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I. NUMPAC routine

Library programs of NUMPAC are roughly divided into two cathegories, ie., function subprograms
and subroutine subprograms, There are some general rules for each of them and the rules are used

in this manual for simple description, Please read the following explanations carefully before

using NUMPAC,

(I) Function subprogram
(1) Function name and type
The function name of the real type follows the rule of the implicit type specification of
FORTRAN,
Example : BJO, ACND
The function name of the double precision real type consists of the function name of the
correspénding real type with adding D to the head of it. The function name of the quadruple
precision real number type (if exists) consists of the function name of the corresponding real
type with adding Q to the head of it, However, there are some exceptions,
Example : SINHP, DSINHP, QSINHP
Example of exception : ALOG1, DLOGI, QLOG1
It is severely observed that the function name for double precision begins with D and that for
quadruple precision begins with Q, Note that the function name should be declared with a
suitable type in each program unit referring to the function,
Example : DOUBLE PRECISION BCOSHP, DJ1
REAL*8 DCELI1, DCELI2
REAL*16 QSINHP, QASINH
Because the function name of double precision always begins with D and that of quadruple
precision with Q, it is convenient to use the IMPLICIT statemenf considering other variables,
Example : IMPLICIT REAL%8(D)
IMPLICIT REAL=8 (A-H, 0-2)
In this way, you need not declare the function name, separately,
(2) Accuracy of function value
Function routines are created aiming at the accuracy of full working precision as a rule,

However, this cannot be achieved completely because of fundamental or technical difficulty ”,



Especially, it is not achieved for functions of two variables and functions pf complex variable,
(3) Limit of argument
(@) The domain is iimited,
Example : ALOG]
This function calculates log(1+x) . Therefore, x>-1 should be satisfied,
(b) The singular point exists,
Example : TANHP
This function calculates tanmx/2, Therefore, an odd integer X is a sungularity.
(c) The function value overflows,
Example : BI0

This function is for modified Bessel function Ip(x), and for big x., &

is calculated
referring to standard function EXP, Therefore, overflow limit 252l0g.2=174.673 of EXP
is the upper bound of the argument of this function,
(d) The function valuevbecomes meaningless,

Example : BJO

This function is for Bessel functioﬁ Jo(x), and standard functions SIN and COS are referred
to for big . Therefore, the argument linit |x|=2'®7=8.23-10° of SIN and COS is the
limit of the argument of this function,

There are many such examples, Note that the value 218z is not a sharp limit and that the
number of significant digits for the function decreases graéually as approaching this limit even
if within this limit,

When the function value underflows, it is set to 0 without special processing,

(4) Error processing

When the argument exceeds the limit, an message for the error is printed and the calculation is
continued with the all function values set as (., The message consists of the function name, the
argument value, the function value (0) and the reason for the error,

Example : ALOG1 ERROR ARG=-0, 2000000E+01 VAL=0.0 ARG.LT.-1

The error processing program counts the frequency of the errors and stops the calculation if

the frequency exceeds a certain limit, considering the case that the calculation becomes

meaningless when the error occurs one after another, Because all users do not want this, you can

adopt or reject this processing including the print of the message, Subroutine FNERST is



provided for this purpose and you can use it in the following way,

CALL FNERST (IABORT, MSGPRT, LIMERR)

Argument Type and Attrib Content

kind ute

[ABORT Integer Input lABORT=0 The calculation is not stopped,
type [ABORT#0 The calculation is stopped,

MSGPRT Integer Input | MSGPRT=0 The message is not printed,
type . 'MSGPRT#0 The message is printed,

LIMERR Integer Input | Upper bound of frequency of errors,
type

If this subroutine is not called,

IABORT=1, MSGPRT=]1, LIMERR=10

(I1) Subroutine subprogram

(1) Subroutine name and type

following values are set as a standard value,

.

There is no meaning of the type in the head character of the subroutine name, Subroutines with

the same purpose and the different type are distinguished by the ending character of the name,

The principle is as follows,

Single precision : §
Double precision : D
Quadruple precision

Complex number : C
Double precision

complex number : B
:Q Quadruple precision
complex number : Z

Vector computer single precision
A

Vector computer double precision
W

Vector computer complex number :
Vector computer double precision
complex number : Y

X

However, there ar€ some exceptions,

Example Example of exception
LEQLUS/D/Q/C/B FFTR/FFTRD
RK4S/D/0/C/B MINVSP/MINVDP
GJMNKS/D/Q

a

(2) Argument -+~ The following four kinds are distinguished as an attribute of the argument.

Input

arguments,

Users should set this data before calling the subroutine,
especially noticed, the data is preserved as it is at the subroutine exit.
includes the case when the function name and the subroutine name are used as
Note that those names should be declared with EXTERNAL,

As long as it is not

This




Output This data is created in the subroutine and is significant for the user.

Input/Ou | Data is output in the same place as the input to save area. Hhen input/output
tput argument is a single variable, you should not specify a constant as a real
argument, For instance, if LEQLUS is called with constant ] specified in
input/output argument and is ended normally, IND=0 is output, but all constants ]
are changed to (.

Work It is an area necessary for calculation in a subroutine, and the content of the
area subroutine at exit is meaningless for users,

The type and attribute of the argument are explained for each subroutine group, The explanation
is for single precision,. For others, please read it with exchanging the type for the suitable
one,

When a suhroutiné is called with an argument, but the argument is not used, the area for the
argument need not be prepared, and anything can be written in that place, The same area can be
allocated for the different arguments, only if it is pointed as it like SVDS. There is an
example (FT235R) that special demand is requested for the argument,

It is requested for users to érovide the function routine and the subroutine for the-numerical
integration routine and the routine for solving differential equations, In this case, the
number, the type, and the order of the argument should be as specified, If parameters except a

regulated argument are necessary, they are allocated in COMMON area to communicate with the main

program, Refer to the explanation of an individual routine for the example,

1) Ichizo Ninomiya; “Current state, issues of mathematical software”, information processing,

Vol. 23 and pp. 109-117(1982).



[ Opening source program to the public }

The following source programs are published for users requesting them, Calculation can be

requested directly, and the source list can be output or can be copied in the shared file, The

copied program cannot be given to the third party without the permission of this center.
If you need to copy the source list in the card or the data set, please execute following
procedures,
(1) Input tﬁe following command for TSS.
NLIBRARY ELM (library name) "DS (data set name)” "SLAVE(ON)”
When you need only the source list, you can omit DS an8 SLAVE, When SLAVE(ON) is specified,
all slave routines of the program will be output,
(2) Execute the following job for BATCH.
//EXEC NLIBRARY, ELM=program names[, DS="data set names’ ][, SLAVE=0N]
You can have examples of the program usage with the following procedures,
(1) For TSS
EXAMPLE NAME (library name) [DS (data set name)]
(2) For BATCH

//BXEC EXAMPLE, NAME=program names[, DS=" data set names’ ]

Four kinds of manual listed below are prepared concerning library program,

Numb Manual title Content
er
1| Library program and data list All library programs and data which can be

used in this center are listed,
Additionally, “description format of the
NUMPAC routine and notes on use”, "How to
choose the NUMPAC routine”, and usage of
error processing subroutine "FNERST” are
described in this list,

2 | Guidance to use library program This volume describes the general use of
programs except NUMPAC, which can be used in
(General volume : GENERAL VOL.1) this center.




3 | Guidance to use library program

(Numerical calculation : NUMPAC VOL.1)

This volume describes how to use the
following five kinds of programs,

1. Basic matrix operations

2. System of linear equations

3. Matrix inversion

4. Eigenvalue analysis

5. Polynomial equation and nonlinear
equation

4 | Guidance to use library program

(Numerical calculation : NUMPAC VOL.2)

This volume describes how to use the
following five kinds of programs,

6. Interpolation, smoothing, and numerical
differentiation and integration

7. Fourier analysis

8. Numerical quadrature

9. Ordinary differential equation

10. Elementary function

5 | Guidance to use library program

(Numerical calculation : NUMPAC VOL. 3)

This volume describes how to use the
followlng nine kinds of programs,

11. Table functions

12. Orthogonal polynomial

13. Special functions

14. Bessel function and related function
19. Acceleration. of convergence of sequences
16. Linear programming ’
17. Special data processing

18. Figure display application. program
19. Others

All these manuals can be output by "MANUAL command”,

need part of the usage of individual program,

"PICKOUT command” is available if you




For NUMPAC users
Please note the following and use NUMPAC effectively,

(1) The user has the responsibi]ity for the result obtained by NUMPAC.
(2) When the trouble is found, please report it to the center program
consultation corner (Extension 6530).

(3) Do not use NUMPAC in computer systems other than this center without
permission,

(4) To publish the result obtained NUMPAC, the used program names (for

instance, xxx of NUMPAC) should be referred to’

This manual was translated using Fujitsu’s machine translation system ATLAS,
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I1. Library and program itemized discussion




6. Interpolation, smoothing, and numerical

differentiation and integration

(Method of choice of interpolation and smoothing routines)
NUMPAC offers a choice of routines depending on the way the data is given and whether the data
contains error, When data is given in a form of a function and can be calculated with a function
value at any point, the way of giving such data is called a function input., Chebyshev
interpolation routines are suitable for such calculation, On the other hand, when discrete
pointg are given as data without error or with a slight error, spline interpolation routines are
recommended, If data contains error, the least square approximatiocn routines.can be used,
Function input ——— Chebyshev interpolation FCHB1S, FCHB2S, and FCHB3S
Discrete point input r—— Interpolation (Given points are passed through,)

When derivative values in high precision are required:
Sﬁline interpolation DSCI3A and DSCI3D

When precision for graphics display is enough:

Quasi-Hermitian interpolation HERM31 and HERM32

— Smoothing (when data includes an error)
Linear model: Polynomial approximation LSAICS

Non-linear model: NOLLS] and SALS



AGFBS/D and AGFB2S/D (Automatic Grid-Fitting of Irregularly-Spaced Data by BRIGGS’

Method)

Automatic Grid-Fitting of Irregulaf]y-Spaced Data by BRIGGS' method

Programn | Akihiko Yamamoto in September 1980 and revised in October 1984

ed by

Format Subroutine language: FORTRAN; size: 475, 476, 532, and 533 lines respectively

(1) Outline

AGFBS/D and AGFB2S/D obtain a function value at the mesh point in the rectangular region
S(X0sX=X1,Y0sYsY1) using Briggs' method M yhen the irregularly-spaced function data
Zi(X1,Y1),(i=1~N) is given. The region S can come pff the region where the function
value Zi is distributed, That is, the function values at mesh points that are off the data
definition area are also extrapolated, but it is desirable that the region of the function values
is as large as the one where Zi(X1,Y1) is distributed, to keep the reliability of the
interpolated (extrapolated) values, If'Zi(Xi,Yi) is the function value (i=1~N) at the
point (X1,Y1), and the rectangular region S is composed of IX meshes in the X direction and

<

JY meshes in the Y direction, the coordinate (Xk,YL) at each mesh is as follows:
xx=hs (K-1)+x9, (K=1~IX)
yr=hy (L-1)+yo, (L=1~JY)

where

hy=2L%0 Y-

IX-1° JY-1

Then, the function value at the mesh point (Kk,YL) is obtained with this subroutine, and
entered in the array U(K,L).

The calculation method is to solve the difference formula which is converted from a partial



differential equation with such conditions that the total curvature is minimized with the
function value Zi(X1,Y1) as a boundary value, using the iteration method (see bibliography
(1) for details),

In the iteration matrix U(K,L), the function value after (P-1) iterations is defined as
UP'I(K,L), the function value after P iterations is defined -as UP(K,L), and the total of
absolute correction values EP is defined as

1X JY
UP@i,5)-UP (i, 35)

EP=}, ),

i=] j=l

If

E<e

El

is met for the given £(=E>0), the iteration terminates,

If ¢ takes a very small value, the calculation is terminated at the iteration count (=IT).
UO(K,L), that is, the initial state of the iteration matrix U(K,L) can be selected from the
following five:

(1) Quadratic surface obtained like least squares method
(2) Rirst plane obtained like least squares method

(3) Average value of Zi(X1,Y1)

(4) A11 0.0

(5) UCK,L) of the previous result of call

If the routine is iterated with the quadratic surface as the initial value from N to several
tens, convergence often becomes fast . However, if N > several hundreds, it does not change
considerably, However, this is npt always true because convergence depends on the number of data
and its distribution state,

In this method, however, the allowable number of data items Zi which depend essentially on each

wesh is only one, Thus, the data Zi used to decide the function value of meshes is selected as

11
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follows:Assume that more than one data item (Zi;i=1~m) are distributed in a mesh, At this
tine,

(i) The data (Z1) that is nearest to U(1i,Jj) in AGFBS/D is assumed to be the typical value in
the mesh,

(ii) In AGFB2S/D, it is assumed that the average value of Zi (i=1~m) exists in the their
center of gravity and be the typical value in the mesh, However, m=999 must be met,

Therefore, the following differences are found between AGFBS/D and AGFB25/D when two or more data
exist in each mesh,

(a) In AGPBS/D, all unnecessary data is rejected even if it exists in S, Thus, CPU time
decreases a little as compared with AGFB2S/D, If the existing data containing an abnormal
function value is accidentally r_ejected, grid fitting is normally done, Thus, this methed is
inadequate for grid fitting including abnormal data detection,

(b) Because in AGFB2S/D, all the data existing in S (more correctly, specified as ill=2) is
used, CPU time increases‘a little as compared with AGFBS/D, If the data containing an abnormal
functi_on value exists.contrary to AGFBS/D, grid fitting is done with the abnormal state kept,
Therefore, it is better to use AGFB2S/D for grid fitting such as checking all the data for
abnormal function values, Generally, the rectangular region S is subdivided to an extent where
up to two data items exist in a mesh. If no data contains an abnormal function value, the result

is almost the same even if either of AGPFBS/D and AGFB2S/D is uced,

(9) Directions
CALL AGFBS/D(U, KU, NN, IX, JY, X, Y, Z, N, C, W, OM, B, JS, IT, ILL)

CALL AGFB2S/D(U, KU, NN, IX, JY, X, Y, Z, N, C, &, OM, E, JS, IT, ILL)

Argument | Type and Attribut Content
kind (1) je

U Realtype'lnput/ou Iteration matrix UK,2) where
Two-dimens | tput meshed function values are entered, It is useful as an input
ional | at JS=4 only, and starts the iteration with the result of the
array previous call as the initial value, The size is IXsJY,

12..'4
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Argument | Type and | Attribut Content
kind (1) |e

KU Integer Input/ou | Work area, Iteration-related information is entered, It is
type tput' useful as an input at JS=4 only, and can continue the
Two-dimens iteration with the result of the previous call as an input as
ional is, The size is IX=JY,
array

NN Integer Input The first subscript in the array declaration of U.KU.
type

IX Integer Input Number of mesh points in X
type direction, XO is counted as 1, and X! is counted as IX

JY Integer Input Number of mesh points in Y direction, (YO is counted as 1
type , and Y1 is counted as JY.) |

X Real type ‘Input Value of irregularly-distributed discrete point input data
One-dimens X1i. The size is N,
ional
array

Y Real type | Input Value of irregularly-distributed discrete point input data
One-dimens Yi. The size is N.
.ional
array

A Real type | Input Function value Z1 in irregularly-distributed discrete point
One-dizens input data (X1i,Yi1), The size is N,
ional
array

N Integer Input Number of discrete point input
type data items X1,Y1,Zi . Nz4

13



Argument | Type and Attribut | Content
kind (x1) |e
C Real type | Input Rectangular region S where grid-fitting is done is specified,
one-dimens The size is four,
ional C(1)=X0,C(2)=Y0,C(3)=X1,C(4)=Y1 should
array be input, (XO0<X1,YO<Y1)
W Real type lnput/ou> Work area, Iteration-related information is entered, It is
One-dimens { tput useful as an input at JS=4 only, and can continue the
ional iteration with the result of the previous call as an input as
array is, The size is 8N or larger,
oM Real type | Input Convergence acceleration coefficient, The value to be input
is 1 or 2. The appropriate value is about 1,7. Divergence
may occur if the value is too close to 2,
If OM=1, no acceleration is made (that is, convergence is
slow), but no divergence may occur. The output ILL must be
checked,
(1s0Ms2)
E Real type | Input Convergence criterion e, If the total of absolute

correction values for UCK,L) at each iteration becomes
smaller than e times the first total, the iteration
terminates,

£=103~107 s appropriate even though it depends on the

case, The output ILL must be checked, (E>0)

S 14




Argument

Type and

kind (1)

Attribut

e

Content

JS

Integer

type

Input/ou

tput

The initial state of U is
specified as an input, (0sJSs4)
JS=0---The average value of Zi(X1,Y1) is assumed to be

an initial value,
=]+~ The first plane obtainéd by least squares method is
assumed to be an initial value,
=2+-- The quadratic surface obtained by least squares
method is assumed to be an initial value,
=3--+The value (.0 is assumed to be an initial value,
=4-+-+- U of the result of the
previous call is assumed to be an initial value, At this
time, the iteration is
executed reusing U,KU,W . Thus, U,KU,W must be
retained just as it was called, This input is useful
when the intermediate iteration process is checked,
The total number of data items Zi that did not exist in
the rectangular region S or were not used for
grid-fitting even though they existed there is entered as

an output,

IT

Integer

type

Input/ou

tput

This argument has the following meanings as an input, (

ITz-1)

IT=-1--+0Only the initialization of U is executed, and

iteration is not executed, JS=0~3 must be specified,

IT=0--- U is initialized, and
iteration-related information is calculated, but iteration is
not executed, Not only U but also KU,W is output,

JS=0~3 nust be specified,

15
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Argument | Type and Attribut Content
kind (£1) |e
IT>0--~ Iteration count, At least 200 iterations are
required for the calculatio;l io settle even though the count
depends on OM,
M at E"/E's€e(=E) is entercd as an output.~ If E is a
very small value, it takes the value when it was input,
ILL Integer Input/ou | This arguzent has the following meaning as an input for
AGFBS/D,
type tput When the discrete point input data Zi(X1,Y1) is near the

edge of the region S (that is,
X0sX1isX0+2hx,X1-2hxsXisX1,Y0sYisY0+2hy,

or Y1-2hysYisY1 is met), whether to use Zi for
fitting is specified as the one on the mesh point,

ILL<1-++ The above Zi is not used as all,

ILL=2--+ If Z1 is within hx/ILL in the X direction and
within hy/ILL in the y direction from one of the four corners
(mesh points) of the meshes where Z1 exists, it is used as
one on the mesh point, That is, all of the above Zi is
used at ILL=2, but it is rarely used at ILL=3 depending on
the distance,

Generally, if the region S is subdivided enough by IX and JY,
the data can be input with ILL=2,

Represents the following termination statuses as an output,
Q++e-++~ Normal termination,

10000--- Normal termination, Because an error occurred in
the initialization specified with JS, the routine was
executed as JS=0,

20000+++ Normal termination, According to the determination
by B, the iteration terminated at the count that is less than
specified with IT.

30000--- Abnormal termination, Limits on the argument was
exceeded,

40000+++ Abnormal termination, E'z10E! is met, and

divergence is judged to occur, The routine must be
reexecuted with 04 reduced a little,

50000--- Abnormal termination, 19.'20é0.5l.‘.'l is met, and
divergence is judged to occur, The routine must be

reexecuted with OM reduced a little,

%] Por double precision subroutines, all real types should be double precision real types,

(Note 1) All the Zi(X1i,Y1) need not exist in the rectangular region S,

16 -
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(1) Data reduction and sorting times are shortened,

(2) To reduce the size of the work area, only the data in the S should be input as much

as possible,

(Note 2) If Z1(X1,Y1) is on the mesh point from the beginning, the value (function value)

remains constant and does not change in the iteration process,

(Note 3) CPU time at IX=JY~100,IT~100,N~24(5000) is about 1.68 (2. 00) seconds.
Generally, CPU time increases (decreases) in proportion to the second power with respect to
IX,JY and the first power with respect to IT. The CPU time of Z1 (X1,Y1) for sorting

and reduction at N to 2000 is about (.1 second, and increases (decreases) in proportion to the

first power with respect to N,

(Note 4) If the number of data items in a mesh exceeds 999 in AGFB2S, the data item of later than
the 1000-th is automatically rejected, .
(Note 5) Iteration is forcedly terminated in either of the following cases:
. E20
(i) -E—la0.5 (IL1.=50000)
(ii) %310 (ILL=40000)

If iLL=40000, it is better.to reduce and reissue OM,

Bibliography
1) Briggs, I.C. (1974), ”Machine Contouring using Minimum Curvature , Geophysics, 39, 39-48.

