given, and (2) is the treatment when f and fO are given,

€ is a constant which depends on the machine, and X% and X are the values of two continuing
s in the iterative calculation,

(3) The number of iterations exceeds the upper bound value,

(4) The number of operations of function values exceeds the upper bound value,

(5) The value of x does not. show a remarkable change,

(4) Example

DIMENSION X(20),F(100),DF(100,20),X0¢20),DX(20),F0C100)
DIMENSION DF0(100,20),H(20,20),SL(C20,20),D€20),S(20)
DIMENSION Y(20),R(20),W1(20),W2(20),W3(100),W4(100)
MAXM=100

MAXN=20

M=2

N=2 '

X(1>=-1.2

X(2)=1.0

ITMAX=100

FTOL=1.0E-5

XTOL=1.0E-5

NFEMAX=5000

LDERIV=1

NPRINT=3

WRITE(6,6000) MAXM,MAXN,M,N,ITMAX,NFEMAX,FTOL,XTOL.,
1 LDERIV,NPRINT

WRITE(6,6100) (X<C(J),J=1,N)

CALL NOLLSA(
-MAXM,MAXN,M,N,X,ITMAX,NFEMAX,FTOL,XTOL,LDERIV,NPRINT
-,FF,F,DF,ITER,NFE,NDE,INFORM,X0,DX
-+FO,DFO,H,SL,D,S,Y,R/H1,W2,W3,W4)

WRITE(6,6200) ITER,NFE,NDE

6000 FORMAT(C(1HO,4X,'INITIAL VALUES',/1H ,10X,"MAXM=',14
-,"* MAXN="',14," M=',12," =',12,"' ITMAX="',14
- NFEMAX=',15/1H ,10X,*'FTOL='",1PE16.7," XTOL="
-,E16.7/1H ,10X,°'LDERIV=",12," NPRINT=',12)

6100 FORMAT(1H ,10X,°'X=*',1P5E16.7/(1H ,10X,5E16.7))

6200 FORMAT(1HO,10X*ITERATION',16/1H ,10X,'MODELF-CALL"',14
-/1H ,10X,*MODELD-CALL',14)
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STOP

END

SUBROUTINE MODELF(M,N,X,F)
DIMENSION X(CNJ),F(M)
FC1)=10.0x(X(1)xX(1>-X(2))
F(2>=1.0-X(1)

RETURN

END

SUBROUTINE MODELD(MAXM,M,N,X,DF)
DIMENSION X(N),DF(MAXM,N)
DF(1,1>=20.0%X(1)
DF(1,2)=-10.0
DF(2,1)=-1.0

DF(2,2>=0.0

RETURN

END

Qutput result

INITIAL VALUES
MAXM= 100 MAXN= 20 M= 2 N= 2 ITMAX= 100 NFEMAX= 5000
FTOL= 9.9999997E-06 XTOL= 9.9999997E-06
LDERIV= 1 NPRINT= 3 :
= -1.1999998E+00 1.0000000E+00
0 THE SUM OF SQUARES= 2.4199875E+01
X= =1.1999998E+00 1.0000000E+00
= 4 .3999863E+00 2.1999998E+00
DF= -2.3999985E+01 -1.0000000E+01
-1.0000000E+00 0.0 :
1 THE SUM OF SQUARES= 2.1258163E+01

X= -1.0189848E+00 6.2381876E-01
= 4.1451035E+00 2.0189848E+00
DF= -2.3999985E+01 -1.0000000E+01
-1.0000000E+00 0.0
2 THE SUM OF SQUARES= 3.9795551E+00
X= -9.9474800E-01 9.9184918E-01

= -2.3256540E-02 1.9947472E+00

THE SUM OF'SQUARES= 1.3669265E-08
X= 9.9991751E-01 9.9982673E-01
= 8.2850456E-05 8.2492828E-05

DF= 1.9940781E+01 -1.0000000E+01
-1.0000000E+00 0.0
21 THE SUM OF SQUARES= 3.6948222E-13

X= 9.9999988E-01 9.9999970E-01
= 5.9604645E-07 1.1920929E-07

DF= 1.9998337E+01 -1.0000000E+01

-1.0000000E+00 0.0 : :

KEKERKRRKRKKREEXRKRKERRK KRRk kkxxkkx FINISHED®kkx*x%x%xx
ITERATION 21

MODELF-CALL 38

MODELD-CALL 21
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POLEQC/B/2 (Solution of a Polynomial Equation with Complex Coefficients)

Solution of a Polynomial Equation with Complex Coefficients

Programm | Tsuyako Miyakoda and Tatsuo Toriit and revised by Ichizo Ninomiya, June 1984
ed by
Format Subroutine language: FORTRAN; size: 172 lines