(1987. 08. 10) (1988. 06. 01)
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CFS1A and SFC1A (Curve Fitting by Splines)

Curve Fitting by Splines

Programs | Kazuo Hatano, January 1982
ed by

Format Subroutine language: FORTRAN; size: 593 lines

(1) Outline
SFSIA and SFCIA apply Fr:1SrsSN to least squares approximation using the order k (degree
k-1) polynomial spline that has

a=2 1=x0<x1<+ * - <Tn=TN=b ' 1)

as nodes when the observation value . and observation error O, are given at N discrete
points,
Let's define the normalized B-splines as follows:

Nl(x)=(tj+k-t))gk ( t]’ tj+| »y* "y tj+k:x]

el tsx

actio=t-of {7

@

xo:"k+1§j§_1
ti=¢x;: O0sjsn
ne N+l Sjisntk-1

The coefficients cj:-k+1Sjsn—-1 of the linear conbination
n-1

S(x)= Y. ciNj(x) ' (3)

j=—k+1

of the normalized B-spline Nj(x) is determined so that the square sum of residuals
N n-1
=Y {7 X eiEn |2 @
r=1] 01‘2

j=-k+1

be minimized, (CFS1A)

Also, expression (3) is calculated for the given variable x. (SFC1A)

(2) Directions



CALL CFSIA(XR,FR.S[GMAR.X[.CJ.DRESP.STATI,lHlST.PERCT.WURKC.IWDRkC,N,K.KOSU.IWR.ICON)

Argument | Type and Attribut Content
kind e
R Real type | Input Discrete point TeilsrsN, Size N,
One-dimens 4
ional
array
FR Real type | Input Observation value 7,:1§r§N_ Size N. -
One-dimens
ional
array
SIGMAR | Real type | Input Measurement error O,:1SrsN. Size Nor 1,
One-diméns If o, differs with r, IWR=1 is assumed,
ional If Zif is constant irrespective
array of r, it should be entered in SIGMAR(1), and IWR=0 is
assumed, At this time, the size of the array SIGMAR can be 1
(array declaration is not required).
X1 Real type | Input Node x;:0=isn, Size n+l.
One-dimens xi should be entered in XI(i+1),
ional
array
CJ Real type | Qutput Coefficient assigned to B-spline
One-dimens cji-k+1sjsn-1_ Size n+k-1,
ional cj is entered in CJ(j+k).
array
DRESP Real type | Qutput Decrement by coefficient C;j in square sum of residuals,
One-dimens dj=052§=11/6§ T«N;j(x,). Ssize n+k-1,
ional d; is entered in DRESP (j+k).
array

19
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70

Argument | Type and Attribut Content
kind e
STATI Real type | Output Array of size 3,
One-dimens STATI (1) : Square sum of residuals J (expression (4)) is
ional entered, Generally, the relationship '
array J=Z¢=|1 /9%f g—zv;;'mdj exists,
STATI(2): 0 =J/ (N-(n+k-1)) is entered,
If this value is approximately 1, the result is assumed
to be appropriate,
STATI (3) : The amount
AIC=Ne,J+2(n+k-1) is entered,
IHIST Integer Qutput | The residual histogram is entered. Size IRIST(2, 25).
type The number of r’'s that meets
Two-diens 0.2i2 { Fr-YiciNi(Zn } / Tr>-0.2¢i+1) is
ional entered in IHIST(1, 1+1).
array
The number of r’s that meets
0.2i< {Fo-YorkniCiN; () } / 3,50.2(i+1) is
entered in IHIST(2, 1+1).
PERCT Real type | Output The cumulative frequency distribution of residuals is
One-dimens |- entered, Size PERCT(10). |
ional If the number of r’s that meets '
array i-15 | 7,—2',3:“@,-1\/,-(5,) | /o:<i isK(i),

PERCT (i)=3,;-1K(3) /N
:i=l ’2""’10

20




Argument | Type and Attribut Content
kind e
KORKC Real type | Work Size WORKC ((n+k+N-1) (k+1)-1).
One-dimens | area
ional
array
IWORKC | Integer Work Size IWORKC(N+n+k-1) .
type area
Cne-dimens
ional
array
N Integer Input n, Number of nedes - 1.
type
K Integer Input k. Order of splines,
type
Kosu Integer Input N. The number of data items N,
type
IWR Integer Input 0 or 1. Determines whether the measurement error O, is
type constant irrespective of the data,
If o, is differs with r, IWR=] is assumed,
If O, is constant irrespective of r, IWR=0 is assumed,
1CON Integer Output ICON=0: Normal termination, 1CON<Q: Abnormal termination,
type

CALL SPCIA(XP, I, L, FP, N, K, XI, CJ, WORKF, 1CON)

Argument | Type and Attribut Content
kind e
Xp Real type | Input Point x where S(x) is to be calculated, XoSX=x, must be

met,
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Argument | Type and | Attribut Content
kind e
I Integer Input/ou | 1 that meets xiSn<xi.i. XI(I+1)sXP<XI(I+2).
type tput ‘
L Integer Input This subroutine can calculate the l-th order derivative of
type S(x). l in S(l)(x) to be
evaluateti, Oslsk-1 must be met.
FP Real type | Output | Calculated value of Sm(x),
N Integer Input Same as CFSIA,
type
K Integer Input Same as CFSIA,
type
XI Real type | Input Same as. CFS1A,
One-dimens |
ional
array
cJ Real type | Input Coefficient assigned to B-spline, cj:-k+1sjsn-1,
One-dimens Size n+k-1, Output of CFSIA
ional
array
WORKF Real type | Work Size k.
One-dimens | area
ional
array
ICON Integer Output | ICON=0: Normal termination, ICON(O: Abnormal termination,
type

(1987. 05. 20) (1987. 05. 20) (1988. 04. 22)
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CFS2A and SFS1A (Surface Fitting by Splines)

Surface Fitting by Splines

Programn | Kazuo Hatano, Jandary 1982
ed by

Format Subroutine language: FORTRAN

(1) Outline
CRS2A and SPFSIA apply Tf,s . 1srsM, 1ss=N to least squares approximation using the
k-th (Bi k—1-st) degree polynomial spline that has

a=1T 1=Xo<x1<" * - <TY=T 4=b : (1)

as the x direction node and

=Y 1=Yo<yi<- - - <yn=Yn=d )

as the y direction node when the observation value fr.s, and the observation error A r- s are
give at M and N mesh points (T, Ys):1sSrsM, 1sssN, That is, the coefficient
Ca.p:-k+1sas m-1,-k+1s@Bsn-1 of the normalized B-spline bilinear combination

[ d| n-1

S(x,u)= Y, 3. Ca.8Na(x)Np@w) 3

a=-k+1 B=-k+1

is determined so that the square sum of residuals

M N a1 n-1
) B —_—.;_— —,- s— a a —'r y _s 2
J Zl: S,Z.Are-use{f : 2:;1 Bgﬂc Na(TINB(Y )} . (4)

be minimized, (CFS2A)

Expression (3) is calculated for given variables x,y. (SFSIA)
(2) Directions

CALL CFS2A(XR, YS, FRS, SIGHXR, SIGMYS, X1, YJ, CAB, DRESP, STATI, IHIST, PERCT, WORKC, IWORKC, KOSUX, KOSUY, NX,

NY, K, TR, KOSXD, NXK1D, ICON)
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Argument | Type and Attribut Content
kind e
iR Real type | Input | Coordinates T,:1SrsM at mesh points in x direction,
One~dimens One-dimensional array of size N,
ional
array
1S Real type | Input Coordinates Yys:1=SssN at mesh points in y direction,
One-dimens |- One-dimensional array of size N,
ional
array
FRS Real type | Input Observation value fr s:1SrsM,1sssN. Two-dimensional
Two-dimens array of size NXsNY,
ional
array
SIGMXR Real type | Input The measurement error of ?f,s is given by the two-number
One-dimens product X s, Ms.
ional Ar:1SrsM should be entered in SIGMXR, Size ¥ or 1,
array If Xr, 1s differ with r,s, HR=1 oust be assumed,
If 7(,,]13 are constant irrespective of r,s, they should be
entered in SIGMXR(1) and SIGMYS(1) respectively, and IWR=0 is
assumed, At this time, the size of the arrays SIGMXR and
SIGMYS can be 1 (array declaration is not required),
SIGMYS | Real type | Input us:1=ssN in A, s, the measurement errors of fr.s.
One-dimens should be entered,
ional Size N or 1.
array
Xl Real type | Input Node x;:0=i=m of x direction, Size m+I.
One-dimens xi should be entered in XI(i+7).
ional
array
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Argument | Type and Attribut Content
kind e

1J Real type | Input Node yj:Osjsn of y direction, Size n+f,
One-dimens y; should be entered in YJ(j+1).
ional
array

CAB Real type |Output [Coefficients assigned to
Two-dimens B-spline: Cq,p:-k+1sasm-1, and -k+1 sBén—l . Size
ional (m+k-1) (n+k-1) .
array Cqa.g is entered in CAB(a+k,B+k).

DRESP Real type | Dutput Decrease by coefficient Ca.8 in
Two-dimens the square sum of residuals,
ional da.p=Ca.p ,=12Z=|1/ Zgﬁgfr.SXNa(zr)NB(gs) .
array | The size (m+k-1) - (n+k-1)0,g is entered in DRBSP

(a+k,B+k).

STATI Real type | Output [ Array of size 3
One-dimens STATI(1) : Squares sum of residuals, J (expression (4)), is
ional entered, Generally, the relatidnship
array J=Z::k+12,;:k,|da,p exists,

STATI(2) : The amount o=J/(MN-(m+k-1) (n+k-1)) is
entered,

If this value is approximately 1, the result is assumed to
be appropriate,
STATI(3): The amount AIC=M-N1nJ+2(m+k-1) X (n+k-1)

is entered,

28
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Argument | Type and Attribut ' Content
kind e
IHIST Integer Output | A residual histogram is entered, Size IHIST(2, 25).
type The number of values (rr,s) that meets
Two-dimens -0.2iz{F-. S-Zr.h,z,,h,ﬂ,c, aNa(ZTr)Np(Us) }
ional / T us>-0.2(s+1)
array is entered in [HIST(l,T+1).
The number of values (r,sS) that meets
-0.2i< {T,.S—Zz;-k+|ZM+1ca Na(xr)Np(Ys) }
/ Ar-pss0.2(i+1)
is entered in IHIST(2, i +1).
PERCT Real type | Output The cumulative frequency distribution of residuals is
One-dimens entered, Size PERCT(10).
ional If the number of values (r, s) that meets
array 115 | Fr.e-Loemsketoses 1Ca.8-Na(EINg(Ts) | 7 Tpop
is K(i), PERCT (i)=Y 51K (i) /(MN) :i=1,2, -+, 10,
WORKC Real type | Work Size kX { m+n+min(M,N) } .
One-dimens | area
ional
array
THORKC | Integer Work Size M+N+m+n+2,
type area
One-dimens
ional
array
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Argument | Type and ‘Attribut Content
kind e
KOSUX Integer Input M in the number of data items
type M-N (nuober of remainders in X direction),
KosuyY Integer Input N in the number of data items
type M-N (number of remainders in y direction),
NX Integer Input m, Number of nodes - 1 in X direction,
type
NY Integer Input n. Number of nodes - 1 in ¥y direction,
type
K Integer Input k. Order of splines,
type
TWR Integer Input 0 or 1. Whether the measurement error A ,- s is constant
type irrespective of data is specified,
If Xr-Ts differs with s, IHR=1 is assuned,
If Tr-fis is constant irrespective of r,s, IWR=0 is
| assumed, .
KOSXD Integer Input The first subscript of adjustable array FRS, KOSXD=KOSUX
type must be met,
NXK1D Integer Input The first subscript of adjustable arrays CAB and DRESP,
type NXKID=NX+K-1.
1CON Integer Output | ICON=0: Normal termination, ICON<Q: Abnormal termination,
type

CALL SFS1A(XP, YP, IX, 1Y, LX, LY, FP, NX, NY, K, X1, YJ, CAB, KORKF, NXK1D, 1CON)

Argument | Type and Attribut Content
kind e
XP, YP Real type | Input Point (x,y) where (x,y) is to be calculated,

X0STSTa,YOSYSyYn. X should be entered in XP, and y

should be entered in YP,
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Argument | Type and Attribut Content
kind e

IX, 1Y Integer Input 1 that meets XoSX<Xs+), and j that meets Y;SY<yp+l.
type 1 should be entered in IX, and J should be entered in IY,

XI(1X+1) éXRXI (1X+2),  YJ(IY+]) SYP<YJ(1Y42)

LX, LY Integer Input This subroutine can calculate the partial differential of

type S(x,y), 2**S(z,y)/ox*dv”. A,p0sA,psk-1 in
S@® (1, y) to be evaluated,

FP Real type | Output | Calculated value of S@.n (x,u).

NX, NY Integer Input Same as CFS2A,
type .

K Integer Input Same as CFS2A.
type

XL YJ Real type | Input Same as CFS2A,
One-dimens
ional
array

CAB Real type | Input Coefficient assigned to
Two-dimens B-spline, Ca,p:-k+l1sasm-1, -k+1sfsn-1 | Size
ional (m+k-1) (n+k-1). Output of CFS2A,
array

WORKF Real’type. Work Size m+bk-1,
One-dimens | area
ional
array

NXK1D Integer Input The first subscript of adjustable array CAB,
type NXK1D=NX+K-1.

ICON Integer Input ICON=0: Normal termination, ICON<Q: Abnormal termination,
type

(1987. 05. 28)
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DCOMD1 and DCPFR21 (Curve Fitting by Composite Polynomials)

Curve Fitting by Composite Polynomials

Programm | Kazuo Hatano, January 1982
ed by

Format | Subroutine language: RORTRAN; size: 1491 lines

(1) Outline

'DCOMD] and DCPPRi apply f(x):0=sxs2r to least squares approximation using the composite
polynomial

n-1 »
h(x) =%CO+Z1: (cjcosjx+bjsinjx) +Zc;q,~ (x5n) 2
i= i=

when the function values f(Xx,) are given at equally spaced N+1 discrete points

Er=217\t]r : r=0,1,---,N ¢D)

Assume

@ o yi-l
q2i(x3n)=Y, (+39.a cosjx
Y @)

o (2 L
Qzis1(T30)=), (J,z),.+, sinjz
Jj=n

The coefficients ap, aj, b;:j=1,2,---,n-1, c;:i=1,2,--,m of h(x) are determined
so that the constant multiple of square sum of residuals
N
J=2Y { £ (x)-h(z,) }? | (4)
Nr=0 .

be minimized, (DCOMD1).

Expression (2), h(Xs). at given equally spaced discrete points Xs=2rs/K:s=0,1,-++,K is

calculated, Suppose that K is a multiple of N,
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(2) Directions

CALL DCOMD1 (FR, NL, ABJ, CJ, NS, MDEG, WORK, ICON)

Argument | Type and Attribut. Content
kind e
FR Double Input Function value f(xr) at :
precision equally spaced discrete points, OsSrsN, size N+1
real type
One-dimensio
nal array
NL Integer type | Input N. Number of data items - 1. N must be an even number,
ABJ Double Output |ap,aj,bj:1sjsn-1 is entered, Size
precision N (partly used as a work area),
real type
One-dimensio
nal array
cJ Double Output ci:1s1i=Sm is entered, Size m. m must be an even
precision number of up to 12,
real type
One-dimensio
nal array
NS Integer type | Input n is given,
MDEG Integer type | Input m is given, m must be an even number of up to 12,
WORK Double Work The size depends on N, If v is an integer, and N=2',
precision area the size is 1. If U is not an integer, and N is an even
real type number, the size is N,
One-dimensio
nal array
1CON Integer type | Output ICON=0: Normal termination, 1CON<Q: Abnormal
termination, ' ’

CALL DCPFR1(ABJ, CJ, NS, NCUT, MDEG, FR, NL, KORK, 1CON)

Argument

Type and
kind

Attribut
e

Content

ABJ

Double
precision
real type
One-dimensio
nal array

Input

ap,aj,bj:1=jsn-1. Output of DCOMD]. Size N

cJ

Double
precision
real type
One-dimensio
nal array

Input

ci-1si1sm_ OQutput of NCOMDI, size m
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Argument | Type and Attribut Content
kind e

NS Integer type | Input n is given,

NCUT Integer type | Input n is given, (Same value as NS is assigned,)

MDEG Integer type | Input m, Bven number of up to 12,

FR Double Output | Approximate value f(xs):0sssK at equally spaced
precision discrete points, Size K+1
real type
One-dimensio
nal array

NL Integer type | Input K is given, Number of approximate values to be obtained -

1

WORK Double Work The size depends on K. If v is an integer, and K=2",
precision area the size is 1. If v is not
real type an integer, and K is an even, the size is K

1CON Integer type | Qutput ICON=0: Normal termination, ICON<Q: Abnormal

termination,

(1987. 05. 15) (1987. 08. 08) (1987. 08. 10)
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DSCI1A,DSCI2A,DSCI3A,DSCI4A,DSFI1A,DSFI2A,DSFI3A,DSFI4A

(Spline Interpolation (Dne Dimensional))

Spline Interpolation (One Dimensional)

Programm Kazuo Hatano, June 1978
ed by

Format Subroutine language: FORTRAN; -size; 298, 141, 263, 141, 280, 150,
389, and 176 lines respectively

(1) Outline

If function values are given at each discrete points, and in some cases, end conditioﬁs are
given at both ends

(1) Subroutines whose third character is C constitute the following 2m-1(m=2) -th order
polyncmial splines that pass through given poinis and meet the end conditions,

(2) Subroutines whoée thir‘d character is F obtain the function value (interpolated value) of
the constituted 2m-1-th order polynomial spline and l(1=1=2m-1)-th order derivative,
and calculate the integral from the left end to a given point,

The following four types are available depending on the conditions given at the end points,

(1) Type-1 spline interpolation (2) Type-II spline interpoiation

(3) Type-111 spline interpolation (4) Periodic spline interpolation

1. Type-1 spline interpolation

If the differential coefficients f“)(:co), f(l)(xn),(lslém-l) of up to the m-1-st
order are given at both ends x¢,Xn of the function value f(xi) of n+1 points
To<x1< - +<xp (nz1), f(x) is interpolated with the 2m-1-th order (m=2)
polynomial spline S(x)= Z’;:gwlc,'N,' (x) that assigns X0,X, as the Znenode and

i, (1si=n-1) as a single node, N;(x), (-2m+1sjsn-1) are normalized B-splines

which are defined as follows:

_ft-)2! (tzx)

N SRy 3 |
g2a(t;x)=(t-2)¢" '= 0 (t<z)
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Nij(x)=(tj2a-tj)gzal tjstjsrs e, tjuznsx]

x0 (2m+lsjs-1)
tj={x;j (Osjsn)
" (n+lsjsn+2m-1)

The interpolation coefficients cj, (-2m+1=jsn-1) are found out with the subroutine
DSCIIA, and S(x),SV(x), j:o S(x)dr to ToSTSX, are found out with DSFI1A, If the
differential coefficients of up to the m-1-st order can be given at both ends, it is'desirable
to use these routines, The hightest precision may be éxpected by this subroutine among four

types,

2. Type-11 spline interpolation

If the differential coefficients S (x0), Ff(xn),(MS1S2n-2) from m-th to 2m-2
-nd orderé are given at both ends X0,Xn of the function value f(x;) of n+1 points
20<x1<-« <xp (nzm-1), f(x) is interpolated with the 2m-1-th order ( (m=2))
polynomial spline S(x)= ZZ:ZMC,N,- (x) that assigns X0,Xn as the 2m node and

xi(1sisn-1) as a single node, N;(x) is the same as with TYPE-1,

The interpolation coefficient c;j, (—Zn+lsj§n—'l) are found out with the subroutine
pSCI2a, and S(z), S (), f :S(:r)d:rfto X0STSTn are found out with DSFIZA;

The usefulness of this program may be the lowest of the four types. However, the 2m-1-st
order interpolation spline that caﬁ be obtained by assigning (0 to the differential coefficient
from the m-th to 2m-2-th orders at both ends is called "Natural spline” and mos£ famous in
spline applications. A natural spline can be constituted by using this routine, ' In most cases,

however, it is large in error as compared with the following type-111 spline interpolation:

3. Type-111 spline interpolation

If the function values Jf(x;) are given at n+l points xo<x|<*+*<Xp (nz=2m), the

equation f(x) is interpolated with the 2m-1-st order ( (m=2)) polynomial spline
n-2n+1

S(x)= Zj,,_g,,qc,-N,-(x) that assigns X0, as 2m nodes and Xi, (mSisSn-m) as a single

node, N;(x),(-2m+1sjsn-2m+1) are the normalized B-splines which are defined as follows:
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[(t-x)*! (tzx)

N $ ey 201

Nj(@)=(tji2a-tjdg2al tjstjers ===, tjeonsx]

xo (-2m+1s3s0)
ti=Xxjmm-1 (1Sjsn-2m+1)
n (n-2m+2s jsn+1)
The Interpolation coefficients cj, (-2m+1s=jsn-2m+1) are found out with the subroutine
: X
DSCI3A, and S(x), S(l)(x), f:oS(:c)dx to XoSXSX, are found out with DSFI3A., Because
- this type enables interpolation using only the function value, it is most useful if f(x) isa

non-periodic function,

4, Periodic spline interpolation
It is assumed that the interpolated function f(x) is a periodic function of peried xn—xo,
and the function values f(x;) are given at n+l points xp<x1<++-<xpn (N=2m) . At

this time, Jf(x) is interpolated with the function S(x) defined as follows:

ywri [ (=2)?! (t22)

ga(t;x)=(t-x 0 (4<1)

Nj(@)=(tjan—t;)gzal tjs tjerr o=, tjuzasx]

ti=<x; (0Osjsn)

{xmj" (xn—x0) (2m+1sjs-1)
Xj-nt+(Xn-X0) (n+1=jsni2m-1)

n-1

S@)= ), ciNi(@)

j=2u+l

{c,-=c,-+,, (-2m+1sjs-m)
Cj=Cj-n (n-m+1sjsn-1)

The 2m-1, (m=2)-st order polynomial spline - S(x) defined with the above expressions can

be assumed to be a periodic function in the meaning that S(l)(xo)=S(l)(:rn) (0sls2m-2) is
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satisfied,
The interpolation coefficients cj, (-2m+1sjsn-1) are found out with the subroutine
X
DSCIdA, and S(x), S (x), f S(x)dx to TySTST, is found out with DSFI4A. It is
0

recommended to use these routines if Jf(x) is a periodic function,

(2) Directions
CALL DSCI1A(XI, P, DER, CJ, N, M, WORKC)

CALL DSFI1A(XP, I, L, FP, N, ¥, X1, CJ, HORKF)

Argument | Type and Attrib Content
kind ute

XI Double Input |Discrete point Xji. Array of
precision size n+l,  xi,(0sS1sn) should be entered in

real type XI(i+1).

One-dimensio

nal array

F Double Input | Function value f(xi),(0=i=n) at discrete point xj.
precision Array of size n+l, f(xi)
real type should be entered in F(i+1),

One-dimensio

nal array

DER Double Input | The 1-th order differential coefficient (1sSlsm-1) at
precision the end point X0,Xn. Two-dimensional array of size
real type @2,m-1), fl (xn) should be entered in DER(2,1l) in
Two-dimensio @ (x0)DER(1,1).
nal array

cJ Double Input/ | Output in DSCI1A, Input in DSCPIA, Interpolation

precision output | coefficient cj, (-2m+1sjsn-1). Array of size
real type n+2m-1, c; is entered in CJ(j+2m).
One-dimensio

nal array
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Argument | Type and Attrib Content

kind ute
N Integer type | Input | Number of discrete points, n
in n+1 should be entered,
M Integer type | Input m in the order 2m-1 of splines should be entered,
HORKC Bouble Input/ | Work area, Array of size (1r-1)(£§n-1)4{an2+£5n,
.precision output
rgal type
One-dimensio
nal array

XP Double Input | Point x where interpolated values are to be evaluated,
precision X1 (1) <XP<XI(N+]) must be met, If XP in the outside of this
real type range is given, error messages are printed, and FP=(, ( is

assigned,

I Integer type | Input | The integer I that meets XI(I+1) <XP<XI(I+2) should be
entered, BEven if I does not ieet the above condition, the
conputation is normally executed, However, the calculation
time is required a little more for search,

L Integer type | Input

Integer that complies with -1<L=<2s#M-1. A calculation type
is given.. .

=-1: Indefinite integral from MI(1) to XP is ca]éulated and
output to FP,

L=0: Interpolation value at XP is calculated and output to
FP.

1=<L=2sM-1: L-th order differential coefficient at XP is
calculated and output to FP.

L<-1 and L>2sM-1: Error messages are printed, and FP=0.0 is

assigned,
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Argument | Type and Attrib Content
kind ute
FP Double Qutput | Calculation results such as interpolation values are entered,
precision
real type
WORKF Double Input/ | Work area, Array of size 2m,
precision output
real type

One-dimensio

nal array

CALL DSCI2A(XI, F, DER, CJ, N, M, KORKC):

CALL DSFIZA(XP, I, L, FP, N, M, XI, CJ, WORKF)

Argument | Type and Attrib Content
kind ute
DER Double Input | Two-dimensional array at the point xo,Xnp of 1-th order .
precision differential coefficient
real type (ms1s52m-2) and size 0,%n . f(')(xo) should be
Two-dimensio entered in DER(1,l1-m+1), and f(l)(xn) should be
nal array entered in DER(2,l-m+1), . ‘
WORKC Double [nput/ Work area, Array of size (n+2m-3) (Z2m-1)+4m,
precision output
real type
One-dimensio
nal array
For other arguments, see the Type-I spline, However, CJ is an output in DSCI2A and an input
in DSFI2A,

CALL DSCI3A(XI, F, CJ, X30, N, M, WORKC)

CALL DSFI3A(XP, I, L, FP, N, M, XI, CJ, X30, WORKF)
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Argument | Type and Attrib Content
kind ute
cJ Double Input/ | Output in DSCI3A. Input in CSFI3A. [Interpolation
precision output | coefficient cj, (-2m+1sjsn-2m+1), Array of size
real type n+l. cj is entered in CJ(j+2m).
.| One-dimensio
nal array
X30 Double Input/ | Output in DSCI3A, Input in DSFI3A. Nodes
precision output { X0,TmsTm+ls***»Tn-nr»xn of splines are entered. Array
real type of size n-2m+3,
One-dimensio '
nal array
WORKC Double Input/ | Work area, Array of size (n-1)(2m-1)+4m,
precision output
real type
First
column array
Other arguments are the same as with the Type-I spline,

CALL DSCI4A(XI, F, CJ, N, I, WORKC)

CALL DSFI4A(XP, 1, L, FP, N, M, XI, CJ, HORKF)

Argument | Type and Attrib Content
kind ute
WORKC Double Input/ | Work area, Array of size n(2m-1)+2n(m-1)+2m,
precision output
real type
One-dimensio
nal array
Por other arguments, see the type I spline, (CJ is an output in DSCI4A, and an input in
DSFI4A.)

(3) Note

It is recommended to use the four subroutines properly as described below depending on the

characteristics of the function f(x).

1. If f(x) is a periodic function, DSCI4A and DSCI4F are used,

9. If the differential coefficients F (x0), F®P(xn), (1slsm-1) of JF(x) can be

given at both ends, DSCI1A and DSFI1A are used, For instance, the first order differential

coefficient at both ends is given for the cubic spline (m=2) interpolation,

3. If only the function values are given, DSCI3A and DSFIJA are used,
4. Por interpolation with the so-called "Natural spline,” DSCI2A and DSFI2A are used,

(1987. 05. 15)
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bSCI1D, DSCI2D., DSCI3D, DSCI4D, DSCISD, DSCIé6D, DSCI7D,
DSF1iD, DSF12D, DSFI3D, DSFI14D, DSFIS5D, DSFI16D, and DSFI7D

(Spline interpolation (two-dimensional))

Spline Interpolation (Two Dimensional)

Programm | Kazuo Hatano; June 1978
ed by

Pormat | Subroutine language; FORTRAN, Size; About 300 lines each

(1) Outline

When function values are given in g.rid points in a rectangular region and required boundary
conditions are given at the boundary, the subroutine (with the third character of its name being
C) makes polynomial spline S(x,y) at dual degree 2v-1(v=2) which passes the given points

and satisfies the boundary conditions,

The subroutine (with the third character of its name being F) evaluates the function values
(interpolation values), partial derivatives 61+“S(x,y) / alxa“y(0§&§2v-l,0§u§2v-l)
Yy rx
, and indefinite integralf S(x,y)dxdy of the polynomial spline S(x,y) of bi- 2v-1 -
) vovzo .

degree

The following seven types of interpolations are available depending on the condit_ions given at
the houndar.y:

(1) (Type-1) X (Type-1) spline interpolation (5) (Type-1) X (periodic) spline interpolation

(2) (Type-M) X (Type-1) spline interpolation (6) (Type-II) X (periodic) spline interpolation

(3) (Type-HI) X (Type-TI) spline interpolation (7) (Type—l]])x(periodic) spline interpolation

(4) (periodic) X (periodic) spline interpolation

~ 1. (Type-1) X (Type-1) spline interpolation
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a=xo<xri<- - '(t.=b (1)
c=yo<yYi< - - - <yp=d '

is given, When the following is given for two-dimensional function f(x,y):

M fi=f(xiu))  (Osism),(0sjsn)

@ FEAO=fR@0(x;,y;)  (i=0,m),(0sjsn)

@ rOP=fO¥(zi,y))  (§=0,n),(0sism) @

@ FAP=rO0 (zi,y)  (1=0,m),(§=0,n)

(1s2sv-1), (1spsv-1)

That is, the following conditions are met:

(1) Function values are given for all grid points,

(2) Normal derivative 6"f/bxl(1§&§v—l) to the degree of -1 in the x direction is
given for the grid point on X=X0=a,XT=Ta=b,

(3) Normal derivative 8¥f/0y*(1susv-1) to the degree v—1 in the y direction is
given for the grid point on y=yo=C,y=yn=d,

(4) Partial derivative d8***/ dxtay*(1sA,usv-1) is given for four corners
(20,Y0) » (XmsY0) » (X05 Un) » (TasUn).

Then, f(X,y) is interpolated by the polynomial spline

n-1 o1
S(xu)= 3, Y. CapNa(xs 42)Na(us 4y) (3)
B=-2v+1 a=-2v+1

at dual degree 2v-1, cCq p(-2v+1sasm-1), (-2v+1sB=n-1) is an interpolation
coefficient, Also,

No(x5 42)=(Sa+2v—Sa)92v [ SasSa+ls * * * »Sar2usT)

(s—ar)z”'l (szx)

g2v(s;2)=(s-x)¥ = 0 (s<z)

4

Sa=% Xa (Osas=m)
» (m+l sasm+2v-1)

{io (‘—2))+1 sas-1)

and

Ng(us 4y)=(tg+2v-tp)g2u [ L, tge1y - - - s ips2030)
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gz (t;y)=(t-u)?"!

yg (0sB=n) (5)

; {yo (-2v+1sBs-1)
B:
Un (n+1 s8=n+2v-1)

When interpolation condition (2) is applied to expression (3), the linear equations of ordér
(m+2v-1) - (n+2v-1) which use interpolation coefficients Cq,p as unknown are obtained, By
assigning the interpolation coefficients obtained by solving the equations to expression (3),
interpolation values for arbitrary asxsb,csysd can be calculated,

Interpolation coefficients cq g(-2v+1sasm-1), (-2v+1sBsn-1) are calculated by
subroutine DSCI1D and S**® (x,y) (-154,us2v-1) is used by subroutine DSFI1D so as to

evaluate interpolation values, Here,
1 vr[e
510 @)= [ "8 vyduy
a

T A
SO0 (z,9)= 254 (Osps-1)
a

2
S0 (@y=[25&Way  osas2-1) ®)

a S (x,v)

0sA,us2v-1
axtoy* (0sd.u )

SAB (x,y)=

2. (Type-1I) X (Type-II) spline interpolation

{a=xo<:r1<- .. <.'I,'n=b (7)
c=yo<yi<- - - <yp=d

is given, When the following is given for two-dimensional function f(x,y):
) fi.=f(xi>y;) (Osi=m),(0sj=n)
@ F&9=f40@i,)  (i=0.m),(0sjsn)
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@ =0 (x;,y;)  (§=0,n),(0sism) (8
W FAO=FOD (y)  (0m), (=0m)
(vsis2v-2), (vsus2v-2)
That is, the following conditions are met:
(1) Function values are given for all grid points,

(2) Normal derivative a“f/ dx* (vsSAs2v-2) fron degree v to degree 2v-2 in the x

direction is given on the grid points of x=x0=a,x=Xa=b.

(3) Normal derivative a¥f/oy*(vsSus2v-2) fron degree v to degree 2v-2 in the y
direction is given on the grid points of y=yo=c,y=yn=d,
(4) Partial derivative 83**/ ax}ay*(vsSA,us2v-2) is given at four corners

(x0,Y0) » (TusY0) » (X0 Un) » (Ta» Un).

Then, f(x,y) is interpolated by polynomial spline

S(x.w)= ), 3 CapNa(xi 4:)Ns(Y; 4y) €)
B=-2v+1 a=-2p+1
of bi-2v-1 degree. Cag(-2v+1sasm-1), (-2v+1sB=n-1) are interpolation
coefficients, Nq(x; 4z),Np(y; 4,) are functions given by expressions (4) and (5), When
interpolation conditions (8) are applied to expression (9), the linear equations of order
(m+2v-1) « (n+2v-1) which use intefpolation coefficients Ca,g as unknown are obtained, By
assigning the i.nterpolation coefficients obtained by solving the equati(;ns to expression (Q),
interpolation values for arbitrary a§x§b,c$y§d can be calculated,
Interpolation coefficients Cq,g(-2v+1sa=m-1), (-2v+1sfsn-1) are calculated by
subroutine DSCIZD and S4*¥ (x,y) (-1SA,u=2v-1) is used by subroutine DSFI2D so as to
determine interpolation values, g.m (x,y) is given by expression. (6).

3. (Type-II) X (Type-II) spline interpolation

{a=x0<xl<"‘<xm=b (11)
c=yo<yY1<- - - <yn=d

is given, When values fi j=f(xi,y;) (0sism),(0sjsn) on grid points of two-dimensional

function f(x,y) are given, f(x,y) i$ interpolated by polynomial spline
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n-2v+1  a2u+1

S(x. )= Y Y. CapNa(xs 42)Np(y; 4y) (12)
B=5-2v+1 a=-2v+1

of bi-2v-1 degree, Cq.g(-2v+1sSasm-2v+1), (-2v+1s5B8sn-2v+1) are interpolation
coefficients, Also,

Na(z3 A;)=(Sa+2v’3u)92v[5a.sa+l."."Sa+2v;x] ' (13)

g2u(s;x)=(s-2) 2!

o (-2v+1=sa=0)
Sa™=1 Tas-1 (1sasm-2v+1)
- (m-2v+2sa=m+l)

and

Nﬂ(y; 4 .y)=(tﬂ+20‘tﬂ)92v[ tB’tBH' e ,tB+2v;13]

gou(t;y)=(t-y)?!

Yo (-2v+1s8=0)
tﬂ={ya+»-1 (1sBsn-2v+1) (14)
YUn (n-2v42=sB=n+1)

When the interpolation conditions are applied to cxpression (12), linear equations

n-2v+1  2-2u+1 s . .
Ca.gNa(xi; 42)Ng(ujs 4y)=fi.;
f==2v+1 a=-2v+1
(i=0$1,"',m)t(j=09lt"'7"-) (15)

of order (m+1)-(n+1) which use interpolation coefficients Cq g aé unknown are obtained, By
assigning fhe interpolation coefficients obtained by solving the equations to expression (12),
interpolation values for arbitrary asx=b,csy=sd can be calculated,

Interpolation coefficients Cq.g(-2v+1sasm-2v+1) - (-2v+1sBsn-2v+1) are calculated
by subroutine DSCI3D and sG.m0 (x,y) (-1=4,us2v-1) is calculated by subroutine DSFI3D so
as to determine interpolation values, S@.0 (x,u) is given by expression (6).

4, (periodic) X (periodic) spline interpolation
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a=x9<x1< - - <XTp=b
C=Yo<YI<- - - <Un=d (16)

is given, Two-dimensional function f(X,y) is supposed to be a periodic function with perioﬂ
b-a for variable x and also a periodic function with peried d—Cc for variable y. When values

Ji.ji=f(xi,y;) (Osism), (0=jsn) on the grid point of f(x,y) are given, f(xT,y) is

. interpolated by the following polynomial splines at dual degree 2v-1:

n-1 »-1
S(E.= 3, Y. CagNa(x: 4:)Ng(ys 4y) (17
B=-2v+1_ a=-2v+1
{Cu_B=Cu+..B (-21""'] sSas —U) (18)
Ca.f=Ca-».8 (m-y+lsasm-1)

(-2v+1sasm-1)

(-2v+1s8sn-1)

{Ca_B:Ca,B+n ("2!J+] sBs-v) (19)
Ca,8=Ca,f-n (n-v+1sB8sn-1)

No(x3 42)=(Sa+2u=Sa)F2v [ Sa,Sast,* * * sSas203 L ]

g2.(s;x)=(s-x) 2"

Tara— (Ta—X0) (-2v+lsas-1)
Xo-at(Ta—X0) (m+1 sa=m+2v-1) '

Ng(u; 4y)=(tgs2o-tpygu [ tg, tpets - - - L ipi2sy)

gz (tiy)=(t-y) 2!

Yn+8—(Un—Y0) (-2v+1s8s-1)
A={Us (0s=B8=n) @n
Yg-nt+(Yn—Y0) (n+1sBsn+2v-1)

Ca.p(-2v+1sasm-1), (-2v+1sBsn-1) are interpolation coefficients, S(x,y) given by

expressions (17) to (21) can be considered as a periodic function in a sense that it satisfies



(2.m) =d.m
{2 (x0,W)=8 "* (T 1) 022 nsz1), (moszsze) » (Y0SYSUR) 22)

@) (x,y0)=S** (x,un)

When interpolation conditions are applied to expression (17), limear equations at degree m-n
which use interpolation coefficients Cq g(-V+l1sSasm-v), (—v+1sSBsSn-Y) as unknown are
obtained, By assigning the interpolation coefficients obtained by solving the equations to
expression (17), interpolation values for arbitrary asxsb,csysd can be calculated,

Interpolation coefficients Cq g(-2v+1sas=m-1), (-2v+1s8sn-1) are calculated by
subroutine DSCI4D and S®*¥ (x,y) (-154,us2v-1) is calculated by subroutine DSF14D so as
to determine interpolation values, S@.m (x,y) is given by expression (6).

9. (Type-1) X (periodic) spline interpolation

a=xo<x1<-‘ « «<xp=b A
C=Yo<y <+ « +<yn=d (23)

is given, Two-diﬁensional function f(x,y) is supposed to be a periodic function with period
d-c concerning variable y, For f(x,y);
M fii=f(xiui) "~ (0Osism),(0sjsn) (24)
@ 040 zi,y)  (1sksp-1),(i=0,m), (0sjsn)
are given, That is, when;
(1 Function values are given on all grid points;
2 N(;rmal derivative 3 f/0x*(15Asv-1) up to degree V-1 in the x direction is given on
the grid point on x=:co=a,x=:x..=b;
J(x,y) is interpolated by the following polynomial splines of bi-2v-1 degree:

n-1 |

S(x,¥)= Y, Y. CapNa(x; 4:)Ng(y; 4y) (25)
B=-2v+1 a=-2v+1

Ca,8=Ca,p+ (-2v+1sB=s-v) -
{C:.8=C:.a-: (n-y+1sfsn-1) (26)

(-2v+lsas=m-1)
Co.p(-2+1sasm-1), (-2v+1sB=n-1) are interpolation coefficients, No(x; 4z) is

given by expression (4) and Ng(y; 4,) is given by expression (21). When interpolation

condition (24) is applied to expression (25), linear equations of order (m+2v-1)-n which use
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interpolation coefficients Cq,g(-2v+1sSasm-1), (-v+1sBsSn-v) as unknown are obtained,

By assigning the interpolation coefficients obtained by solving the equations to expression (25),
interpolation values for arbitrary asx=b,csysd can be calculated, Interpolation
coefficients Cq g(-2v+1sSasm-1), (-2v+1=Bsn-1) are calculated by subroutine DSCI5D and
S@.# (x,y) (-1=A,us2v-1) is calculated by subroutine DSFI5D so as to determine
interpolation values, S®-» (:i,y) is given by expression (6).

6. (Type-II) X (periodic) spline interpolation

a=20<x1<- * +<La=b ‘
=Yo<Yi1<- * - <yp=d &7

is given, Two-dimensional function f(x,y) is supposed to be a geriodic function with period
d-c concerning variable y. For f(x,y);
M fi=f(xi,ui) (0Osism), (0sjsn) (28)
@ FE9=r40@iy)  (1ssp-1),(i=0,m), (0sjsn)
are given, That is, when;
(1) Function values are given on all grid points;
(2) Normal derivative alf/a xx(v§1§2u-1) from degree V to degree 2v-2 in the x
direction is given on the grid point on x=X0=a,x=Xa=b;
f(x,y) is interpoléted by the following polynomial splines of bi-2v-1 degree:

n-1 -1

S(x,u)= Y, 3. CapNa(x; 4:)Ng(us 4y) (29)
. B8=-2v+1 a=-2v+1

{Ca,ﬂ:Ca,Bm (-2v+1=8s-v) (30)
Ca,=Ca,8-n (n-v+1sB=n-1)

(-2v+l1sasm-1)

Ca.p(-2v+1sasm-1), (-2v+1s8sn-1) are interpolation coeffibients. Nqo(x; 42) is
given by expression (4) and Ng(y; 4,) is given by expression (21). When interpolation
lcondition (28) is applied to expression (29), linear equations of order (m+2v-1)-n which use
interpolation coefficients Ca,g(-2v+1sasm-1), (-v+1=8=n-v) as unknown are obtained,

By assigning the interpolation coefficients obtained by solving the equations to expression (29),
interpolation values for arbitrary asxsb,csysd can be calculated,

Interpolation coefficients Ca,g(-2v+1sa=m-1), (-2v+1=s8sn-1) are calculated by
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subroutine DSCI6D and S(l'") (x,y) (-152,us52v-1) is calculated by subroutine DSFI6D so as
to determine interpolation values, si.m (x,y) is given by expression (6).

7 (Type-1I) X (periodic) spline interpolation

a=x0<x1<- » - <xa=b R
{c=yo<y1<- o+ <yp=d (31)

is given, Two-dimensional function f(x,y) is supposed to be a periodic function with peried
d-c concerning variable y, When values fi, ;=f(xi,y;) (Osism),(0Osjsn) on the grid
point of f(x,y) are given, f(X,y) is interpolated by the following polynomial splines of bi-

2v-1 degree:

n-1 -2N+1
S(x,¥)= 3. Y. cCapNa(x; 42)Np(y; 4y) (32)
f=-2v+1 a=-2v+1

Ca,$=Ca,f+n (-2v+1sBs-v) B
{c:_ p=c:. g-n (n-v+1sBsn-1) (-2v+1sasm-2v+1) (33)

Ca,p(-2v+1sasm-2v+1), (-2v+1s8sn-1) are interpolation coefficients, Ng(x; A;) is
given by expression (13) and Ng(u; 4,) is given by expression (21). When interpolation
conditions are applied to expression (32), linear equations of order (m+1)-n which use
interpolation coefficients Cq g(-2v+1sas=m-2v+1), (-v+1SB8sn-v) as unknown are
" obtained, By assigning the inte;'polation coefficients obtained by :;,olving tllle equations t;)
expression (32), interpolation values for arbitrary asxsb,csysd can be calculated.
Interpolation coefficients Ca.p(-2v+1 sasm-2v+1), (-2v+1sB8=n-1) are calculated by
subroutine DSCITD and S®® (z,y) (-1s24,u=2v-1) is calculated by subroutine DSFITD so as

to determine interpolation values, s&.» (x,y) is given by expression (6).
(2) Directions

CALL DSCI1D(XI, YJ, F, CAB, NX, NY, M, WORKC, NXM2D)

CALL DSFI1D(XP, YP, IX, IY, LX, LY, FP, NX, NY, M, XI, 1J, CAB, WORKF, NXM2D)
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A}gument Type and Attrib Content
kind ute
XI Double Input | Grid point x; in the x direction, Array of size m+1.
.| precision z; (0sism) is put in XI(i+1),
real type
One-dimensio
nal array
YJ Double Input | Grid point y; in the y direction, Array of size n+l
precision y;j(Osjsm) is put in YJ(J+1).
real type
One-dimensio
nal array
F Double Input * ]Fi,j like function values in grid point. Two-dimensional
precision array of size -(m+2v-1 )X (n+2v-1)
real type Fij(lsismi2u-1),(1sjsn+2v-1) are put
Two;dimensio inF(1,7)
nal array
CAB Double Input/ | Dutput for DSCI1D, Input for DSFI1D, Interpolation
precision output | coefficients cq g(-2v+l sasm-1), (-2v+1sB8sn-1)
real type Two-dimensional array of size (m+2v-1) X (n+2v-1) .
Two-dimensio Ca.p is put in CAB(a+2v,f+2v).
nal array .
NX Integer type | Input | The number of grid squares m in the X direction is put,
NY Integer type | Input | The number of grid squares m in the y direction is put,
M Integer type | Input | v in order 2u-1 of spline is put,
WORKC Double Input/ | Work area, The size is (k-1) (2v—1)+2v2+6v+2k—2 as
precision output | k=pax(m,n).
real type

One-dimensio

nal array
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Argument | Type and Attrib Content
kinﬁ ute

NXM2D Integer type | Input | Size of adjustable array, Size of the first subscript of F'

and CAB, NXM2D=m+2v-1 must be satisfied,

P, YP Double Input | Point (x,y) at which we want to evaluate interpolation
precision values or other values, x is put in XP and y is put in YP.
real type XI(1) <XP=XI(NX+1) and YJ(1) <YP<YJ(NY+l) must be

satisfied, If XP and YP outside this range are given, an
error message is printed and PP is set t;) 0.0.

IX, IY Integer type | Input | Integers IX and IY which respectively satisfy XI(IX+1)
<XP=<XI(I1%+2) and YJ(IY+]) =YP=<YJ(IY+2) are put. Bven if
IX and I'Y do not satisfy the above requirements, calculation
is performed normally but it takes a little more time than
usual because of the need for search,

LX, LY Integer type | Input | Integer which satisfies -1<LX and LYS2v-1, A kind of

ca‘lculation is given, That
is, & in quantity S (x,y) 1;0 be evaluated is pﬁt in
LX and & is put in LY,

FP Double Output | The calculation result of S¢4+# (x,Y) such as for an
precisionv interpolation value is generated,
real type

WORKF Double Input/ | Work area, The size is m+6u-1,
precision output
real type
One-dimensio
-nal array

To simplify the explanation of the syntax, fi, j(1sism+2v-1),(1sjsn+2v-1) are

defined for interpolated function f(x,y) as follows:
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) Fo = (20,u0) (1si,jsv-1)

@ Fi=fO ) (zim, w0) (vsism), (1sjsv-1)

@ Foi=fE 9 (za,90) (miv+lsism2v-1),(1sjsv-1)
@ Ti.i=f%9 (20,yj-) (1sisv-1), (usjsn+y)

6 Ti.i=f (Xi-vrYj-») (vsism+y), (Vsjsnty)

® Ti.i=f"9 (xa,yj-) (miv+l sismi2v-1), (VS jsn+)
n Fi ,,-=f‘(”'i ) (0, yn) (1sisv-1), (n+v+lsjsn+2v-1)
@ TFi=fO) (2o, un) (vsism+y), (n+v+1sjsn+2v-1)

9 T ,,'=f(""'”"""'”) (xn>Un) (m+v+1sism+2v-1), (ntv+lsjsn+2v-1)

Jij —— 3

1
4 @ M | v
i
!
" I
@ ) @® ml—l
!
A
&) (6) @ | vt
!
=] v-1|e— n1 —| v-1]e

For instance, the list of fi, ; is as follows when V=2, m=2, n=3,

j=1to 6

R SRR 1 S 1 B 1S 1 RO 1R
Y fo  fo foo  foz 8"
i=1to 5 MY fo fiz  fis g
| MY fo  fa f2  fz BY
RO O LR

CALL DSCI2D(XI, YJ, F, CAB, NX, NY, M, HORKC, NX}42D)
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CALL DSFI2D(XP, YP, IX, 1Y, LX, LY, P, NX, NY, M, XI, YJ, CAB, WORKF, NXM2D)

Argument | Type and Attrib Content
kind ute

P Double Input | Function values etc. at grid
precision points fi,; (quantity given by expression (10)).
real type Two-dimensional array of size (m+2vu-1) X (n+2v-1).
Two-dimensio fi.j(1sism+2v-1),(1sjsn+2v-1) are put
nal array : inF(i,3) .