(1) Outline

POLEQC/B/Z obtains all the roots of an algebraic equation with complex coefficients using the

evaluation of the degree-reduced type;

(2) Directions

CALL POLEQC/B/Z(AA, NN, Z, ERR, ¥, ILL)

Argument | Type and Attribut Content
kind (1) |e
AA Complex Input The coefficients of algebraic equations are sequentially
type input in descending order of degree,
One-dimens AA(1) #0 and size NN+1,
ional
array
NN Integer Input Degree of algebraic equations, NN=1
type
A Complex Output The roots of algebraic equations are output in the reverse of
type the searching order, ‘
One-dimens
ional
array
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Argument | Type and | Attribut Content
kind (x1) |e

ERR Real type | Output Error evaluation for each obtained solution,

.| One-dimens

ional
array

H Complex Work The size is 3x (NN+1).
type area
One-dimens
ional
array

ILL Integer Output ILL=0: Normal termination,
type 1LL=30000: N<1 or AA(1)=0.

ILL=K: The convergence may not occur even if the calculation
is iterated 50 (100, 200) times when a reduced K-degree

equation is processed,

1% For double (quadruple) precision subroutines, all complex types are assumed to be double

(quadruple) -precision complex types,

(3) Calculation method

Refer to paper (2). -The method of obtaining approximate roots is fundamentally the same as in

paper (1).

And the convergence is improved by distributing the roots of the reduced polynomial

evenly inside and outside of a unit circle each time, We obtain the root existing inside of the

circle setting the initial value of the iterate as Z=(, When the order of coefficients is

reversed and the root of a polynomial whose order is reversed from the original one is obtained,

a minus sign is added to ERR.

(4) Example of use

C

TEST FOR POLEGB

IMPLICIT REAL*8 (A-H,0-2)
REAL*4 XR,XI
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10

30

40
50

70

66

55
60
1010
1030
1040

(5) Note

The obtained roots are stored in the reverse order,

for the degree-reduced polynominals,

COMPLEX%16 A(50),B(50),2(50),X(50),T,WZ2(200)
DIMENSION ERR(S50),TER(50)

DO 60 N=1,10 '

DO 10 I=1,N

ACI+1)>=0.DO

XR=1.0-RANDOM(0)>%2.0
XI=1.0-RANDOM(O)>=*2.0
XCIY=CMPLXC(XR,XI)

AC1>=1.DO

DO 50 I=1,N

DO 30 J=2,1+1
B(JI=ACJI-ACJ-1)*X(I)

DO 40 J=2,1+1

ACII=BI)

CONTINUE
WRITE(6,1010) (I, X(1),I=1,N)

CALL POLEQB(A,N,Z,WZ,ERR,ILL)

DO 66 1=1,N-1

K=1

DO 70 J=2,N
IFCCDABS(Z(JI-XCI)).LT.CDABS(Z(K)-X(I))) K=J
CONTINUE

T=2(K)

Z(K)=Z(1)

ZCI=T

SS=ERR (KD

ERR(KI=ERR(CI)

ERR(I)=SS

CONTINUE

WRITE(6,1030) ILL

DO 55 I=1,N
TER(I>=CDABS(Z(IXY-X(I))
WRITE(6,1040)1,2CI),TERCI),ERR(I)
CONTINUE

FORMAT(//721X,11HEXACT RO0OTS//(15,2D23.15))

FORMAT(/25X,5HR00TS,28X,3HTER,8X,3HEST,5H ILL=,14/)

FORMAT(1H ,14,2D23.15,2X,2D011.3)
END

Therefore, the evaluation becomes rough gradually,
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The error estimation of each root is

By

the by degree reduction, a cubic polynomial is finally obtained, The cubic equation is solved

directly, so ( is input to the error estimation for these 3 roots,
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POLESB/C (Solution of Polynomial Bquation with Complex Coefficients by the Model of

Electrostatic Field)

Solution of Polynomial Bquation with Complex Coefficients by the Model of Blectrostatic field

Programm | Tetsuya Sakurai, Tatsuo Torii, and Hiroshi Sugiura: September 1986
ed by

Format | Subroutine language: FORTRAN; size: 259 lines

(1) Outline
POLESB/C is a single or double precision subroutine for obtaining all the roots of polynomial
equations with complex coefficients, Even if the roots include multiple and adjacent roots, they

can be obtained in about the same calculation time as for single roots,

(2) Directions

CALL POLESB(A, N, Z, W, ILL)

Argument | Type and Attribut Content
kind (x1) |e

A Complex | Input The coefficients of polynomial equations should be entered
type sequentially starting from the highest order coefficient,
One-dimens Not retained, A(l)+#0 and size N+1,

ional
array

N Integer Input Order of polynomial equations, N=1.
type

A Complex | Output The roots of polynomial equations are output,
type
One-dimens
ional
array

W Integer Work The size is I X (N+1).
type area '
one-dimens
ional
array
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Argument | Type and | Attribut Content
kind (x1) |e '
ILL Integer Output ILL=0: Normal termination,

type ILL=30000: N<1 or A(1)=0.