WORKC Double Input/ {Work area. The size is
precision | output | (k+2v-3) (2u-1)+20°+6u+2k-2  as k=paz(m,n) .
real type
One-dimensio
nal array

The other arguments are the same as for the (Type-I) X (Type-1) spline, (However, CAB is

input for DSCI2D and output for DSFI2D,)

To simplify the explanation of the syntax above, fi.j(1sSism+2v-1)(1sjsn+2v-1) are

defined for interpolated function f(x,uy) as follows:

() Fi,j=f@ 102710 (45, yg) (1si,jsv-1)

@ Fii=fO2 D (ziy,00) (vsismw), (1sjsv-1)

@ T =12 (2, 40) (m+v+lsism2v-1), (15 jsv-1)

@ TFi=f@ "0 (g0, (1sisv-1), (vsjsn+)

6 Fi.i=f (Ti-v»Yj-p) (vsismt+y), (VvsSjsn+p)

©® TFi.=fE10 (2, y50) (mvsism2v-1), (VS jsniv)

M ?i.j=f(2”'"i'j'"-')(xo,yn) (1sisy-1), (ntvsjsn+2v-1)

® Fi=fO Dz, 0 (vsism+), (n+vsjsn+2v-1)

@ Fi ==l (g, y0) (mivsism+2v-1), (n+vs jsn+v-1)
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For instance, the list of 7:’.;‘ is as follows when u=2,m=2,n=3__

i=1to H

j=1to 6

B2 IO IHO BY BY 5P

82  foo
M2 ro
382 fa

fpl

1 Ji2
J2

J21

BB RO B HY 5

50



CALL DSCI3D(XI, YJ, F, CAB, XY30, NX, NY, M, WORKC, NXP1D)

CALL DSFI3D(XP, YP, IX, IV, LX, LY, FP, NX, NY, M, XI, YJ, CAB, XY30, KORKF, NXP1D)

Argument | Type and Attrib Content
kind ute

P Double Input |Function value fi,j in grid
precision point. Two-dimensional array of size (m+1)xX(n+1),
real type fi,j(0Osism),(0sjsn) are put in F(i+1,5+1),
Two-dimensio
nal array

CAB Double Input/ | Output for DSCI3D, Input for DSFI3D. Interpolation
precision output coefficients
real type Ca.g(-2v+l Sasm-2v+1) , (-2v+1 sBsn-2v+1).
Two-dimensio Two-dimensional array of size (m+1)X(n+l1), cq,8 is put
nal array in CAB(a+2v,8+2v),

XY30 Double Input/ | Output for DSCI3D, Input for DSFI3D. Spline knots
precision output [ X0 Tv»XLuels *** »La~vsTm> Y0s Yys Yusls * = =, Yn are put,
real type Array of size m+n-4u+6
One-dimensio
nal array

WORKC Double Input/ | Work area, The size is (k-1) (2v-1)+4u+2(k+1) as
precision output k=par(m,n) is assumed, ‘
real type
One-dimensio
nal array

NXP1D Integer type | Input | Size of adjustable array, Size of the first subscript of P

and CAB, NXPID=m+1 must be satisfied,

The other arguments are

the same as for the (Type- 1) X (Type-1) spline,

CALL DSCI4D(XI, YJ, F, CAB, NX, NY, M, WORKC, NXP1D, NXM2D)

CALL DSFI4D(XP, YP, IX, IY, LX, LY, FP, NX, NY, M, XI, YJ, CAB, KORKF, NXM2D)
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S

Arguzent | Type and Attrib Content
kind ute

F Double Input [Function value fi,j in grid
precision point, Two-dimensional array of size (m+1) X (n+1),
real type Jfi,j(Osis=m),(0sjsn) are put in F.'(i+1,j+1),
Two-dimensio
nal array

CAB Double Input/ | Output for DSCI4D, Input for DSFI4D, Interpolation
precision output | coefficient cq g(-2v+1sasm-1), (-2v+1sBsn-1),
real type Two—dimensional array of size
Two-dimensio (m+2v-1) x (n+2v-1) | Cq,p is put in (a+2v,8+2v).
nal array

WORKC Double Input/ | Work area. The size is k(4u-1)+4v as k=paz(m,n) is
precision output | assumed,
real type
One-dimensio
nal array

NXP1D Integer type | Input | Size of adjustable array, Size of the first subscript of

array B, NXP1D=m+1 must be satisfied,
| NXM2D Integer type | Input | Size of adjustable array, Size of the first subscript of

array CAB, NXM2D=m+2v-1 nust be satisfied,

The other arguments are

the same as for the (Type-1)X (Type-1) spline,

CALL DSCISD(XI, YJ, F, CAB, NX, NY, M, HORKC, NXM2D)

CALL DSFISD(XP, YP, IX, IY, LX, LY, FP, NX, NY, M, XI, YJ, CAB, WORKF, NXM2D)

s




Argument | Type and Attrib Content
kind ute

P Double Input | Function value etc, fi j(1sism+2v-1),(1sjsn+l) in
precision grid point. Two—dimensional
real type array of size (m+2v-1)x(n+1) . ?.',,' are put in F(1,7)
Two-dimensio
nal array

CAB Double Input/ | Output for DSCISD. Input for DSFISD, Interpolation
precision output | coefficient Cq, g(-2u+lsasm-1), (-2v+1s@sn-1).
real type Two—dimensional array of size
Two-dimensio (m;+2v—1)x(n+2v-1) . Cap is put in
nal array CAB(a+2v,8+2v) .

WORKC Double Input/ | Work area, -The size is a larger one of kj,k2 given by the
precision output | following expression: ki=(m-1) (2v—1)+2v2+6u+2n-2,
real type k2=n(4v-1)+4v,

One-dimensio
nal array
The other arguments are the same as for the (Type-1)X(Type-1) spline,

To simplify the explanation of the syntax above, Fi j(1sism+2v-1), (1sjsn+l) are

defined for. interpolated function f(x,y) as follows:

M Fi.i=F D (x0,y5-1)

V4] T(xi—v.yi—l)

@ Fi.i=FEm 0 (xp,uim1)

(Isjsn+l)

(1sisy-1)
(v=ism+y)

(m+v+1 sism+2v-1)
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For instance, the list of fi,.,- is as follows when V=2, m=2, n=3,

i=]to §

j=1to 4
82 10 8§ 40
Joo Joi Joz2 Jo3
J1o Jn f12 J13
S0 fa1 f 23

80 810 80 40

CALL DSCI6D(XI, YJ, F, CAB, NX, NY, M, ORKC, NX42D)

CALL DSFI6D(XP, YP, IX, IY, LX, LY, FP, NX, NY, M, X1, YJ, CAB, WORKF, NXM2D)

Argument | Type and Attrib Content
kind ute

F Double Input | Function value etc, fi j(1sism+v-1),(1sjsn+l) in
precision grid point, ’I‘wo—dimensic;nal
real type array of size (m+2v-1)X(n+1) . Fi.; are put in F(i,3)
Two-dimensio
nal array

CAB Double Input/ | Output for DSCIED, Inmput for DSFIGD, Interpolation
precision outp.ut coefficients Cq,g(~2v+1 sasm-1) (-2v+1sfsn-1),
real type Two—dimensional array of size
Two-dimensio (m+2v-1)X(n+2v-1), Cqp is put in
nal array CAB(a+2v, B+2v) .

WORKC Double . Input/ | Work area, The size is a larger one of kj,k2 given by the
precision output { following expression:
real type ki=(m+2u-3) (2v-1)+22+6v+2m-2,
Ore-dimensio k2=n(4v-1)+4v
nal array
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Argument | Type and Attrib ‘ Content

kind ute

The other arguments are the same as for the (Type-1) X (Type-1) spline,

To simplify the explanation of the syntax above, f(x,y) are defined for interpolated function

7{,5(1§i§m+2v—1), (1sjsn+1) as follows:

M Fii=f@ 0 (29, y5-) (1sisy-1)

@ Ti.i=F(Ti-»,Yj-1) (vsism+y)

@ Fo=fO 10 (g, y500) (m+p+1 Sism+Sv-1)
(1sisn+l)

For instance, the list of fi,; is as follows when ¥=2, m=2, n=8,

J=1to4

&2 &0 &0 &
foo Jo1 foz2 fo3
i=1to 5 10 fn fi2 F13

fo fa  fz fz
w0 B B B0

CALL DSCITD(XI, YJ, F, CAB, X30, NX, NY, M, WORKC, NXP1D)

CALL DSFITD(XP, YP, IX, IV, LX, LY, FP, NX, NY, ¥, XI, YJ, CAB, X30, HORKF, NXP1D)
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Argument | Type and Attrib Content
kind ute

P Double Input | Function value f;, j(Osi=sm),(0sjsn) in grid point,
precision Two-dimensional array of size (m+1)X(n+1), fi j is put
real type in F(i+1,j+1),
Two-dimensio
nal array

CAB Double Input/ | Output for DSCI7N, Input for DSFI7D. Interpolation
precision output | coefficient Cq,g(-2v+1 Sasm-2v+1), (2u+l1s@Bsn-1),
real type Two-dimensional array of size (m+1) X (n+2v-1). Cq,p is
Two-dimensio put in CAB(a+2v,B8+2v).
nal array

X30 Double Input/ | Output for DSCITD, Input for DSFITD, Spline knots
precision outpu.t X0>XysTy+ls*** s Ta-vrXm are put, Array of size m-2v+3
real type
One-dimensio
nal array

WORKC Double Input/ | Work area, The size is either one of ki,k2, whichever is
precisibn output | greater, given by the following expression:
real type ki=(m-1) (2v-1)+4v+2(m+1), kz=n(4v-1)+4v
One-dimensio
nal array

NXPID Integer type Size of adjustable array, Size of the first subscript of F

and CAB. NXP1D=m+1 must be satisfied.
The other arguments are the same as for the (Type~1) X (Type-1) spline,
(3) Notes

1. If partial derivatives up to degree v—1 can be given at the boundary, it is better to use

DSCI1D or DSFI1D.

precision,

0f the seven types, these subroutines can be expected to show the highest
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2. From the viewpoint that interpolation can be done by using only function values on grid
points, DSCI3D and DSFI3D are the most effective,

3. DSCI4D and DSFI4D are effective for interpolation of a function which has periedicity in
both x and y directions,

4. If the partial derivatives of f(x,y) which should be given at the boundary are all set to
0, they can be obtained by an interpolation formula for which a one-dimensional natural spline
has been extended to a two-dimensional spline,

5. DSCI5D and DSFISD can be used when the function value of two-dimensional function
z=f(r,0) (Osasrsb), (0=0s2r) defined by a cylindrical coordinates system is given on
the grid point and the partial derivatives up to degree v—1 in the r direction are given by
r=a,r=b,

6. DSCIGD and DSFIGD can be used wheln the function value of two-dimensional function
z=f(r,0) (0Osasrsb), (0s0=2r) defined by a cylindrical coordinate system is given on the |
grid point and the partial derivatives of degrees from ¥ to 2v-2 in the r are given by
r-—a,r=b,-

7. DSCITD and DSFITD cdn be used when the function value of two-dimensional function
z=f(r,0) (0sasrsb), (0s0s2r) defined by a cylindrical coordinate system is given on the
grid point, ‘

(1987. 06. 15)
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HERM31 and HERMS1 (Curve Fitting by the Piecewise Hermite Interpolation Formula (3,

5-Degrees)

Curve Ritting by the Piecewise Hermite Interpolation Formula (3, 5-Degrees)

Programa
ed by

Yasuyo Hatano, June 1976 |

Format - -

Subroutine language: FORTRAN; size: 151 and 175 lines respectively

(1) Outline

HERM31 and HERMS] obtain the function value y=? (x) at an arbitrary point

X and the

differential coefficient using the function value fi=f(xi) (i=1,n) given at the discrete

point

3(HERM31) or 5(HERM51).

Ti .

(2) Directions

The interpolation is based on the piecewise Hermitian interpolation of degree

CALL HERM31(1, X, Y, M, N, XI, Y1, YD, ND, ILL)

CALL HERM51(I, X, Y, W, N, XI, YI, YD, ND, ILL)

Argument | Type and Attribut Content
kind e

1 Integer Input Value of the number 1 of mesh points in the range of
type TiSTSTi+1, 1<IN

X Real type | Input T coordinates of points where interpolation values are to

be obtained, XI (1) <KI(I) SX<XI(I+1) <XI(N)

Y Real type Outpui Name of one-dimensional array containing (M+1) elements,
One-dimens Interpolation value Yy of a
ional function at x and differential coefficient in that point,
array Real type variable name can be also used at M=(,

M Integer Input The highest order of differential coefficients to be obtained
type (function value only at 0), 0<M<1 for HERM3], and 0=M=<2

for HERMS1.

N Integer Input Total of input data x;, 2=\,
type '

X1 Real type | Input Name of one-dimensional array containing N elements, Value
One-dimens of discrete point xi. XI(1)<XI(2)<--<XI(N)
ional
array
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Argument | Type and Attribut Content
kind e
vl Real type | Input Name of one-dimensional array containing N elements,
One-dimens Function value fi(i=1,---N) at xi.
ional
array
YD Real type | Input/ou| (1) HERM31: Name of one-dimensional array containing N
One-dimens | tput elements, In an input meaning, the first order differential
ional coefficient at the discrete points XI(I) and XI(I+1) should
array be input to YD(I) and YD(1+1) respectively, At this time,
(HERM31) ILL=0 must be specified, If differential coefficients at
discrete points are unknown, the output becomes valid, If
.} Or ILL#0 is specified, the approximate value of the first order
differential coefficient at all the points (N points) is
Real type output,
Two-dimens (2) HERM51: Name of two-dimensional array containing ND
ional elements, As an input, the first and second order
array differential coefficients at discrete points are specified,
(HERM51) The first order differential coefficient at XI(I1) should be
input to YD(I, 1), and the second order differential
coefficient at XI1(I) should be input to YD(I,2). The first
order differential coefficient at XI(I+1) should be input to
YD(I+1,1), and the second order differential coefficient at
X1(I+1) should be input to YD(I+1,2). At this time, ILL=0
oust be specified,

If the differential coefficient is unknown, the output
becomes valid if ILL#0 is specified, and the approximate
value of the first and second order differential coefficients
at all the points (N points) is output,

ND Integer Input Value of the first subscript in the array declaration of YD.
type N=ND ‘
ILL Integer Input/ou | The input means as follows: If the differential coefficients
type tput at each point (the first order coefficient for HERM31, and
the first and second order coefficients for HERMS51) are
already known, those values should be input to YD with ILL=0.
If the coefficients are unknown, the approximate values are
obtained and output to YD using piecewise Lagrange
interpolation in this routine, so the degree of interpolation
formulas to be used must be specified, If ILL=], the linear
polynomial is used, If ILL=2, the gquadratic polynomial is
used, If ILL=3, the quartic polynomial is used, The output
means as follows: If ILL=0, normal termination is assumed,
If ILL=30000, no calculation was made at all because limits
on the argument were exceeded,
(3) Note

Even if differential coefficients at discrete points are unknown when two or more interpolation

values are to be repeatedly obtained, the calculation time is the same as with ILL=0 because

ILL=0 is automatically assigned if ILL#0 is specified for the first time only,
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HERM32 and HERMS2 (Surface PRitting by the Piecewise Hermite Interpolation Formula (3,

5-degrees))

Surface Fitting by the Piecewise Hermite Interpolation Formula (3, 5-Degrees)

Programn | Yasuyo Hatano, April 1977
ed by

Format Subroutine language: FORTRAN; size: 190 and 242 lines respectively

(1) Outline

HERM32 and HERM52 obtain the function value z=f (x,y) and differential coefficients at an
arbitrary point (X,y) using the function value

Jii=f(xi,vi), (i=1,---,ng, j=1,---,ny) given at the rectangular mesh point (xi,Yi).
The interpolation is based on the piecewise Hermitian interpolation of degree 3 (HERM32) or

5 (HERM52) .

(2) Directions

CALL HERM32/52(IX, X, JY, Y, Z, W, XI, NX, YL, NY, P, N1, N2, ILL)

Argument | Type and Attribut Content
kind e

IX Integer Input Value of the number i of the X;SX=Xi.{ mesh points in
type ' reference to the x coordinates

of points where interpolation values are to be obtained,

1=<T3<NX

X Real type | Input X coordinates of points where
interpolation values are to be obtained,

XI(1) SXI(IX) <X<KI(IX+1) <XI (NX)

JY Integer Input Value of the number j of the Y;Sy=yj.1 mesh points in
type reference to the y coordinates
of points where interpolation values are to be obtained,

1=JY<NY
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Argument | Type and Attribut Content
kind e
Y Real type | Input Yy coordinates of points where
interpolation values are to be obtained,
YI(1) SYIQY) SY=YI (JY+1) SYI(NY) |
Z Real type | Output | Name of one-dimensional array containing (M+1)2 elements,
One-dimens Interpolation value and differential coefficient at the point
ional (X, Y). For instance, if M=1, the values are output in the
array order that is shown in the expression (1), If M=0, éven a
real type variable name can be used,
M Integer Input The maximun order of differential coefficients to be obtained
type (only function value at 0),
0<M=<1 at HERM32. 0<M=<2 at HERM52.
i1 Real type | Input Name of one-dimensional array containing NX elements, X
One-dimens coordinates at mesh points,
ional K1 (1) X1 (2)<--<X1 ()
array
NX Integer Input Total number of mesh points in X direction, 2<NX
type
Y1 Real type | Input Name of one-dimensional array containing NY elements, u
One-dimens coordinates at mesh points,
ional YI(1)<YI(2)<--<YI (NY)
array
NY Integer Input Total number of mesh points in y direction, 2<NY
type
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Argument | Type and Attribut Content

kind e

F Real type | Input/ou | (1) HERM32: Name of three-dimensional array containing
Three-dime | tput NIXN2X4 elements, As an input, the function value f;j
nsional at mesh points is specified, The fﬁnction value f1.J at
array mesh points (X(I), Y(J)) should be specified for F(l, J, 1)
(I=1,-*+, N, J=1,---, NY), If ILL=0 is specified, data sho‘uld be
input to F(l,J,K) (K=2,3,4) individually in the order shown
in expression (2). Retained, When the differential
coefficients are unknown, if ILL#( is specified, F(I,J,K)
(i=1....' NX, J=1, -+~ NY, K=2, 3, 4) has the meaning as an output
variable, and the approximate value of the differential
coefficient is output,

(2) HERM52: Name of three-dimensional array containing
NIXN2x9 elements, As an input, the function value fi;
at mesh points is specified, If ILL=0 is specified, data
should be input to F([,J,K) (K=2,---,9) individually in the
order shown in expression (3). Retained, When the
differential coefficients are unknown, if ILL#0 is
specified, F(I,J,K) (I=1,--,NK, J=1, -+, NY, K=2, ---,9) has the
meaning as an output variable, and the approximate value of

the differential coefficients is output,

N1, N2 Integer Input The first and second subscripts in the array declaration of

type B, NX=<N], NY=N2
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Argument | Type and | Attribut Content

kind e

ILL Integer Input/ou | If ILL=0, differential coefficients at the corresponding
type tput points éhould be input to F as an input, When these
differential coefficients are unknown, the approximate values
are obtained using piecewise Lagrange interpolation in this
routine..aﬂﬂ output to F, so the degree of the interpolation
formula to be used must be specified, If ILL=1, the linear
polynomial is used, If ILL=2, the quadr;tic polynomial is
used, If ILL=3, the quartic polynomial is used,

ILL=NY, ILL=NY

The meaning of output is as follows: If ILL=0, normal
termination is assumed, If ILL=30000, no calculation was

executed because limits on the argument were exceeded,

207, 2@ 3L Jerr. 2@[ 3L Jorsrs 20[ ELJorwr

2
of 9
[ai’ a_i’ axgy]'”x'(”'"snm | "

of 2% of 0% _o% of% o otf
[—‘ﬁ' ax?’ OV’ OTOU’ ai2ay’ ay? axoly’ axzayz]zgx'(”’"“”w ©®
(3) Note
Bven if differential coefficients at mesh points are unknown, the calculation time is the same
as with ILL=0 because ILL=0 is automatically assigned if ILL=0 is specified for the first time .
only when interpolation values at two or more points are to be repeatedly pbtained. A smooth,
beautiful figure can be obtained by using this routine as the preprocessing of contour lines and

three-dimensional display of bivariable functions,

(1987. 05. 14)
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HERM3S/D, HERP3S/D, HERD3S/D, and HERM3V/W (Data Fitting of Three-variable

Function f(x,y,z) by the Piecewise Hermite Interpolation Formula)

Data Fitting of Three-variable Function f(x,y,z) by the Piecewise Hermite Interpolation Formula

Programn | Yasuyo Hatano, March 1990

ed by

Format | Subroutine Language: FORTRAN; Size: 1006, 1319, 1504, and 1293 lines

respectively

(1) Outline

This function obtains the approximate value of the function values and first order partial
derivatives at an arbitrary point in the region using the function value

fije=f (xiy¥j,26), (i=1,+¢¢,ng, j=1,---,ny,k=1...,n;) given at the rectangular
mesh point (Xi,Yj,2k). The approximation method conforms to the piecewise Hermite
interpolation of degree three,

HERM3S should be used when memory can be sufficiently used, HERP3S should be used when memory
is insufficient, Generally, HERM3S is faster, If the total number of interpolation points is
great, it is adequate to use HERD3S or HERM3V., If memory is sufficient, it is efficient to use

HERM3V,

(2) Directions
CALL HERM3S/D (NP, CP, NC, CI, MC1, V, 4, FD, MX, MY, MZ, IND, 1CON)
CALL HERP3S/D (NP, CP, NC, CI, MC1, V, M, F, ¥FX, MFY, G, IND, 1CON)
CALL HERD3S/D(NA, PA, MP1, NC, CI, MC1, PA, MAX, MAY, MAZ, M, F, MFX, MFY, NW, IND, 1CON)

CALL HERM3V/W(NA, PA, MP1, NC, CI, MC1, FA, MAX, MAY, MAZ, M, FD, MX, MY, MX, NW, IND, ICON)

- HERM3S/D
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Argument | Type and | Attribut Content
kind (x1) |e
NP Integer Input/ou | Name of one-dimensional array containing three elements,
type tput As the input, NP(1) contains the value of mesh point number i
One-dimens (xi=x=x..:) with respect to the x, y, and z coordinates at
ional points where interpolation values are to be obtained, and
array NP(2) and NP(3) contain the value of j and k that meets the
similar conditions with respect to y and z, If NP(1) is not
equal to i that meets x;<x=x.;, the value of i is output
to NP(1). The value of j and k that meets the similar
conditions with respect to y and z is output to NP(2) and
NP(3).
cp Real type | Input The value of coordinates (Xp, Yp,Zp) at points where
one-dimens ' interpolation values are to be obtained should be put in
jonal CP(1), CP(2), and CP(3).
array ° CI(1, K) <CI (NP (K), K) <CP (K) <CI (NP (K) +1, K) =CI (NC(K), K), K=1, 2,
3.
NC Integer Input Name of one-dimensional array containing three elements,
type The total number of mesh points in the x, y, and z directions
one-dimens should bg put in NC(1), NC(2), and NC(3) respectively, 2=NC
jonal at IND=1. J=NC at 2<IND,
array
Cl Real type | Input Name of two-dimensional array containing MC1%3 elements, The
two-dimens x coordinates at a mesh point where function values are given
ional should be put in CI(x,1). They coérdinates should be put in
array Cl(x,2), and the z coordinates should be put in Ci(x,3). The
order should be an ascending order of each coordinate,
CI(LK) =CI(2,K) =<... <CI(NC(K), K), k=1, 2. 3.
MC1 Integer Input The first subscript in the array declaration of CI,
type
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Argument | Type and Attribut antent
kind (x1) |e

v Real type | Output The number of elements is up to eight, If M=0, the number of
one-dimens | elements is one or a single variable, If M=], the number of
ional elements is 4. The number of elements is eight at M=2,
array Punctions and partial derivatives at the point (Xp, Yp, Zp) are

output, V(1) is a function value, The value of V(2), V(3),
and V(4) is output in the order of expression (1), the value
of V(5), V(6), and V(7) is output in the -order of expression
(2), and the value of V(8) is output in the order of
expression (3).

M Integer Input Index with respect to the order of differential coefficients
type to be obtained, (<M=2,

FD -| Real type | Input/ou | Four dimensional array containing (MXsMYxMZx8) elements,
four-dimen | tput As the input, the function values f4, ;, « at mesh points
sional should be put in FD(I,J,K 1). If IND=0, partial derivatives
array at each mesh point (C;C;Cx) should be further put in

PD(I, J,K.L) (L=2, -~+8) in the order of expression (4). Note
that C,=CI(L, 1), C;=C1(J,2), and Cu=CI(K.3). The output is
the approximate valué of differential coefficients by the
piecewise Lagrange interpolation of the degree that
corresponds to the value specified with IND, It becomes
valid when IND#0 is specified,

MX Integer Input The first subscript in the array declaration of FD,
type |

MY Alnteger Input The second subscript in the array declaration of FD,
type

MZ Integer Input The third subscript in the array declaration of FD,
type
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Argument

Type and

kind (x1)

Attribut |

e

Content

IND

Integer

type

Input

Index with respect to input/output to the array FD,

If IND=0, function values and partial derivatives at mesh
points should be put iﬁ (L J K L) (L=1,2...8).

If the value of partial derivatives is unknown, IND#0 is
specified,

At this time, the approximate value of partial derivatives is
calculated using piecewise Lagrange interpolation in this
routine before it is output to FD(I,J K, L) (L=2,3,---,8). If
IND=1, the linear polynomial should be used,- If IND=2, the
quadratic polynomial should be used, If IND=3, the quartic

polynomial should be used,

ICON

Integer

type

Qutput

Termination condition indication code, ICON=0: Normal
termination, [ICON=30000: Indicates that calcﬁlation is not
executed at all because limits on the input argument are
exceeded, 1<ICONS111: Indicates that the value of IP, JP,
and KP is changed to meet the conditions of (XP, YP, ZP) before

it is output,

=1 For double precision routines (those ending with D or W), all real types should be double

precision real types,

- HERP35/D
Argument | Type and | Attribut Lontent
kind (x1) |e

Same as HERM3S with respect to NP, CP, NC, CI, MCI, V, and M,
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Argument | Type and Attribut Content
kind (1) |e
F Real type | Input Three dimensional array containing (MFXsMFY#NZ) or more
three-dime elements,
nsional The function value f;;, at a mesh point should be put in
array R(1, J, X).
MFX Integer Input The first subscript in the array declaration of F.
type
HFY Integer Input The second subscript in the array declaration of F,
type
G Real type | Input/ou | Two-dimensional array containing (8+8) elements,
two-dimens | tput This argument becomes useful as an input when this routine is
ional called for the same NP(1,2,3) for many times, At the second
array or later call, IND=( is specified, and this routine is called
without changing the contents of G after the last call,
The output is the approximate value of differential
coefficients by piecewise Lagrange interpolation, It becomes
valid when IND#(0 is specified,
IND Integer Input Index with respect to input/output to the array G.
type If IND=0, interpolation calculation is executed using the

value of G at the last call, Refer to the explanation of G.
If the value of partial derivatives is unknown, IND=0 is
specified,

At this time, the approximate value of partial derivatives is
calculated using piecewise Lagrangé.interpolation in this
routine before it is output to 6, If IND=1, the linear
polynomial ;hould be used, If IND=2, the quadratic
polynomial should be used, [f IND=3, the quartic polynomial

should be used,

71

7t



72

Argument | Type and Attribut Content
kind (1) |e
ICON Integer Output | Termination condition indication code, ICON=0: Normal
type termination, 1CON=30000: Indicates that calculation is not

executed at all because limits on the input argument are

exceeded,

x] Por double precision’ routines

precision real types.

(those ending with D or W), all real types should be double

- HERD3S/D

Argument | Type and | Attribut Content
kind (1) |e :

NA Integer Input Name of one-dimensional array containing three elements, The
type total number of the x, y, and z coordinates at points where
One-dimens interpolation values are to be obtained should be put in
ional NA(1), NA(2), and NA(3) respectively,
array

PA Integer Input Name of two-dimensional array containing MP1x3 elements, The
type x coordinates at mesh points where interpolation values are
one-dimens to be obtained should be put in PA(s, 1), the y coordinates in
ional PA(zx,2), and the z coordinates in PA(%,3)., The order should
array be an ascending order with respect to each coordinate,

CI (1, K) SPA(1, K) <PA(NP (K), K) <CI (NC(K), K).

MP1 Integer Input The first subscript in the array declaration of PA,
type

Same as HERM3S and HERP3S with respect to NC, CI, and MCI.
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Argument | Type and | Attribut Content
kind (1) |e
FA Real type | Output Four dimensional array containing (MAXsMAY*MAZx3) or more
four-dimen eleaents,
sional Punction values and partial deri;atives at the mesh point (i,
array Y., Z«) are output, Note that Xi=PA(I,1), Y;=PA(J,2), and ZF=P
A(K,3). Function values.in FA(L,J, K. 1). If H=1, the values
are output in the order of expression (5). If M=2, the
values are further output in the order of expression (6).
MAX Integer Input The first subscript in the array declaration of FA,
type
MAY Integer Input The second subscript in the array declar;tion of FA,
type
MAZ Integer Input The third subscript in the array declaration of FA
type .
Same as HERM3S and HERD3S with respect to M, F, MFX, and MFY,
NW Integer Work Two-dimensional array containing (MC1x6) elements,
type array | area |
IND Integer .Input Index with respect to the order used when the approximate
type value of partial derivatives is calculated.using piecewige
Lagrange interpolation in this routine, If IND=], the linear
polynomial should be used, If IND=2, the quadratic
polynomial should be used, If IND=3, the quartic polynomial
should be used,
1CON Integer Output | Termination condition indication code, ICON=0: ﬂorma]
type termination, ICON=30000: Indicates that calculation is not

executed at all because limits on the input argument are

exceeded, 1=SICON<111: Indicates that the value of NP(l),
NP(2), and NP(3) is changed to meet the'conditioqs of

(XP, YP, ZP) before it is output,
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2] Por double precision routines (those ending with D or W), all real types should be double

precision r

eal types.

- HERM3V/W

Argument | Type and Attribut Content
kind (1) |e

Same as HERD3 with respect to NA, PA, MP1, NC, CI, MC1, FA, MAX, MAY, MAZ, and M,

FD Real type | Input/ou | Pour dimensional array containing (MXxMYzMZ%8) elements.
four-dimen | tput As the input, the function value f,;,x at mesh points should
sional be put in FD(L, J,K 1). If IND=0, partial derivatives at each
array mesh point !, C?. CE) should be further put in

FD(I, J,K L) (L=2,...8) in the order of expression (4). Note
that cl=cr1¢(1, 1), c%=c1 (@, 2),

and cﬁ =CI (K, 3). The output is the approximate value of
differential coefficients by the piecewise Lagrange
interpolation of the degree that corresponds to the value
specified with IND, It becomes valid when IND#0 is
specified,

MX Integer Input The first subscript in the array declaration of FD,
type

1 MY Integer Input The second subscript in the array declaration of FD,
type

Mz Integer ‘Input The third subscript in the array declaration of ED,
type

NW Integer Work Two-dimensional array containing (MC126) elements,
type array | area
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Argument

Type and

kind (z1)

Attribut

€

Content

IND

Integer

type

Input

Index with respect to input/output to the array FD,

If IND=0, function values and partial derivatives at mesh
points should be put in FD(L, J,K, L) fL=1.2....8).

If the value of partial derivatives is unknown, IND#( should
be specified, _At this time, the approximate value of pa;tial
derivatives is calculated using piecewise Lagrange
interpolation in this routine before it is output to
FD(I, J, K. L) (L=2,3,...,8). " If IND=1, the linear polynomial
shéuld be used, If IND=2, the quadratic polynomial éhould be

used, If ND=3, the quartic polynomial should be used,"‘l

ICON

Integer °

type

Output

Termination condition indication code, I1CON=0: Normal
termination, 1CON=30000: Indicates that calculation is not
executed at all because limits orn the input argument are

exceeded,

%] For double precision routines (those ending with D or W), all real types should be double

- precision real types,

14¢! )=-fa -V(2)=[‘%£T]PXp.y=Yp.z=Zp,

V(3)=[ aa;; ]z=Xp.y=Yp.z=Zp’ V(4)=['%%]1=Xp.y=Yp.FZp (1)
27F 2F
V(5) =[ abx éfy ]1=Xp.y=Yp.z=Zp ’ V(s) =[ aﬁy éfz ]z=Xp.y=Yp.z=Zp ’ (2)
[2%F |
V<[ s Jetoseto.ze @
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Vb

23F
V(8)=[W]x=xp-y=¥a.z=zp'

FD(I,J.K,1)=F (Cl,C5.C}),

FD(IL,J.K.2)=| 3L |t vt et
FD(L,4,K,3)=| 3L .ot yocs s,

FD(I’J,K’4)= _a? x=C!.y=C?.z=CEt

FD(I;J,K,S)‘: oxay 1=C},y=(,?.z=(,f,

I';D(Inl,k,e): dyoz :=C!.y=C?rz=Cg’

FD(I,J K, 1)=| 553 |e=ct.yc2. 0

FD(T,0.K.8)=[ 525tz |rctwrctct,

T -
FA(I’J’K’2)= =5 bx=Xi,u=Yj.z=Zk>»
FA(I;J7K93)= ﬂ x=Xi,y=Yj.z=Zk>

FA(I’J9K74)= a_f z=Xi.y=YJ'.z=Zk’
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2%F
FA(I,J’K)5)=[ axay ]:-Xi.qui.z=Zky

2%F
FA(I,J,K,6)=[—ay—oz]:=)(i.y=)’j.z-2k,

o2F
FA(I’J’K97)=[ aIbZ]FXi.y"-Y)'.PZk’ ‘ (5)
i 637
FA(I,J,K,8)=[W]:=Xi.y=Yj.z=Zk, (6)

(3) Note

When partial derivatives at mesh points are unknown with respect to HERM3S/D, HERP3S/D, and
HERM3V/W, if~interpolation values at two or more points are to be repeatedly obtained, the
calculation time can be shortened IND=0 if IND#( is specified for the first time only, and IND=0
is specified thereafter, By using this routine as the pre-processing for displaying the

three-dimensional figures of 3-variable functions, a smooth, beautiful figure can be drawn .
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HERP2S/D, HERD2S/D., HERM2S/D, and HERM2V/W (Data Fitting of Two-variable

Function f (%, y) by the Piecewise Hermite Interpolation Formula)

Data Fitting of Two-variable Function f(x,y) by the Piecewise Hermite Interpolation Formula

Programm | Yasuyo Hatano, March 1990

ed by

Format | Subroutine Language: FORTRAN; Size: 809, 866, 635, and 287 lines

respectively

(1) Outline
This function obtains a function value at a certain point (x,y) in the region and the
approximate value of the first order partial derivative using the function values
Fii=f(xi ui), (i=1,<-<,n;, j=1,---,ny) given at the rectangular mesh point (xi,yi).
The approximation method conforms to the piecewise Hermite interpolation of degree three,
HERM2S/D should be used when memory can be sufficiently used, HERM2S/D should be used when
memory 1s insufficient,
If the total number of interpolation points is great, it is adequate to use HERD2S/D or

HERM2V/W. If memory is sufficient, it is most effective to use HAHERM2V/W,

(2) Directions
CALL HBRP2S/D(NP, CP, NC, C1, KC1, V, M, F, MFX, G, IND, I1CON)
CALL HERD2S/D(NA, PA, MP1, NC, C1, MC1, FA, MAX, MAY, M, F, MFX, NH, IND, ICON)
CALL HERM2S/D(NP, CP, NC, CI, MC1, V, M, FD, MX, MY, IND, ICON)

CALL HERM2V/W (NA, PA, MP1, NC, CI, MC1, FA, MAX, MAY, M, FD, HX, MY, NW, IND, 1CON)

- HERP2S/D
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Argument | Type and | Attribut Content
kind (1) |e
NP Integer Input/ou | Name of one-dimensional array containing two elements,
type tput . As the input, NP(1) contains the value of mesh point number i
One-dimens (X =Xx<X;.:) with respect to the x and y coordinates at
ional points where interpolation values are to be obtained, and
array NP(2) contains the value of J that satisfies the similar
conditions with respect to y. As the ocutput, the value of i
is output if NP(1) does not equal i that meets x;SX=Xi.1.
The value of j that meets the similar conditions with respect
to y is output to NP(2).
cp Real type | Input The value of coordinates (Xp, Yp) at points where
one-dimens interpolation values are to be obtained should be put to
| ional CP(1) and CP(2),
array CI(1, K) <CI (NP (K), K) <CP(K) =CI (NP (K)+1, K) =CI (NC(K), K), K=1, 2.
NC Integer Input Name of one-dimensional array containing two elements,
type The total number of mesh points in the x and y directions
one-dimens should be put in NC(1) and NC(2). 2=NC at IND=]1. 3=NC at
ional 2=<1IND. |
array
Cl Real type | Input Name of two-dimensional array containing MC1x2 elements, The
two-dimens x coordinates at a mesh point where function values are given
ional should be put in CI(x 1), and the y coordinate should be put
array in CI(x, 2). The order should be an ascending order with
respect to each coordinate,
CI(L K) =CI (2, K) =... SCI(NC(K), K), k=1, 2,
HC1 Integer Input The first subscript in the array declaration of CI.
type
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Argument | Type and | Attribut ‘ Content
kind (x1) |e

) Real type | Qutput The number of elements is up to four, If M=), the number of
one-dimens elements is one or a single variable, If M=1, the number of
ional elements is three, If M=2, the number of elements is four,
array The fuhctions and partial deriva{ives at the point (Xp, Yp)

are output, V(1) is a function value, V(2), V(3), and V(4)
are output in the order showr in expression (1).

M Integer Input Index with respect to the order of differential coefficients
type to be obtained, (0<M=2

R Real type | Input Two-dimensional array containing (MFXsNY) or more elements,
two-dimens The value of functions f,; at a mesh point should be put in
ional F(1,J).
array

MFX Integer Input The first subscript in the array declaration.of F.
type

G Real type | Input/ou | Two-dimensional array containing (8x8) elements,
two-dimens | tput This argument is useful as an input when this routine is
jonal called many times for the same NP(1) and NP(2). If IND=0 is
array specifie&. and this routine is called without changi&g the

contents of G after the last call, the calculation is prompt,

This argument is useful as an output when IND#Q is
specified, and the approximate value of differential
coefficients by the piecewise Lagrahge interpolation of the.
degree that corresponds to the value specified with IND is

output,
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Argument

Type and

kind (%1)

Attribut

e

Content

IND

Integer

type

Input

Index with respect to input/output to the approximation of
differential coefficients and array 6.

If IND=0, interpolation calculation is executed by using the
value of G at the last call, Refer to the explanation of G,
If the value of differential coefficients is unknown, IND+#(
is specified,

At this time, the approximate value of partial derivatives is
calculated by using piecewisé Lagrange interpolation in this
routine before it is output to G, If IND=], the linear
polynomial should be used, If IND=2, the quadratic
polynomial should be used, If IND=3, the quartic polynomial

should be used,

ICON

Integer

type

Output

Termination condition indication code, ICON=0: Normal
termination, ICON=30000: Indicates that calculation is not
executed at all because limits on the input argument are
exceeded, 1=<ICON=<111: Indicates that the value of NP(1)
and NP(2) is changed to meet the conditions of (XP,YP) before

it is output,

x] For double precision subroutines (those ending with D or W), all real types should be double

precision real types,
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- HERD2S/D

Argument | Type and Attribut Content

| kind (1) |e

NA Integer Input Name of one-dimensional array containing two elements, The
type total number of the x and y coordinates at mesh'points where
One-dimens interpolation values are to be obtained should be put to
ional NA(1) and NA(2).
array

PA Integer Input Name of two-dimensional array containing MP1x2 elements, The
type x and y coordinates at a mesh point where interpolation
one-dimens values are toAhe obtained shouid be put in PA(x, 1) and
ional PA(%,2). The order should be an ascending order for each
array * | axis. Cl(1.K):;PA(I.K):Q#A(NP(K).K):SC!(NC(K).K).K=1.2.

HP1 .. Integer Input The first subscript in the array declaration of PA,
type

Same as HERP2S with respect to NC, CI, and MCL

FA Real type | Output Three dimensional array containing (MAX*MAYx4) or more
three-dime elements,
nsional Functions and partial derivatives at the mesh point (Xi, Y;)
array are output, Punction values are output to FA(l,J,1). If
M=1, the values are output in the order of expression (2).
If =2, the values are additionally output in the order of
expression (3), Note that X;=PA(I, 1) and Y,=PA(J, 2).
MAX Integer Input The first subscript in the array declaration of FA,
type -
MAY Integer Input The second subscript in the array declaration of FA,
type
Same as HERP2S with respect to M, F, and MFX,
D Real type | Work Three-dimensional array containing (6x6%4) elements,
array area
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Argument | Type and | Attribut Content
kind (1) |e
NW Positive | Work Two-dimensional array containing (MCl¥4) elements,
type array | area
IND Integer Input Index with respect to the order used when the approximate
type value of partial derivatives is calculated using piecewisg
Lagrange interpolation in this routine, If IND=1, the linear
polynomial should be used. If IND=2, thé ﬁuadratic
polynomial should be used, If IND=3, the quartic polynomial
should be used,
1CON Integer Output | Termination condition indication code, ICON=0: Normal
type termination, ICON=30000: Indicates that calculation‘is not
executed at all because limits on the input argument are
exceeded,

%] For double precision subroutines (those ending with D or W), all real types should be double '

precision real types,

~ HERM2S/D
Argument | Type and | Attribut Content
kind (x1) |e

Same as HERP2S with respect to NP, CP, NC, CI, MC1, V, and M,
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Argument | Type and | Attribut Con;ent'
kind (1) |e
FD Real type | Input/ou | Three dimensional array containing (MXsMYx4) elements, As
three-dime | tput the input, the function values fy, ; at a mesh point should be
nsional put in FD(1,J,1). If IND=0, partial de;ivatives at each mesh
array point (Cy, C;) should be further put in FD(I,J,L) (L=2,3,4) in
the order of expression (4), Note that C,=CI(I,1) and C;=CI
(J,2). The output is the approximate value of differential
coefficients by the piecewise Lagrange interpolation‘of the
degree that corresponds to the value specified with IND, It
becomes valid when IND#0 is specified,
MX Integer Input The first subscript in the array declaration of FD,
type
HY Integer Input The second subscript in the array declaration of FD,
type i
IND Integer Input Index with respect to input/output to the’array FD, If
type IND=0, function values and partial derivatives at a mesh

point should be put in FD(I,J,L) (L=1,2,...4). If the value
of partial derivatives are unknown, IND#( should be
specified, At this time, the approximate value of partial
derivatives is calculated using piecewise Lagrange
interpolation in this routine before it is output to
FD(1, J, L) (L=2,3,4). If IND=1, the linéar polynomial should
be used, 1f IND=2, the quadratic polynomial should be used.