. | ILL=K: If no convergence occurs even if the routine is
iterated 50 times while an reduced k-th order equation is
processed,

=] All real and complex types should be of a double precision,

(3) Calculation method

This method solves the equation f(Z)=0 by approximating f ' (2)/f(x) using the rational
expression obtained from the electrostatic field model. It has a quaternary convergence
characteristic that is independent of the multiplicity of roots, and solves the quadratic

equation for each iteration,

(4) Example.of use

This is an example of solving f (z)=25—iz4-323—3i22+4z—10i .

*TEST FOR POLESB
IMPLICIT REAL*8 (A-H,0-2)
COMPLEX*16 A(6),2(5)
REAL*x8 W(18)

N=5 »
A(1)=(1.D0,0.D0)
A(2)=(0.D0,-1.D0)
A(3)=(-3.D0,0.D0)
AC4)=(0.D0,-3.D0D
A(5)=(4.D0,0.D0)
A(6)=¢€0.D0,-10.D0)

CALL POLESB(A,N,Z,W,ILL)

WRITE (6,1000) (I,Z(I),1=1,N)
1000 FORMAT(' ',110,2F25.15)

STOP

END

FORTRAN 77 COMPILER ENTERED
END OF COMPILATION

1 0.000000000000000 1.000000000000000
2 2.000000000000000 1.000000000000000
3 -2.000000000000000 1.000000000000000
4 1.000000000000000 . =1.000000000000000
5 -1.000000000000000 -1.000000000000000

END OF GO,SEVERITY CODE=00
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(5) Note

The obtained roots are stored in the reverse order,
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QUADRC/B/2Z, CUBICC/B/Z, and QUARTC/B/Z (Solution of Low Order Polynomial

Equations with Complex Coefficients)

Solution of Low Order Polynomial Equations with Complex Coefficients

Programm | Tsuyako Miyakoda and Tatsuo Torii, and revised by Ichizo Ninomiya,

ed by June 1984

Format | Subroutine language: FORTRAN; size: 22, 63, and 46 lines respectively

(1) OQutline
QUADRC (B, Z), CUBICC(B,Z), and QUARTC(B, Z) are the single (double or quadruple) precision
subroutine for calculating all the roots of quadratic, cubic, and quartic polynomial equations

with complex coefficients,

(2) Directions
CALL QUADRC/B/Z(C,1Z, ILL)
CALL CUBICC/B/Z(C,Z, ILL)

CALL QUARTC/B/Z(C,Z, ILL)

Argument | Type and Attribut Content

kind (x1) je

C Complex Input Coefficient of polynomial equations, Coefficients should be
type input in descending order from the highest.

One-dimens
ional

array
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Argument | Type and

kind (1)

Attribut

e

Content

z Conplex
type
One-dimens
ional

array

Output

Roots of polynomial equations are output,

ILL Integer

type

Qutput

ILL=0: Normal termination,

ILL=30000: C(1)=0.

x1 For double (quadruple) precision subroutines, all complex types should be double (quadruple)

precision complex types,

(3) Calculation method

1. Quadratic equations conform to the root formulas and the relationship between the roots and

coefficients,

2. Cubic equations conform to the modified Cardano method by Hirano (l).

3. Quartic equations conform to the Ferrari method.
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QUADRS/D/Q/,CUBICS/D/Q,QUARTS/D/Q (Solution of low-order polynomial

equations with real coefficients)

Solution of Low Order Polynomial Equations with Real Coefficients

Programm | Ichizo Ninomiya; April 1977
ed by

Format Subroutine language; FORTRAN
Size; 24, 27, 27, 40, 41, 41, 46, 47, and 47 lines respectlvely

(1) Outline
QUADRS (D, @), CUBICS (D, @), and QUARTS (D, Q) are single (double, quadruple) precision
subroutines used to calculate all roots of the quadratic, cubic, and quartic equations (real

coefficients) respectively,

(2) Directions

QUADRS/D/
CALL [CUBICS/D/Q (A X, Y, ILL)