If IND=3, the quartic polynomial sﬁou]d be used,
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Argument | Type and | Attribut Content
kind (s1) |e
ICON Integer Output | Termination condition indication code, ICON=0: Normal
type termination, [CON=30000: Indicates that calculation is not

executed at all because limits on the input argument are
exceeded, 1<ICON<11: Indicates that the value of IP and

JP is changed to meet the condition of (XP,YP) before it is

output,

%] For double precision routines (those ending with D or W), all real types should be double

precision real types,

- HERMRV/M

Argument | Type and | Attribut Content
kind (1) |e

Same as HERD2S with respect to NA, PA, MP1, NC, CI, MC1, FA, MAX, MAY, and M,

FD Real type | Input/ou | Three-dimensional array containing (MXxMYx4) elements. As
three-dime | tput the input, the function value f;; at a mesh point should be
nsional put in FD(1,J,1). If IND=0, partial derivatives at the mesh
array point (Ci',C;2) should be put in FD(I,J,L) (L=2,3,4) in the

order of expression (4)f Note that C;'=CI(l,1) and C;3=CI(J,
2). The value to be output in the order of expression (4) is
the approximate value of differential coefficients by the
piecewise Lagrange interpolation of the degree that
corresponds to the value specified Qith IND, The output
becomes valid when IND#( is specified,

MX Integer Input The first subscript in the array declaration of FD,
type

MY Integer Input The second subscript in the array declaration of PFD,
type
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Argument | Type and | Attribut Content
kind (1) |e
NW Integer Work Two-dimensional array containing (MC1x4) elements,
type array | area
IND Integer Input Index with respect to input/output to the array FD, If
type IND=0, function values and partial derivatives at mesh points
should bé put in FO(1,J,1) (L=1,2,...4). If the value of
partial derivatives is unknown, IND#( sﬁould be specified,
At this time, the approximate value of partial derivatives is
calculated using piecewise Lagrange interpolation in this
routine before it is output to FD(I,J,L) (L=2,3,4). If
IND=1, the linear polynomial should be used, If IND=2, the
quadratic polynomial should be used, If IND=3, the quartic
polyncmial should be used,
ICON Integer Output | Termination condition indication code, I1CON=0: Normal
type termination, [CON=30000: Indicates that calculation is not
executed as all because limits on the inmput arg#ment are
exceeded,

x1 Por double precision subroutines (those ending with D of W), all real types should be double

precision real types,

V)=, V@[ 5L Jetoseter Y@= 5L Jetore 1)
V(4)=[ axay]FXp y—Yp (1)
FA(I,J,1)=F (Xi,Y;)

R A A A @
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o
FA(I,J,4)=[-%]FXL;;=Y; €))

FD(I,J,1)=F(Cl.C?,

FD(I,J,2)= iz—]ﬁg,cg,
FD(I,J,3)=-°—7]

| By [=Civ G
- 627
FD(I,J,4)= axay],{g,,,c; 4

(3) Note
When partial derivatives at mesh points are unknown with respect to HERP2S/D, HERD2S/D, and
HERM2V/W, if interpolation values at two or more points are to be repeatedly obtained, the
calculation time can be shortened if IND+#( is specified for the first time only, and IND=( is
specified thereafter, If this routine is used as the pre-processing for displaying figures such
as the contour lines of double-variable functions, a smooth, beautiful figure can be drawn,
HERM2S has the function that is equivalent to the library HERM32. It is added to standardize

the arguments,
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LSAICS/D (Least Square Approximation by Orthogonal Polynomials)

Least Square Approximation by Orthogonal Polynomials

Programm | Yasuyo Hatano, February 1976
ed by

Format Subroutine language: FORTRAN; size: 5] and 53 lines respectively

(1) Outline

LSAICS/D obtains a least squares solution H from the observed values _,f|,?2, eee, FN at
the discrete points x1,X2,-++,XN using the m-th order orthogonal polynomial of an unknown
function f(x). It determines the optimum degree m automatically using Minimum AIC Estimation
method 2). This routine consists of the following four entry names:
LSAICS/D Obtains the optimal order m of approximation polynomials,
LSFUNS/D Obtains the value o.f the approximation polynomial ya(x).
LSCORS/D Obtains ™ in yn($)=2;=0Cj(.)xj to be written,

LSDEGS/D Changes the degree of the approximation polynomial,

(2) Directions
CALL LSAltS/ D (X, F, W, N, MIN, MAX, MOPT, P, P, P2, AIC, ILL)
CALL LSFUNS/D(D, Y, K)
CALL LSCOPS/D(COF)

CALL LSDBGS/D (MD)

Argument | Type and Attribut Content
kind (£1) |e

X Real type | Input Name of array containing N elements, Discrete points
One-dimens xll,xz,---,xu. These points need
ional not always be put in the order of magnitude,
array
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Argument | Type and Attribut Content
kind (1) |e

F Real type | Input Name of array containing N elements, The observation value
One-dimens at X(I) should be entered in R(I).
ional
array

W Real type | Input/ou | Name of array containing N elements., As an input, the weight
One-dimens | tput should be entered, If ILL=0 is specified, the output becomes
ional valid, and ] is set in all Ws,
array

N Integer Input Total number of discrete points X; .
type

MIN lntgger Input Lower limit of degree of approximation polynomial, (<MIN=20

| type

MAX Integer lpput Upper limit of degree of approximation polynomial,
type MINSMAX=<min(N-1, 20)

MOPT Integer Qutput Optioum degree of approximation polyncmial,
type

P,P1,P2 | Real type | Input/ou | Work area. Name of one-dimensional array containing N
One-dimens | tput elements,
ional
array

AIC Real type | Output Name of array containing (MAX+]) elements, The value of AIC
One-dimens in polinomial of degree J is entered in AIC(J+1).
ional
array

ILL Integer Input/ou | For the meaning as an input, see the item of ¥, The meaning
type tput as the output is as follows: If ILL=0, normal termination is

assumed, If ILL=30000, no calculation was executed at all

because limits on the argument were exceeded,
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Argument | Type and Attribut . Content

kind (1) |e

D Real type | Input Value of T coordinates to be obtained,

Y Real type | Output Name of array containing K+1 elements, Value of
One-dimens approximation polynomial in D, (J-1)-th order differential
ional coefficient is entered in Y(J), If K=0, even the real type
array variable name can be used, |

K Integer Input Highest order of differential coefficients to be obtained.
type

COF Real type | Output Name of array containing MOPT+l1 elements, If an
One-dimens approximation polynomial 1is
ional written as y.(x)=2;=ocj(')xj , the values of the
array coefficient Cj(') are entered sequentially from the lower

order. Por instance,

Y2(x) =COF (1)+COF (2) x x+COF (3) x12 ié entered at
MOPT=2, However, it is better to use LSFUNS/D to obtain the
value of Ya(X).

MD Integer Input The degree to be changed should be entered, If LSDEGS/D is
type called, Y and OF in LSFUNS/D and LSCOFS/D becoﬁe the value

based on ihe polynomial of degree MD, MD=<MAX .

x] Por all double precision subroutines, all real types should be double precision real types,

(3) Note

A numerically steady orthogonal polynomial is taken as the base, and the scale of the
observation points X; and the observation values ]fi is provided so that the digits are not
missed, If the degree of polynomials to be applied is unknown, the function that determines the

degree automatically by AIC is useful,

(4) Calculation method

Refer to “Research and Development Division Research Report No, 2,” Nagoya University Computer
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Center, 1976, p.5.
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LSANLS/D (Curve Ritting by Least Square Approximation with Nonlinear Parameters)

Curve Fitting by Least Square Approximation with Nonlinear Parameters

Programnm

ed by

Yasuyo Hatano, October 1982

Rormat

Subroutine language: FORTRAN; size: 510 and 511 lines respectively

(1) Outline

LSANLS/D obtains the parameter cg,Ci, *

- »Ca from the initial estimate Cg using the

derivative correction method based on least squares method if n points X1,X2°+ - * Xn, and the

observation value y1,y2- -

- ,Yn in these points are given, and the form of the function

y=f(x,co,cl, . -_c.) (om)

is already known,

(2) Directions

CALL LSANLS/D(X, Y, N, C, M, BPS, B, Ki, FUN, ITER, ILL)

Argument | Type and | Attribut Content
kind («1) |e
X Real type | Input Value of independent variable xi,i=1,2, - - - ,n. Size
One-dimens N
ional
array
Y Real type | Input Value of dependent variable
one-dimens vi,i=1,2, - - - ,n . Size N,
ional y for x=X(I) should be entered in Y(I).
array
N Integer Input Number of variables X; .
type
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Argument Type and' Attribut Content
kind (x1) |e
C Real type | Input/ou | The initial estimate of the non-linear parameter
one-dimens | tput Co,C1, - - - Ca should be entered as an input.
ional The value estimated by least squares method is entered as
array an output, Size M,
M Integer Input Number of non-linear parameters Ck. 1=<H<10, M<N
type
EPS Real type | Input Convergence criterion, If Cx~0, this argument is used in
the meaning of the absolute value, If Cx»O, it is used
in the meaning of the absolute value,
H Real type [ Work Size (KWxN),
two-dimens | area
ional
array
KW Integer Input Adjustable dimensions of W, KW=N+1
type
Subroutine for calculating
the function value and 8 f/ dck for the function
f(x,c1,¢2, - - - Ca). .The subroutine .for that
FUN Real type | Input subroutine as a real argument must be prepared by the user,

and defined by EXTERNAL declaration,
FUN(XX, YY, G, C, 4)
XX (input): Independent variable x,
YY (output): Value of function f.

G (output): One-dimensional array of size M, G(K)
contains the first order derivative of f at x=KX with
respect to the parameter C(K).

C (input): Parameter Cx,k=1,2, - - - , M.

M (input): Number of parameters,
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type

Argument | Type and | Attribut Content
kind (x1) |e
ITER Integer Input/ou | The upper limit on iteration count should be entered as an
type tput input,
An actual iteration count is entered as an output, 1=<ITER
ILL=0: Normal termination,
1=ILL=H: No solution was obtained because the regular
ILL Integer Qutput equation was under ill conditions.

20000<ILL=<20000+M: The solution did not settle.
ILL=30000: No calculation was made because of limits on the

input argument,

%] For double precision subroutines, all real types should be double precision real types,

(3) Bxample of use

c...-

. 1000

6100

6200

EXAMPLE FOR LSANLS....
FC(X,A,B)=AxEXP(Bx*X)
DIMENSION X(5),Y(5),W(6,5),C(2),EXACT(2)

EXTERNAL FUN
N=5

M=2

DO 1000 I=1,N

X(I)=FLOAT(I)/10.

Y(1)=1.228
Y(2>=1.005
Y(3)=0.823
Y(4)=0.674
Y(5)=0.552
C(1Y=1.4"
€c(2)=-1.0
EXACT(1)=1.5
EXACT(2)=-2.0
EPS=1.E-4
ITER=20

CALL LSANLS(X,Y,N,C,-M,EPS,W,6,FUN,ITER,ILL)
WRITE(6,6100) N,-M,ITER,ILL

FORMAT(1HO,* N,M,ITERATION, CONDITION =',416)
WRITE(6,6200) (I,C(CI),I=1,M)

WRITE(6,6200) (I, EXACT(I),I=1,M)
FORMAT(2X,2(13,F10.5))

STOP
END

SUBROUTINE FUNCXX,YY,G,C,M)
DIMENSION G(1),C(M)
YY=CC(1)XEXP(C(2)xXX)
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GC1d)=EXPCC(2)*xXX) :
G(2)=C (1)« XX*EXP(C(2)*XX)
RETURN

END

. Bibliography
1) Written by T.R. Mackerra and translated by Isao Miura and Yoichi Tao; “Outline of Numerical

Calculation for Computer,” Science Library No 8, Science Company, p.225 (1972).

(1987, 08. 11)
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TETPCK (Three Dimensional .C" Interpolation Scheme for Irregularly Spaced Data (0=k=1))

Three Dimensional ck Interpolation Scheme for Irregularly Spaced Data

Progranm | Yoshio Sato, January 1979
ed by
Format | Subroutine language: FORTRAN; size: 970 lines

(1) Outline

TETPCK generates a tetrahedral mesh having the vertexes at each data point (xi,¥i,z;) for

irregularly distributed three-variable function data

Tir¥i»Zi,» fi=f(xi,vi>zi), (i=1,2,---,N), and obtains the value of partial derivatives

of up to k class at that data point,

Then, it assigns to each of the tetrahedral elements the

interpolation function to be the c* class over the entire domain (convex polyhedral area) to

obtain the interpolation value at rectangular hexahedral lattice points in the domain,

(2) Directions

CALL TETPCK(X,Y,Z,F, N, P, M1, M2, MX, MY, MZ, XL, YL, ZL, XU, YU, ZU, K, ICON)

Argument | Type and Attribut Content
kind e

XY, 2 Real type | Input Name of array containing N elemenfs. X, Y, and 2
One-dimens coordinate at each data point, However, the number of points
ional at the same coordinate must not be two or more, ’
array

B Real type | Input = | Name of array containing N elements, Function value at each
One-dimens data point,
ional
array

N Integer Input Number of data points, The size of N must be 4 to 5000 at
type K=0, and 10 to 5000 at K=1.

p Real type | Output Name of array containing M]1XM2XMZ elements, The
Three interpolation value at rectangular hexahedral lattice points
dimensiona is entered,
1 array

M1, M2 Integer Input Value of the first and second subscript in the array
type declaration of P, M1=MX, M2=MY
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Argument | Type and Attribut Content
kind e
MX, MY, MZ | Integer Input The number of rectangular hexahedral lattice interpolation
type partition points in the x, Yy, and Z directions,
XL, YL, ZL | Real type | Input Lower end position of rectangular hexahedral lattice
interpolation points in the x, Yy, and 2 directions,
XU, YU, ZU | Real type | Input Upper end position of rectangular hexahedral lattice
interpolation points in the X, Yy, and = directions,
K Integer Input Indicates that the interpolation function is the C* class,
type k=0, 1.
If K#0 or 1, the interpolation part is skipped,
1CON Integer Input/ou | This argument has the following meaning as an input argument,
type tput
ICON>0: Generates a tetrahedral mesh (at ICON=1 only), and
calculates the value of first class partial derivatives at
each data point (at K=1).
ICON=(: The above part is skipped,
ICON Integer Input/ou | This argument has the following meaning as an output
type tput argument. ICON=0: Normal.
ICON<O: |ICON| means the number of interpolation points
outside the domain, If the interpolation point is outside
the domain, an extrapolation value is obtained by the least
squares method using the (k+1)-th order polynomial, and
entered in P,
ICON=30000: The limit on the input argument is broken,
ICON=10000: Break Down by work area shortage, etc, (Rare,
Brror messages are printed,)

(3) Example of use

The principal part of the main program for using TETPCK is as follows:

DIMENSION X (350}, Y (350), Z(350), F(350), P(20, 20, 20)
Teeeend Calculations of X, ¥, Z, and F

ICON=1

CALL TETPCK(X, Y, Z, F, 125, P, 20, 20, 10, 10. 2, 1.0, 1. 0, 4. 0, 10. 0, 10.0, 7. 0, 1, ICON)

END

The following program gives the same result, too, (See 3 in Note)

DIMENSION X(350), Y(350), Z(350), F(350), P(20, 20, 20)
3 eenend Calculations of X, ¥, Z, and R

ICON=1
P=1.0

D0 1 I=1,10

YP=1.0

D0 2 J=1,10

IP=4.0

DO 3 K=1,2
CALL TETPCK(X,Y,2,F, 125, P(1,J.K),1,1,1,1, 1, XP, YP, ZP, XP, YP, ZP, 1, ICON)
3 ZP=2P+3.0
2 YP=YP+1.0
1 XP=XP+1. 0
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(3

END

(4) Note

1. This routine should be called with ICON=1 only once at the first. timg for the same value of
%X, Y. Z, B, N, and K The generation of a tetrahedral mesh and the evaluation of partial
. derivatives are completed at the first call, and ICON<( is made at the result, Because the
above part should be skipped for the same data at the subsequent steps, this routine should be
called with ICON<( hereafter,
2. The number of four vertexes of each element of the generated tetrahedral mesh can be
referred to with the named COMMON statement as shown below,
COMMON/CL0123/L0(C40000),L1¢40000),L2¢40000),L3¢40000),L
The number of four vertexes of L tetrahedral elements is stored in LOCI), L1 (.I.) ,
L2CI), and L3CI) (I=1,2,°+°+,L) so that the three vertexes L1(I),
L2CI)>, and L3CI) are' ordered clockwise as viewed from the vertexes LOCI),
3. When the interpolation value at a point (Xp,Yp,2Zp) is to be obtained,
M1=M2=-MX=MY=MZ=1, XL=xp, and YL=y§, ZL=z, should be assumed, In this case, the

output argument P can be a real type variable,

(1987. 05. 14)
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TRIPCK (Two Dimensional ck Interpolation Scheme for Irregularly Spaced Data (0=k=3))

Two Dimensional (3k Interpolation Scheme for Irregularly Spaced Data

Progranm | Yoshio Sato, Januéry 1979
ed by
Format Subroutine language: FORTRAN; size: 549 lines

(1) Outline

TRIPCK assigns to each of triangular elements the interpolation function to be the ck class

over the entire domain (convex polygonal area) and obtains the interpolation value at rectangular

mesh points in the domain after generating a triangular mesh having the vertexes at each data

point (Xi,Yi) and obtaining the value of partial derivatives of up to the k class at each

data point for irregularly spaced bivariable function data

Zi, Yi, Ji=f(xi>yi), (i=1,2,---,N),

(2) Directions

CALL TRIPCK(X, Y, F, N, P, M1, MX, MY, XL, YL, XU, YU, K, ICON)

Argument | Type and Attribut Content
kind e

XY Real type | Input Name of one-dimensional array containing N elements, X, VY

' One-dimens coordinate at each data point, Two or more points of the
ional same coordinate must not exist, :
array

F Real type | Input Name of one-dimensional array containing N elements,
One-dimens Function value at each data point,
ional
array

N Integer Input Number of data points, The size of N must be 3 to 5000 for
.type k=0, 6 to 5000 for K=1, 10 to 5000 for K=2, and 15 to 5000

for K=3.

P Real type | Output Name of two-dimensional array containing M1XMY elements,
Two-dimens Interpolation values at rectangular mesh points are entered,
ional
array

M1 Integer Input Value of the first subscript in the array declaration of P,
type H1=MX
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Argument | Type and Attribut ' Content
“kind [
MX, MY Integer Input Number of partition points in the x and Yy directions at
type rectangular mesh interpolation points,
iL, YL Real type | Input Lower end position in the x and Yy directions at
rectangular mesh interpolation points,
XU, YU Real type | Input Upper end position in the X and Yy directions at
' rectangular mesh interpolation points,
K Integer Input Indicates that the interpolation function is the C® class,
type K=0, 1, 2, and 3,
Interpolation part is skipped if K+0, 1, 2, and 3.
ICON Integer Input/ou | This argument has the following meaning as an input argument,
type tput

ICON>(: Generates a triangular mesh (only at ICON=1), and
calculates the partial derivatives of up to the k class
(K=1, 2, and 3) at each data point,
ICON=<0: The above part is skipped,

This argument has the following meaning as an output
argument,

JCON=0: Normal,

ICON<Q: |ICON| represents the number of interpolation points
outside the demain, If the interpolation point is cutside
the domain, an extrapolation value is obtained by the least
squares method using the (k+1)-th order polynomial, and
entered in P,

1CON=30000: The limit on the input argument is not kept,

(3) Bxample of use

The principal part of the main program for using TRIPCK is as follows:

DIMENSION X(500),Y(¢(500),F(500),P(20,20)

1CON=1
CALL TRIPCK(X,Y,F,400,P,20,10,10,1.0,1.0,10.0,10.0,1,ICON)

END

------ Calculation of X, Y, and F

The following program also gives the same result. (See 3 in Note ).

DIMENSION X(500),Y(500),F(500),P(20,20)

ICON=1
XP=1.0

DO 1 I=1,10

YP=1.0

DO 2 J=1,10

------ Calculation of X, Y, and F

CALL TRIPCK(X,Y,F,400,P(C1,J),1,1,1,XP,YP,XP,YP,1,1CON)
2 YP=YP+1.0
1 XP=XP+1.0

END
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(4) Note
L This routine should be called with ICON=1 only once at the first time for the same value of
X, Y, F, N, and K The generation of a triangular mesh and the evaluation of some partial
derivatives are completed a§ the first call, and ICON=0 is made at the result, Because the
ahove.part should be skipped for the same data at the suhsequent steps, this routine should be
- -called with ICON<( hereafter,
2. The number of three vertexes of each element of the generated triangular mesh can be
referred to with the named CDﬁMUN statement as shown below,
COMMON/CL9995/L1(9995),L2(99953,1.3(9995),L
The number of three vertexes of L triangular elements is stored countetclockwisé in
L1(i),l2(1),L3(1), (i=1,2,---,L).
3. If the interpolation value at a point (Xp,Yp) is to be obtained,
M1=MX=MY=1, XL~xp, YL=yp wmust be assumed, In this case, the output argument P can be a
real type variable, .
4. The program TRIMAP for generating a triangular mesh for irregularly distributed bivariable
function data (of up to 5000 points) and displaying the contour line is prepared, Refer to p,110'

in "Chart Qutput Guide”,

Bibliography
1) Yoshio Sato; "Display of Contour Lines for Irregularly Distributed Data and ck Class v
Iﬁterpolation”. Nagoya University Computer Center News, Vol 10, No, 2, p.161 (1979).
2) Yoshio Sato and Ichizo Ninomiya; "Two-Dimensional ck Interpolation for Irregularly Spaced

Data”, Transactions of Information Processing Soc. of Japan, Vol 22, p.581, (1981).

(1987. 05. 08)
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BITREV

/O3

/BITRVD/BITRVC/BITRVB (Rearrangement of Data by Bit Reversal)

Rearrangement of Data by Bit Reversal

ed by

Programm | Ichizo Ninomfya, April 1981

Format

Subroutine Language: Assembler; Size: 108, 110, and 114 lines
respectively

(1) Outlin

e

BITREV/BITRVD/BITRVC/BITRVB is a subroutine for rearrangement by bit reversal required for the

fast PFouri

er transform, The bit reversal is to reverse the order of binary bits, If the

reversal of M-digit binary number K is represented with K , this routine stores A(K) in

A(R=T+1) for integer K fron 1 to 2! .

(2) Direct

ions

CALL BITREV{A, M, ILL)
CALL BITRVD(A, M, ILL)
CALL BITRVC(A, M, ILL)

CALL BITRVB(A, M, ILL)

Argument Type and Attribut Content
kind (s1) fe

A Real type | Input/ou | One-dimensional array with 2 elements, The elements are
One-dimens | tput rearranged by bit reversal in this routine,
ional
array

M Integer Input Indicates that the size of array A is 2 . M=20
type ‘

ILL Integer Qutput If M<0, ILL=30000, and calculation is not performed. In all
type other cases, calculation is performed, and ILL=(,

=1 For BITRVD(BIRVB), all real types should be changed to double precision real type§

(3) Perfor

mance
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(0%

Bffective algorithm and careful coding make this routine very fast,

(4) Calculation method

Refer to the bibliography n .

Bibliography
'1) Ichizo Ninomiya; “Method of Bit Reversal Scrambling, ® Preprints of the 23th Symposium of

Information Processing Soc. of Japan, pp.899-900 (1981).

(1987. 08. 10) (1987. 08. 21)
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oXe

DRCH1S/D,DRCH3S/DP,I1CH1S/D,1ICH3S/D
(Derivative of First Kind Chebyshev Series) (Derivative of Shifted Chebyshev Series)
(Indefinite Integral of Rirst Kind Chebyshev series)

(Indefinite Integral 6f Shifted Chebyshev Series)

Derivative of First Kind Chebyshev Series (DRCH1S/D)
Derivative of Shifted Chebyshev Series (DRCK3S/D)
Indefinite Integral of First Kind Chebyshev (11CH1S/D)

Indefinite Integral of Shifted Chebyshev Series (IICH3S/D)

Programm | Tatsuo Torii, December 1978
ed by

Format | Subroutine Language: FORTRAN; Size: 24, 24, 24, 24, 26, 26, 26,
and 27 lines respectively

(1) Outline

The subroutines represent the termwise differentiation and integration of the first kind
Chebyshev series E:Bsk<N axl(x) from given with Chebyshev séries. Similarly, thé termwise
differentiation and integral of the shifted Chebyshev series :E:ésk<N aTi* (x) are obtained

from series of {Tk *(x) 1}

(2) Directions
CALL DRCHIS/D(A.NA.B.NB.ICUN)
CALL ITCH1S/D(A, NA, B, NB, ICON)
CALL DRCH3S/D (A, NA, B, NB, ICON)

CALL T1CH3S/D(A, NA, B, NB, ICON)

Argument | Type and Attribut Content
kind (1) |e

A Real type .lnput DRCHB1S/DRCHID and I1ICHBIS/IICHID: The coefficients of the
One-dimens first kind Chebyshev series are stored in A, Number of terms
ional NAZ1 '
array

NA Integer DRCHB3S/DRCH3D and 1ICHB3S/IICH3D: Series of the shifted
type Chebyshev polynomial,
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Argument | Type and Attribut | Content
kind (x1) |e
B Real type | Output The coefficients of series to which termwise integration or
one-dimens differentiation is applied are stored in array B,
ional NB=1 is the number of coefficients of an output.
array '
NB Integer
type
ICON - | Integer Output ICON=0: Normal, ICON=30000: Parameter error,
type

%] For double precision subroutines, all real types should be double precision real types,

(3) Calculation method

The Chebyshev series of N terms is integrated termwise to

x .
f Y. " aTi(z)de= ), ‘OuTk(x)
~losk<N 0sk<N

, where

br=(ax-1-ak+1) /2k k=1

and
N+1

be=2) . (-1)¥ Yo
k=1

. However, an+1=an=0,

In termwise differentiation, inversely the coefficient {ax} is obtained by giving {bk}
When the series is to be expanded by shifted Chebyshev polynomials, the relations

bk = (ar-1-ak+1)/4k,k=1 hold between the coefficients of both series

[T adi *@ar=-Y i *@) .

(4) Bxample

If a trigonometric function is expanded into Chebyshev series, a Bessel function is appeared,
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cosaxr = Jo(a)+2kZ(—l)"J2k(a)T2k(x)
' =1

- sinax - 2’;(—1 Y¥J2ke1 (@) T2kr1 ()

The right hand side is integrated and differentiated termwise, The following program integrates

and differentiates cosaxr and sinax termwise by expanding them by shifted Chebyshev

polynomials, The integration constant is defined so that the sum of the series equals ( at x=-1

(or x=0 when the shifted Chebyshev polynomial is used).

600

600

603

TEST FOR SUBROUTINE IICH1S AND DRCH1S.

DIMENSION A(258)>,B(258),C(258)

EXTERNAL F

COMMON L.T

DATA EPSA,EPSR,NMIN,NMAX/0.0,0.0,0,257/

T=10.0

DO 10 L=1,2

CALL FCHB1S(F,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ILL1)

CALL IICH1S(A,N,B,NB,ILL2)

CALL DRCH1S(A,N,C,NC,ICON)

ICON=ICON+ILL1+ILL2

WRITE(6,601) L,T,ICON

FORMAT(////7X,9HPROBLEM (,12,1H),5X,1HT,F8.3,6X,4HICON,
18) .

WRITE (6,600) (I,ACI1)>,B(I)>,C(I),I=1,NB

FORMAT(1HO/(1H ,18,3F25.06))

CALL VCHB1S(B-NB,-1.0,VB,ICON)

WRITE(6.603) VB

FORMAT(///8X,26HCHECK OF INTEGRAL CONSTANT,E25.5)

CONTINUE : '

STOP

END

FUNCTION F(P)
COMMON L.,T

GO T0 (1.2),L
F=SIN(T*P)
RETURN
F=COS(TxP)
RETURN

END

(1987. 05. 29) (1987. 08. 08) (1987. 08. 10)
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FCHB1S/D,FCHB2S/D,FCHB3S/D,FCHBOS/D
(Fourier Expansion of Functions by Chebyshev Polynemials of PFirst Kind) (FCHB1S/D)
(Fourier Expansion of Functions by Chebyshev polynemials of Second Kind).(FCHBZS/D)
(Rourier Bxpansion of Functions by Shifted Chebyshev Polynomials) (FCHB3S/D)

(Fourie} Bxpansion of Functions on The Open Interval by First Chebyshev Polyncmials) (FCHBOS/D)

Fourier Bxpansion of Functions by Chebyshev Polynomials of Rirst Kind (FCHB1S/D)
Fourier Bxpansion of Functions by Chebyshev Polynomials of Second Kind (FCHB2S/D)
Fourier Bxpansion of Punctions by Shifted Chebyshev Polynemials (FCHB3S/D)

Fourier Bxpansion of Functions on The Open Interval by First Chebyshev Polynomials(FCHBOS/D)

Programm | Tatsuo Torii, July 1978
ed by

Format Subroutine Language: FORTRAN; Size: 98, 99, 78 79, 91, 92, 101,
and 103 lines respectively .

(1) Outline

The function f(x) given in the finite interval (open or closed interval) is expanded in the
Chebyshev series according to the required precision &, The basis of the calculation method is
the same as the cosine series expansion of the periodic function {(sine series),

PCHB1 expands a smooth function f(t) on a closed interval [-1, 1] by the first kind Chebyshev

polynomials,
&) ~ Z CiT(t)= Y, ” Cicoskd
0sK=N
Where t=cos0, and the order number N=N(¢) takes the value of power of 2,
FCHB2 expands a smooth function f(t) in an open interval (-1, 1) with the Chebyshev

polynomials of the second kind,
~ sink
1) = Y Cli(t)= X CerSiTy
The smooth function is expanded over a closed interval [, 1] with the shifted Chebyshev
polynomials,

) ~ Z: ‘CeTE(t)= OZN Cicosk®
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Where t =cosZB/2,

If the function f(t) that cannot take both ends of a given interval as sampling points is to

be expanded with the Chebyshev polynomials of first kind, PCHBO should be used,

F(t)=
0

skzN-2

(2) Directions

Y CuTw(t)

CALL FCHB1S/D(F, EPSA, EPSR, NMIN, NMAX, A, N, ERR, ICON)

CALL PCHB2S/D(F, BPSA, EPSR, NMIN, NMAX, A, N, ERR, 1CON)

CALL FCHB3S/D(F, EPSA, EPSR, NKIN, NMAX, A, N, ERR, ICON)

CALL FCHBOS/D(F, EPSA, EPSR, NMIN, NMAX, A, N, ERR, 1CON)

Argument | Type and Attribut Content
kind (1) |e
F Real type | Input The user should define the function of one variable as a
Function function subprogram,
subprogram The domain of the function must be [-1, 1] for FCHB1S/D, (-1,
1) for FCHB2S/D, [0, 1] for for PCHB3S/D, (-1, 1) for
FCHBOS/D,
EPSA Real type | Input Brror bound of Chebyshev series to be obtained, BPSA=0 is
EPSR the precision required for absolute error, and EPSR=0 is the
precision required for relative error,
NMIN Integer Input Lower and upper limits of the number of samples.
NMAX type FCHB1S/D and FCHB3S/D: Q=<NMIN<NMAX=1025
: FCHB2S/D and FCHBOS/D: 0<NMINSNMAX<1023
A Real type | Output | Size of array A=NMAX. An N number of Chebyshev poliynomial
One-dimens coefficients are stored in the normal order, N takes a
ional positive integer value of the form of 2"+1 for both
array FCHB1S/D and FCHB3S/D, and of the form of 2"-1 for both
FCHB2S/D and FCHBOS/D,
N Integer
type
ERR Real type | Output Upper bound of errors of obtained Chebyshev series (see the
note below). '
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Argument | Type and | Attribut Content
kind (s1) |e

1CON Integer Output If 1CON=0, the argument is normal in the following sense:
type . Brror smax { EPSA,EPSRx 11 f1 }

ICON=10000: Because the required precision is too severe, the
above condition is not satisfied, However, the truncation
error is decreased to rounding error level (limit of
calculation error),

ICON=20000: Abnormal. Even if the number of samples reaches
the upper limit NMAX, the truncation error does not decrease
to the level of required or rounding error,

1CON=30000: Parameter error,

Note: The norm definition in FCHB1S/D, FCHB3S/D, and FCHBOS/D is Ilf llm-m?xl F(xj) |, where
x;j is a sampling point, In FCHB2S/D, 01 fI |=2 |Ck| , where Cx is the Chebyshev expansion
coefficient of second kind of f(t). Bach truncation error based on these norm is estimated,
x] Por double precision subroutines, all real types should be double precision real types,
(3) Performance

If the time required for the sampling of f(t) is excluded, the time is almost same to that of

fast cosine (sine) transformation based on the trapezoidal rule,

(4) Calculation methed

Past cosine transformation for the even function f(cos0),f (00829/2) given in a closed
interval of [0, #] is simply FCHB1S or FCHB3S. The cosine transformation of f(cos0) that
does not use both ends as the sample points corresponds to FCHBOS. Pa_st sine transformation for
the odd function f(cos@)sine® is FCHB2S, The error of obtained Chebyshev series is estimated
by the sum of absolute values of the coefficients of the last two terms,

Each subroutine has a one-dimensional array for trigonometric function tables (511 words for
FCHBOS, FCHB1S, and and FCHB2S, and 1023 words for FCHB3S). This array is shared with cosine
(sine) transformation and sampling points, These constant tables are used for calculation only

when each subroutine is called for the first time, and retained thereafter,

(5) Example
;rhe functions are expanded by the Chebyshev polynomials of first kind under a required
precision, The generating function is used as test function of the Chebyshev polynomials of first

kind
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1-t2 %
— =t =2} thT , 0<t«1
1-2tx+t? g; k(@)

The following is an example of FCHB1S when 1/4, 2/4, and 3/4 are assigned to the parameter t._
The required precision for absolute error is 1(75, The lower and upper limits of the number of

samples are described in the following programs:

C TEST FOR SUBROUTINE FCHB1S.
DIMENSION A(257)
EXTERNAL F
COMMON T
AEPS=1.0E-05
REPS=0.0
NMIN=0
NMAX=257
T=0.25
H=0.25
1 CONTINUE
CALL FCHB1S (F,AEPS,REPS,NMIN,NMAX,A,N,ERR,ICON)
WRITE(6,600) N,EER,ICON,T,(CACI),I=1,N)
T=T+H
IF(T.LT.1.0) GO TO 1
600 FORMAT(1HO,4X,2HN=,13,5X,4HERR=,E10.3,5X,5HICON=,
* I5/1H0,4X,*7HARRAY A,5X,2HT=,F5.2/C1H ,4F15.06))
STOP
END

FUNCTION F(P)
C GENERATING FUNCTION OF CHEBYSHEV POLYNOMIALS OF FIRST KIND.
COMMON T
F=(1.0-TxT)>/(1.0-2.0xT*P+T%xT)
RETURN
END

Expansion of generating functions of the Chebyshev polynonials of first kind

k t=1/4 t=1/2 t=3/4

0 2. 000000 2. 000000 2. 000000

1 0. 500000 1. 000000 1. 500000

8 0. 000031 0.007813 0. 200226

9 0. 000008 0. 003906 0. 150169
16 0. 000000 0. 000031 0. 020045
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k t=1/4 =1/2 t=3/4
17 0. 000015 0. 015034
32 0, 000000 0. 000201
33 0. 000000 0. 000151
64 0. 000000
65 0. 000000

Number

of 17 33 65

terms

Bstima

ted va | 0.397E-06 0. 7156-06 0. 167B-05

lue of

error

Note: The number k shows the order of the output data,

The subroutine FCHB2S is tested by qsing the generating function of the Chebyshev polynomials

of second kind

1 C k
1—2tzi? kgo k()

c TEST FOR SUBROUTINE FCHBZ2S

DIMENSION A(255)
EXTERNAL F
COMMON T
AEPS=1.0E-05 -
REPS=0.0
NMAX=255
NMIN=0
T=0.25
H=0.25

1 CONTINUE .
CALL FCHB2S(F,AEPS,REPS,NMIN,NMAX,A,N,ERR,ICON)
WRITE(6,600) N,EER,ICON,T,(ACI),I=1,N)
T=T+H
IF(T.LT.1.0) GO TO 1

600 FORMAT(1HO,4X,2HN=,13,5X,4HERR=,E10.3,5X,5HICON=.,

L I5/1H0,4X,7HARRAY A,5X,2HT=,F5.2/C1H ,4F15.06))
STOP
END

FUNCTION F(P)
C GENERATING FUNCTION OF CHEBYSHEV POLYNOMIALS OF SECOND KIND.
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COMMON T

F=1.0/C€1.0-2.0xT*P+TxT)

RETURN
END

Expansion of generating functions of Chebyshev polynomial of the second kind

k t=1/4 t=1/2 t=3/4 -
0 1. 000000 1. 000000 1. 000000
1 0. 250000 0. 500000 0. 750000
2 0. 062500 0. 250000 0. 562500
15 0. 000031 0. 013363
16 0. 000015 0. 010023
17 0. 000008 0. 007517
3l 0. 000134
32 0. 000100
33 0. 000075
62 0. 000000

Number

of 15 K | 63

terms

Bstima

ted va 0. 159€-06 0. 238E-06 0. 477B-06

lue of

error

Note: The number k shows the order of the output data,

The following two functions are expanded by using the shifted Chebyshev polynomials,

F@)=—t2 _ osrs1
+12

1-2t (2x-1)

=—2i' t*TE(x) , t>1
k=0
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g(x)=¢.—t5xst

1+2x2

2t N kLT )2
mé( DRV 148 2THDD

Because the domain of the function g(x) is [-t, t], and the function is an even function, the

-variable transformation 1F=(1v/t)2 is adopted. 2, 4, and 8 are assigned to the parameter t,

Required precision for absolute error is 1()'5.

c
1
601
600
10

c
10

c

c
20

c

TEST PROBLEMS OF SUBROUTINE FCHB3S

DIMENSION A(257)

EXTERNAL F

COMMON T,L

AEPS=1.0E-05

REPS=0.0

NMIN=0

NMAX=257

DO 10 L=1,2

T=2.0

CONTINUE

CALL FCHB3S(F,AEPS,REPS,NMIN,NMAX,A,N,ERR,ICON)

WRITEC6,601) L

FORMAT (1HO,4X,9HPROBLEM (,I1,1H),)

WRITE(6,600) N,ERR,ICON,T,CACI),I=1,N)

FORMAT (1HO,4X,2HN=/,13,5X,4HERR=,E10.3,5X,SHICON=,
15/1H0,4X,7HARRAY A,5X,2HT=,F5.2/C1H ,4F15.06))

T=T+T

IF(T.LE.8.07G0 TO 1

CONTINUE

STOP

END

FUNCTION F(P)

COMMON T.,L

GO 70 (10,20).,L

PROBLEM (1)

CONTINUE

GENERATING FUNCTION OF SHIFTED CHEBYSHEV POLYNOMIALS.
Q=P+P-1.0
F=€1.0-T%T)/(€1.0-2.0xTxQ+TxT)
RETURN

PROBLEM (2)

CONTINUE

APPLY THE VARIABLE TRANSFORMATION.
Q=TxSQRT(P)

F=1.0/¢1.0+Q%*Q)

RETURN

END

The following lists show the results of the function 1/’(14ﬂr2) expanded with

{TE((x/1)?) }.

.
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k t=2 t=4 t=§
0 0. 894427 0. 485071 0. 248069
1 -0. 341641 -0. 295705 -0. 193322
2 0. 130495 0. 180265 0. 150656
15 -0. 600001 -0. 000289 -0. 005891
16 0. 000000 0. 000176 0. 004591
17 0. 000108 -0. 003578
31 0. 000000 -0. 000109
32 0. 000000 0. 000085
33 0. 600000 -0. 000066
63 0. 000000
64 0. 000000
Number
of 17 33 65
teras
Estima
ted va 0. 905E-06 0. 272E-06 0. 238E-06
lue of
error

Note: The number k means the order of the output data,

When the function defined in an open interval is to be expanded into the Chebyshev series of
first kind, ‘RCHBOS should be used, Because FCHBOS does not use the end points as sampling
points, its precision is generally inferior to the one that uses them as sampling points, FRor

comparison with FCHBIS, the generating function

1-t2 gk
=21zt o T,
F(@) Tortil? D tTi(x)

is expanded over an interval [-1, 1]. The function

PSR ¢ X6 U YN oV & |
9 T D+ (1+0)%0] KZ:O PTe( 13

defined by (0, oo) is transformed to [-1, 1] by the variable transformation y=(1-x)/(1+x),
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and expanded in the Chebyshev series,

The following is an example of calculation when 1/4, 2/4, and 3/4 are allocated to the

parameter t,

601
600

10

10
c

TEST PROBLEMS OF SUBROUTINE FCHBOS
DIMENSION A(255)

COMMON T.,L

EXTERNAL F

AEPS=1.0E-05

-REPS=0.0

NMIN=0

NMAX=255

DO 10 L=1,2

T=0.25

H=0.25

CONTINUE

CALL FCHBOS(F,EPSA-EPSR,NMIN,NMAX,A,N,ERR,ICON)

WRITE(6,601) L

WRITE(6,600) N,EER,ICON,T,(ACI)>,I=1,N)

FORMAT(1HO,4X,9HPROBLEM (,I11,1H),)

FORMAT(1HO,4X,2HN=,13,5X,4HERR=,E10.3,5X,5HICON=,15/1HO,
4X,7HARRAY A,5X,2HT=,F5.2/(C1H ,4F15.06))

T=T+H :

IF(T.LT.1.0) GO TO 1

CONTINUE

STOP

END

FUNCTION F(P)
COMMON T.,L

GO TO (10,.20).,L
CONTINUE
PROBLEM (1)

C GENERATING FUNCTION OF CHEBYSHEV POLYNOMIALS OF FIRST KIND.

20

F=(1.0-T*xT)/7(1.0-2.0xTxP+Tx*T)
RETURN

‘PROBLEM (2)

CONTINUE

APPLY THE VARIABLE TRANSFORMATION
Q@=¢(1.0-P)/7(1.0+P)
F=C¢1.0-T*T)*(1.0+Q)*%0.5/((1.0-T)**2+(1.0+T)*%2%Q)
RETURN

END
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This is an example of the rational function g(x) expanded with {Te((1-x)/(1+x)) }.

K t=1/4 t=1/2 t=3/4
0 1. 000000 1. 000000 1. 000000
1 | 0.250000 0. 500000 0. 750000
2 0. 062500 0. 250000 0, 562500
15 0. 000031 0. 013363
16 0. 000015 0. 010023
17 0. 000008 0. 007517
31 0, 000134
32 0. 000100
33 0. 000075
62 0. 000000
Number
of 15 31 63-
terms
Bstima | -
ted va| 0,1956-06 0. 351E-06 0. 8116-06
lue of
error

Note: The number k means the order'of the output data,
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FCOSCS/D,FCOSOS/D,FSINOS/D

{Cosine series expansion of an even function given in a closed interval (0, #)) (FCOSCS/D)
(Cosine series expansion of an even function given in an open interval (0, #)) (FC0SOS/D)

(Sine series expansion of an odd function given in an open interval (0, #)) (FSINDS/D)

Fourier Cosine Series of Even Function Defined on The Closed Interval (0, =) (FCOSCS/D)
Fourier Cosine Series of Bven Function Defined on The Open Interval (0, #) (FCOSOS/D)

Fourier Sine Series of Function Defined on The Open Interval (0, @) (FSINOS/D)

Programm | Tatsuo Torii, December 1978
ed by

Format Subroutine language: FORTRAN; size: 112, 114, 115, 117, 91, and 93
lines respectively

(1) Outline

If a function f(t) of period 2z is even or odd, f(t) is to be given only in a half period
(0, =]. If the function f(t) is to be expanded to cosine series, the end point of the
interval ma‘y or may not be used as the sample point, The former method is FCOSC/D, and the
latter one is FCOSO/D, For the expansion of sine series, the end point is not used as the sample
point,

If the function f(t) is input, the number of terms to be expanded is automatically decided by
a required precision, and Fourier coefficients are output, This calculation method is efficient

because it is based on. the high-speed cosine (sine) transformation using the mid-point formula,

(2) Directions
CALL FCOSCS/D (F, EPSA, EPSR, NMIN, NMAX, A, N, ERR, ICON)
CALL FCOSODS/D (P, EPSA, EPSR, NMIN, NMAY, A, N, ERR, 1CON)

CALL FSINOS/D(F, EPSA, EPSR, NMIN, NMAX, A, N, ERR, ICON)

118



Argument | Type and | Attribut Content
kind (1) |e

F Real type | Input The user should define the periodic function of one variable
Function (even or odd function) as a function subprogram, The domain
subprogram of this function can be a closed interval [0, =] for

PCOSC/D, and and an open interval (0, =) for FCOSO/D and
FSINO/D,

FPSA Real type | Input Error bound of Fourier series to be found, EPSA=20 is the

EPSR required precision for an absolute error, and EPSR=0 is the

required precision for a relative error,

NMIN Integer Input Lower and upper bounds on the number of terms to be expanded,

NMAX type

0<NMIN<NMAX<1025 for FCOSC/D.
0<NMIN=NMAX=<1023 for FCOSO/D and FSIND/D,

A Real type | Output’ | Size of array A = NMAX, N Pourier coefficients are stored
One-dimens on A in the order of number, The number of samples used is
ional also N. N is as follows:
array

N Integer 2"+1 for FCOSC/D
type 2"-1 for FC0SO/D and FSINO/D,

For the restriction on the number of samples, the priority of
NMAX is higher than that of NMIN,
Real type | Output Estimated absolute error of obtained Fourier series,

ERR
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Argument | Type and | Attribut Content
kind (1) |e
ICON Integer Output If ICON=0, the error is normal in the following sense:

type If the Fourier series of degree N for the input function
fct) is Pu(l), |

| £(1)-Py(t) | smax { EPSA,EPSRx I {1l }
Where Nf1I =0n=1?§~|f(7r/N NI
1CON=10000: Py(t) does not satisfy the above conditions
because the required precision is too severe, However, it is
within the limit of a calculation error, The error can be
assumed to be normal,.
1CON=20000: Abnormal, The required precision cannot be
obtained at N<NMAX,

ICON=30000: Parameter error,

x] PFor double precision subroutines, all real types should be double precision real types,
(3) Performance
If the sampling time required for the input function f(t) is omitted, the computation time is

the same as with fast cosine (sine) transformation,

@ Calculation method

This is the fast cosine (sine) transformation based on thg t;apezoida] rules by the successive
approximation, However, FCOSO is corrected so that it does not use the end point of an interval
(0, m) as a sampling point,

The error of the obtained Fourier series is estimated by the sum of absolute coefficient values
of the last two terms, The bound of propagation error of round off error is evaluated with

16u B f1Il by assuming the minimixm unit of mechanical computer precision as u, In the
program, the FUNCTION subprogram AMACH is referred to as u.

This subroutine contains an integer type one-dimensional array of size 256 for ;he bit reverse

" of the samples of f(l) and a real type one-dimensional array of size 511 for the trigonometric

function table, If this routine is called, these constant tables are calculated for the first
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time only. If the size of the constant table is doubled, the upper bound of number of samples

can be increased twice,

(9) Example of use
1. Example of cosine series expansion of an even function on the closed interval of [0, =]

Check by generating function of cosine function

£(8) 1-#2
1-2t cos 0+t2

=1 +22t" cos nf

n-1

The following shows the program when t=0.5 is specified,

c EXAMPLE FOR SUBROUTINE FCOSCS

DIMENSION A(257)

EXTERNAL F

COMMON T

T=0.5

EPSA=1.0E-5

EPSR=EPSA

NMAX=257

NMIN=0

CALL FCOSCSCF,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ICON)
WRITE(6,600) N,ERR,ICON,(CACI),I=1,N)

600 FORMAT(1HO,4X,2HN=,13,5X,4HERR=,E10.3,5X.,

* SHICON=,15/1H0,4X,7HARRAY A/(1H ,4F15.06))
STOP

END

FUNCTION F(P)

COMMON T
F=C¢1.0-T*T>/(1.0-2.0xT*COS(P)+T*T)
RETURN

END

2. Bxample of sine series expansion of an odd function given in an open interval of (0, )
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sin @ - - tk-lsinke
1-2tcosf+t% kgl i

EXAMPLE FOR SUBROUTINE FSINOS

DIMENSION A(257)

EXTERNAL F

COMMON T

T=0.5

EPSA=1.0E-5

EPSR=EPSA

NMAX=257 .