QUARTS/D/
Argument | Type and | Attribut fontent
kind (1) |e
A Real type | Input Coefficients for a polynomial equation is input in descending
One-dimens order of the degree,
ional A1) #0
array
X Real type | Qutput The real parts of roots of the polynomial equation are
One-dimens ’ output,
ional
array
Y Real tyﬁe Qutput | The imaginary parts of the roots of the polynomial equation
One-dimens is output,
ional
array
ILL Integer Output | ILL=0: Normal termination, ILL=30000: A1) = 0.
type

x] For double (quadruple) subroutines, real types are all changed to double (quadruple)

precision real types,

(3) Calculation method
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1. For a quadratic equation, only the root with the larger absolute value is determined by the
quadratic formula and the other root is determined by using the relation between the product of
the two roots and the coefficients,

2. A cubic equation is solved by the Cardano’s method,

3. A quartic equation is solved by the Ferrari’s method,

(4) Note. .

Rifth or higher degree equations can be solved by using GJMNKS/D/Q,
(1987. 07. 24) (1987. 08. 21)



RTFNDS/D (Solution of a nonlinear equation)

Solution of a Nonlinear Equation

Programm | Ichizo Ninomiya; August 1984

ed by

Format Subroutine language; FORTRAN Size; 274 lines each

(1) Outline

RTFNDS and RTRNDD calculates all roots in the given interval of the given nonlinear equation,

(2) Directions

CALL RTFNDS (A, B, FUN, C, EPS, EPSZ, L, NR, RT, NP, BD, ILL)

Argument | Type and Attribut Content
kind (sD) |e

A Real type | Input Left end of an interval,” A<B

B Real type | Input Right end of an interval, A<B

FUN Real type | Input Function subprogram prepared by the user for f(x) when the
Function A equation to be solved is f(x)=(,
subprogran

C . | Real type | Input Constant for Chebyshev test, Default value 3 is given when

C=0.
EPS Real type | Input Constant e for root isolation test, The standard range is
|10te107,

EPSZ Real type | Input Constant ez for root precision test,

L Integer Input Size for arrays RT and BD, About 100 is enough in most
type cases, |

NR Integer Output | Total number of roots
type
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Argument | Type and | Attribut Content
kind (x1) |e
RT Real type | Output NR roots are output in ascending order, This argument is
One-dimens | . also used as a work area during calculation,
ional
array
NF Integer Output Number of evaluations of function f(x)
type

BD Real type | Work Size 4sNR is needed,

One-dimens | area

ional
array
ILL Integer Output " | Error code,
type ILL=0: Normal termination,

ILL=20000: L was so small that the capacity of array RT or BD
was exceeded. Calculation has discontinued,

ILL=30000: A<B or L<2

x] For double precision subroutines, real types are all changed to be double precision real

types.

(3) Calculation method

1. Sufficiently small intervals, each containing one of ali roots in the interval (A, B), are
detected by the B, Jones’ root isolation method ('). When each interval is (X1,X2), then
|¥2-X1|< € +Xm holds, where Xm=max(|X1+X2(/2,1),

2. The root in each small interval obtained in 1. is calculated by the Popovski’s methed (ZJ,

(4) Example

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION RT(100),BD(100)
EXTERNAL FUN

A=0.0D0

B=15.D0

EPS=1.D-2
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EPSZ=1.D-8

€c=3.D0

L=100

CALL RTFNDDC(A,B,FUN,C,EPS,EPSZ,L,NR,RT,NF,BD,ILL)

WRITE(6,600) NR,(RT(I>,I=1,NR)
600 FORMAT(5X,'NR=',14/(5D16.8))

STOP -

END

FUNCTION FUNCX)

IMPLICIT REAL*8 (A-H,0-2)

DATA PI /3.141592653589794D0/

FUN=DSINC(PIxX/14.D0)+DSINC(PI*X*1.5D0)

RETURN

END
(5) Notes
1. Constant C is used in Chebyshev's inequalityanE:Ch) to test that a certain interval contains
no root, where m and v are average value and variance of the function values in that interval
respectively, If this inequality is satisfied, the statistical hypothesis "a root exists in this
interval® is rejected with the level of significance 1/C or below, C=3.0 is often a suitable
value, If C is too small, there is a danger of misjudging an existent root as "inexistent,”
Conversely, if C is too large, judgment is done too carefully, increasing the number of function
evaluations,
2. Selection of the constant e for root isolation test is also very important, If e is too
large, roots cannot be isolated completely to one another, If it is too small, the number of
function evaluations increases, Once the roots have been isolated, subsequent calculation is
done very fast regardless of €z Therefore, assign & a large value enough to isolate the
roots,
3 If |0z|<ez-max(|z], 1), where z is roots and Jz is their correction, is established,

convergence is regarded to be completed, Note, therefore, that |f(z)|< ez is not always

established,
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