NMIN=0 '
CALL FSINOSCF,EPSA,EPSR,NMIN,NMAX,A-N,ERR,ICON)
WRITE(6,600) N,ERR,ICON,(ACI),I=1,N)

600 FORMAT(1HO,4X,2HN=,13,5X,4HERR=,E10.3,5X,

* SHICON=,15/1H0,4X,7HARRAY A/(1H ,4F15.06))
STOP :
END

FUNCTION F(P)

COMMON T
F=SINC(P)/(1.0-2.0*xT*xCOS(PY+T*T)
RETURN

END

3. Example of cosine series expansion of an even function given in an open interval (0, )

used,

If the end point of the interval cannot be used as the sample point, this routine can be

If the even function

1+ tanzg

f(0)=2e——2_

2 E+tan? %

is extended to cosine series,

=Y (1=%)keosko
k=0

1+a

is obtained, The following shows the program for the expansion of f(0) on (0, #) setting

a=1/3.

EXAMPLE FOR SUBROUTINE FCOSOS
DIMENSION A(257)

EXTERNAL F

COMMON ALPHA

ALPHA=1.0/3.0

EPSA=1.0E-5

EPSR=EPSA
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NMAX=257
NMIN=0
CALL FCOSOS(F,EPSA-EPSR,NMIN,NMAX,A-N,ERR,ICON)
WRITE(6,600) N,ERR,ICON,(ACI),I=1,N)
600 FORMAT(1HO,4X,2HN=,13,5X,4HERR=,E10.3,5X~
SHICON=,15/1H0,4X,7HARRAY A/(1H ,4F15.06))>

x

STOP

END

FUNCTION F(P)
COMMON . ALPHA
Q=TAN(P*x0.5) %%x2
F=ALPHA%0.5%(1.0+Q@)/ (ALPHAx*2+Q)
RETURN

END

The results are shown as below,

k Problen Problen Problen k Problen Problem Problen
5.1 5.2 53 51 5.2 53
0 2. 000000 — 1. 000000
1 1. 000000 1.000000 | 0©.500000 30 0. 000000 0. 000000 | 0.000000
2 0. 500000 0. 500000 | 0.250000 31 0. 000000 0. 000000 —
32 0. 000000 —_— —_—
14 0. 000121 0.000122 | 0.000061 [Estima |
ted 0.715 E-06 | 0. 317 E-06 | 0. 351 E-06
15 0. 000061 0.000061 | 0.000031 | Error
16 0. 000031 0.000031 | 0.000015
Note: The number k represents the order of output data,
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FCOSMS/D,FSINMS/D

(Past Fourier cosine transform based on the midpoint rule) (RCOSMS/D)

(Fast Pourier sine transform based on the midpoint rule) (F§1NMS/D)

Fast PFourier Cosine Transform Based on The Midpoint Rule (FCOSHS/D)

Fast Fourier Sine Transform Based on The Midpoint Rule (FSINMS/D)

Programm | Tatsuo Torii; December 1978
ed by

Format Subroutine language; FORTRAN Size; 165, 166, 165, and 166
respectively

(1) Outline

A half period of function X(t) with the period 27 is equally divided into N parts as below:

XX F(5+) |- osian, w22

When X(t) is an even function:

= ¥ X;.4 cos Lk( '+l), 0sk<N
Bx OSZ,.;N i+ cos k| J+3

is calculated, When X(t) function is an odd function:

B= 2, Xj» sin—"—k( '+l), 0<k=N
Oszj:<N HESINA T2

is calculated,
(2) Directions
Before these subroutines are called, it is needed to perform calculation of the trigonometric

function table by TRIGAP or TRIGAD and to arrange imput data in binary reverse order by BTREV or

BTRVD, More concrete, call such subroutines as in the table below:
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For s'ingle precision .| For double precision

CALL TRIGQP (W, MW, ICON) CALL TRIGQD (W, M4, ICON)
CALL BITREV (X, MX, ICON) ' ‘CALL BITRVD (X, MX, ICON)

Then, call a target subroutine:
CALL FCOSMS/D (X, MX, LX, W, M, ICON)

CALL FSINMS/D (X, MX, LX, 4, MH, ICON)
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Afgument Type and | Attribut . Content
kind (x1) |e

X Real type | Input/ou | Size of array X E:i?"x; Number of input samples =42"x, LX
One-dimens | tput specifies the beginning address of input data on array X,
ional That is,
array

M Integer X(LX+1),X(LX+2) , -+~ , X (LX+2%) is input. And
type output is written over this,

LX Integer
type FCOSMS/D: Bi-1=X (LX+k)

FSINMS/D: Bpmx_pe1=X (LX+k)

MX=1, LX=0

W Real type | Input Size of array W 22”—1, MW= XKW
One-dimens
ional

array

MW Integer

type

1CON Integer Output ICON = 0: Normal, ICON = 30000: Parameter error

| type

x] For double precision subroutines, real types are all assumed as double precision real types,

(3) Performance
The number of real multiplications needed for N-term cosine (sine) transform is

Nlog2N(N=2"). Output data is written over the input data, The algorithm is stable,

‘(4) Calculation method

The algoritha 3 of fast Pourier cosine .(sine) transform based on the midpoint rule has been
arranged so that output data is written over input data, Because it uses not only reality but
also symmetricity of input data, the number of operations and the work area reduced to the half

of those fast Pourier transform of real data,
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(5) Example

When the number of input data items is Eﬂ, a trigonometric function table (TRIGQP) of the
size 2#_'. at least, must have been calculated, If input data queues up in order of number,
rearrange it in binary reverse order, and then call this subroutine,

The beginning address of input data can be chosen by the parameter LY. The reason of this form
is to use this subroutine for Chebyshev series expansion and fast Fourier cosine transform based
on the trapezoidal rule by taking appropriate values LX. Only for cosine transform for the data
X(1),X(2),+++,X(@"), it is enough to make L¥=0,

For a cosine transform test, we use the following two problems whose aralytical solutions are

known:
Problen (1)
Z 'cosk6=sin(N+%)9/ (2 sin -g—)
OsksN
Problen (2)
Y " (k+1)coskf= {2(N+l) sin € sin (N+l)e+cosNe—1 } / (4sin29)
Osks=N : 2 2 2

If a right hand side function is sanpled at sample point ;=7/N( j+1/2) and input then,
each Fourier coefficient (N/2 times) is generated, That is, when the samples

Xi+-lz=%(_l)j00t%(j+%)9 O=j<N -

are input, Fourier coefficients are obtained as follows:

2p -
NBk—l ) 0§k<N

Similarly, when the samples

Xjep={ (1) (N+1)sin8;-1} / (4sin292-”- )

are input;

2p-
N Br=k+1
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, 0 LESS-BQUAL k<N are obtained, The program which verifies the ahove operation is shown as

follows:

10

20

30
600

10

20

TEST PROBLEMS OF SUBROUTINE FCOSMS

DIMENSION X(128>,C(127)

EXTERNAL F

COMMON L,N,J

M=7

N=2%xxM

CALL TRIGQS(C,M,ICON)

DO 30 L=1,2

PO 10 J=1,N

P=CFLOAT(J)-0.5)/FLOAT(N)

XWJI=F(P)

CONTINUE

CALL BITREV(X-M,ICON)

LX=0

CALL FCOSMS(X,M,LX,C,M'ICDN)

CT=2.0/FLOAT(ND

DO 20 I=1,N

XC(I)=XCI)*CT

CONTINUE

WRITE(6,600) L,N,(X(I),I 1,N)

CONTINUE

FORMAT(//7/7/8X,9HPROBLEM (,IlfiH),4X12HN 21371X/
(1H ,4F15.06))

STOP

END

FUNCTION F(P)

COMMON L,N,J

SGN=1.0

IF(MOD(J,2).EQ.O0) SGN=-SGN
GO TO ¢10,.200.L

PROBLEM (1)
F=0.5*SGN*COTHP(P)

RETURN

PROBLEM (2)
F=0.25%(SGN*FLOAT(N+1)*SINHP(P+P)>-1.0>/SINHP(P)*x%x2
RETURN .

END

The calculation results of cosine transform based on the midpoint rule for the two probleams

described above are shown below,
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k problen (1) problem (2)

0 1. 600000 0. 999998
1 1. 600000 1. 999999
2 1. 000000 2. 999398
3 1. 000000 3. 999999

125 1. 000000 125. 999998
126 1. 000000 126. 999999
127 1. 000000 127. 999999

Note : k represents the output order of the data,
Next, for a sine transform test, the following two problems are used:

Problen (1)
Z sin k9={ cos —-cos(N+—2-)6 } / (2 sin %)
IsksN .

Problem (2)

Z k sin k6= { sin N6-2N sin & > COS (N+—6>} (4s1
IsksN

The right hand side function is sampled at the points
4 (8)
, and samples

x,%-%{ cot%"-+(-1)"} ,0sj<N

are input, Then, Fourier coefficients

%Bk=l ,1sk<N
2p.

are obtained, When

Xjd=(- 1)’{1+2Nsm } (431. 28i

are input, then
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—I%—B:<=Ic,lsk<N
2p._
N&rEN

are obtained,

C TEST PROBLEMS OF SUBROUTINE FSINMS

DIMENSION X(128),C(127)

EXTERNAL F

COMMON L,N,J

M=7

N=2%xxM

CALL TRIGQS(C,M,ICON)

DO 30 L=1.,2

DO 10 J=1,N

P=(FLOAT(C(J)-0.5)/FLOAT(N)

X¢JI=F(P) .
10 CONTINUE

CALL BITREV(X-M,ICON)

LX=0

CALL FSINMS(X-M,LX,C,M,ICON)

CT=2.0/FLOAT(N)

PO 20 I=1,N

XCId)=XCI)*CT
20 CONTINUE

WRITE(6,600) L,N,(XCI),I=1,-N)
30 CONTINUE
600 FORMAT(////8X,9HPROBLEM (,I1,1H),4X,2HN=,1371X/

% (1H,4F15.086)) '

STOP

END

FUNCTION F(P)
COMMON L,N,J
SGN=1.0
IF(MOD(J,2).EQ.O0) SGN=-SGN
GO TO (10,20).,L
c PROBLEM (1)
10 F=0.5%x(COTHP(P)+SGN)
" RETURN
c PROBLEM (2)
20 F=0.25*%(1.0/SINHP(P)*%x2+FLOAT(N+N))*SGN
RETURN
END
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The calculation results of fast Fourier sine transform based on the midpoint rule are as
follows:

k problen (1) problen (2)

1 2.000000 255. 999999
2 1. 060000 126. 999999
3 1. 000000 125. 999999
4 1. 000000 124. 993999

126 1. 600000 3. 000000
127 1. 000000 2. 000000
128 1. 000000 1. 606000

Note : k represents the output order of the data,
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FCOSTS/D,FSINTS/D
(Fast Fourier Cosine Transform Based on The Trapezoidal Rule (FCOSTS/D))

(Fast Rourier Sine Transform Based on The Trapezoidal Rule (FSINTS/D))

Fast Fourier Cosine Transform Based on The Trapezoidal Rule(FCOSTS/D)

Past Pourier Sine Transform Based on The Trapezoidal Rule(FSINTS/D)

Programm | Tatsuo Torii, July 1978

ed by
Format Subroutine Language: FORTRAN; Size: 64, 65, 33, and 34 lines
respectively
(1) Outline

Assume that N+] samples that can be obtained by dividing a half period of the function X(t)
with the period 27 into N parts are represented by

X=X (}3),05§sN,N=2"

If X(t) is an even function, discrete cosine coefficients are given by
Ci= ). " XjcosTkj,0sksN
O=sj=N
Where =" means the summation multiplying 1/2 to the first and last teras,

If X(t) is an odd function, discrete sine coefficients

Ci= 3. Xjsinkkj ,0k<N
O<j<N

are obtained using N-1 samples, BEven the inverse transformation can be executed with the same

program,

(2) Directions
CALL FCOSTS/D (X, MX, H, MW, ICON)

CALL PSINTS/D(X, MX, W, M¥, 1CON)
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Argument | Type and Attribut Content
kind (x1) |e

X Real type |Input/ou| FCOST/D: If X(j+1)=X;,0sjs2® are
One-dimens | tput input, X(j+1)=C; are output,
ional PSINT/D: If X(1)=Xo=0,X(j+1)=Xj,1sj<2“ are input,
array X(1)=Co=0,X(j+1)=C; are output,

MX Integer Input MX=1
type

W Real type | Input A trigonometric function table should be provided on W in
One-dimens advance by using TRIGQP/TRIGAD (W, ¥W, ICON). The number of
ional da-ta iteas 2M-1 of the trigonometric function table should
array be specified by MW. |

W Integer ~ Size of array W should be 22"—1, KW=MX-1
type

I1CON Integer Output | ICON=0: Normal, ICON=30000: Parameter error,
type

x] For double precision subroutines, all real types should be double precision real types,

- (3) Performance

t

Performance is almost same to the fast cosine(sine) transformation based on the middle point

formula,

(4) Example

If the even function sin(N+1/2)0/2sin6/2 is sampled at the point 8;=j/N as

Xj=

N"l/.21j=0
(-1)!/2, 1sj=sN

, the solution is given by

N

_Z_Ck=

Lo
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If the even function

{2(N+1 )sin—g-sin(N+—é-)6+ cos N6-1} /4sin2%

is sampled as
(N?+3N+1) /2, j=0
X; = | (N+1)/2,7 is an even number, and O<jsN,
-(N+l+cosecze,'/2)/2,j is an odd number, and 1sj<N.

He get

2. fk+1,0sk<N
NC=\S(NH1) , k=N

We can confirm this by the cosine transformation based on the trapezoidal rule,

c TEST PROBLEMS OF SUBROUTINE FCOSTS
DIMENSION X(129).,W(63)
EXTERNAL F
COMMON L,AN.,J
M=7 :

MW=6
N=2%xM+1
AN=FLOAT(N-1)
CALL TRIGQS(W,MW,ICON)
DO 30 L=1,2
DO 10 J=1,N
X<¢JI)=FC(FLOAT(J-1)/AN)
10 CONTINUE
CALL FCOSTS(X,M,W,MW,ICON)
CT=2.0/AN
DO 20 I=1,N
XCI)=XC(I)*CT
20 CONTINUE
WRITE(6,600) L N,(XCI),I=1,N)
30 CONTINUE
600 FORMAT(////8X,9HPROBLEM (,I1,1H),4X,2HN=,13/71X/
* (1H,4F15.06))
STOP
END

FUNCTION F(P)

COMMON L,AN,J
SGN=1.0

134



IF(MOD(J,2).EQ.0) SGN=-SGN
GO TO (10.,20).,L
C PROBLEM (1)

10 F=AN+0.5
IF(J.EQ.1) RETURN
F=SGN*0.5
RETURN

c PROBLEM (2)

20 IF(J.EQ@.1) GO 7O 21
IF(SGN.LT.0.0) GO TO 22
F=(AN+1.0)%0.5
RETURN

21 F=(ANxAN+3.0%AN+1.0)x0.5
RETURN

22 F=—-(AN+1.0)%0.5-0.5/SINHP£P)xx2
RETURN
END

Example of fast cosine transform values based on trapezoidal rule

k Problem (1) Problen (2)

0 1. 000000 1. 600000
1 1. 600000 2. 000000 -
2 1. 000000 3. 000000
3 1. 000000 4. 000000

125 1. 000000 125. 000000
126 1. 000000 125. 999999
127 1. 000000 127. 999999
128 2.000000 257. 999999

Note: The number k shows the order of the output data,

The next example is sine transformation, If the odd function
{ cos 9/2—008(N+1/2)6}/2Sin9/2 is sampled at the point 0;=n/Nj,1sj<N, and N-1
data itenms,
X; = 0, for even number ]
X; = cot 9,'/2,. j is an odd number,
are input, all of these Fourier coefficients are 1, That is,

%CFI ,1sksN-1

If N-1 sanples for { (N+1)sinN@-Nsin(N+1)8} /4sin%0/2
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x,.=-é—(-1 )5"Ncot%"-. 1sjsN-1

are input,

%%m=k,lskshhl

are obtained,

c TEST PROBLEMS OF SUBROUTINE FSINTS
DIMENSION X(128),W(63)
EXTERNAL F
COMMON L,AN,J
M=7
MW=6
N=2xxM-1
AN=FLOAT(N+1)
CALL TRIGQGS(W,MW,ICON)
DO 30 L=1.,2
X(1)=0.0
DO 10 J=1.,N
X(J+1)=F(FLOAT(J)/AN)
10 CONTINUE
CALL FSINTS(X,-M,W,MW,ICON)
CT=2.0/AN
DO 20 I=1,N
XC(I+1)=X(CI+1)*CT
20 CONTINUE
WRITE(6,600) L,N,(X(I+1),1=1,N)
30 CONTINUE
600 FORMAT(///7/8X,9HPROBLEM (,I11,1H),4X,2HN=,13/1X/
% (1H,4F15.06))
STOP
END

FUNCTION F(P)
COMMON L,AN,J
SGN=1.0 ,
IF(MOD(J,2) .NE.O) SGN=-SGN
GO TO €10,20).,L
c PROBLEM (1)
10 F=0.0
IF(SGN.GT.0.0) RETURN
F=COTHP(P)
RETURN
c PROBLEM (2)
20 F=0.5%SGN*COTHP(P)*(-AN)
RETURN
END
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BExample of fast sine transform based on trapezoidal rule

k Problem (1) Problen (2)
1 1. 000000 1. 000000
2 | 1.000000 2. 000000
3 1. 000000 3. 000000
4 1. 000000 4000000
125 |  1.000000 124. 999996
126 | 1000000 125. 999998
127 | 1.000000 126. 999998

Note: The number k shows the order of the output data,
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FFT2DC/B and FFT3DC/B (2- and 3-Dimensional Complex Fast Rourier Transform)

2- and 3-Dimensional Complex Past Rourier Transform

Programm | Ichizo Ninbmiya. May 1982
ed by

Pormat Subroutine Language: PORTRANT7; Size: 21, 22, 30, and 31 lines
respectively

(1) Outline

FFT2DC/B is a subroutine for 2-dimensional complex fast Fourier transform, FRT3DC/B is a

subroutine for 3-dimensional complex fast Rourier transform,

The outline of the algorithm is given only for two dimensions. If function values
Xesy m=0,1,---, Ni-1; s=0,1,---, Np-1 at the N|(=§") XN2(=2"2) equipartition
mesh points of the fundamental rectangle of period of the two-dimensional periodic complex value

function (Xoo is a value at the origin) are given, the Fourier transform is given by

Ni-1 No-1
_2rikr ils _ . 1o eee.No=
Ckl=N1N2 Z sgoxrs e N e o k—0,19'°',N|"‘1, l-o’l’ ’NZ 1

This expression is called the forward transformation, Conversely, obtaining a function value
Nzt e 2xikr 2=mils
2 chl e ‘i e N2 ’ r‘-'O’l"”,Nl-l; S=07l""yN2-1

at the power of 2 equipartition mesh points of the fundamental rectangle of period of a periodic

function having Cki as periodic components is called the inverse transformation,

(2) Directions
CALL FFT2DC/B(A, KA, M, INV, ¥, ILL)

CALL FFT3DC/B(A, KA, LA, M, INV, ¥, ILL) ‘
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Argucment | Type and kind | Attribut Content

(=1) e

A Complex type Input/ou | Forward transformation: If X is input,
Two-dimensiona | tput NiN2C(NiN2N3C) is output,
1 array Inverse transformation: If C is input, X is output,
(Three-dimensi | size 21N x2M@ (2D x2H(@) 5 H(3)

onal array)

KA Integer type Input Value of the first subscript in the array declaration of
A ka2t
LA Integer type | Input Value of the second subscript-in the array declaration of
A LA2®@
M Integer type Input 2"“) ’ 2’ (2), 2"(3) represent the number of
One-dimensiona equipartitions in each direction of axis,
1 array~ M(D>1, M(2)>1, and M(3)>1
INV Integer type | Input Porward transformation is executed at INV=0, Inverse

transformation is executed at INV=1,

W Complex type | Work size. 2@ for two dimensions,
One-dimensiona | area Size nm(zn(z),ZHB)) for three dimensions,
1 array
ILL Integer type | Output | ILL=0: Normal termination. ILL=30000: Argument error,

%1 For FFT2DB and FFT3DB, all complex types should be changed to double precision complex types.

(3) Bxample
Function values at 128x128 equipartition mesh points of fundamental square of period

[0, 1]2 of complex periodic function

@ u)=(1 + 2ie®™* + 3e**%) (-1-2i?)
are obtained by the inverse transformation, and the forward transformation is applied to them,

COMPLEX*8 A,B.,C,S
DIMENSION A(128,128),B(128,128),C(128),S(2),M(2)
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N=128
€C(1>=1.0
€C(2>=(0.,2.)
C(3)=3.
S(1)=-1.
§€2)=(0.,-2.)
DO 10 J=1.,N
DO 10 I=1,N
AC(I,J)=0.
10 B(I,J)=0.
DO 20 J=1,2
bo 20 I=1,3
ACI,J)=CCI)%xSCJ)
20 B(I,JX)=A(1,J)
KA=N
M(1)=7
M2)=7
INV=1
CALL FFT2DCC(A,KA-M,INV,C,ILL)
INV=0
CALL CLOCKM(IO)
CALL FFT2DCCA-,KA,M,INV,C,ILL)
CALL CLOCKM(I1)
IT=11-10
D=1./FLOAT(N)*x%x2
DO 30 J=1,N
DO 30 I=1,N
30 EM=AMAX1(CABS(A(I,J)*D-B(I,J)),EM)
WRITE(6,600) IT,ILL,EM .
600 FORMAT(10X,'TIME =',17,'MS',2X,'ILL=",16,2X,"EM=',E11.3)
STOP '
END

(4) Summary

An output given by the forward transformation is not the Fourier transform itself buf
"NiN2(NN2N3) times of it, Refer to the explanation and the example of use of the argument A
and the explanation of the subroutine FFTC,

(1987. 05. 11) (1987. 08. 08)
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FFT2DR/D and FFT3DR/D (2- and 3-Dimensicnal Real Fast Fourier Analysis and Synthesis)

2- and 3-Dimensional Real Fast Fourier Analysis and Synthesis

Programm | Ichizo Ninomiya, May 1982
ed by

Format | Subroutine Language: FORTRAN77; Size: 28, 29, 40, and 41 lines
) respectively '

(1) Outline
FRT2DR/D is a subroutine for 2-dimensional real fast Pourier analysis and synthesis, -FFT3DR/D

is a subroutine for 3-dimensional real fast Fourier analysis and synthesis,

The outline of the algorithm is explained only for the case of two dimensions, If function
values Fps;r=0, 1,---, Ni-1; s=0, 1,---, No-1 (Foo is-a value at the origin) at

N|(=2m) XN2(=2"2) equipartition mesh points of fundamental rectangle of period of

two-dimensional real periodic function are given, the sine (C) and cosine (S) elements are given'

by

N-

- 2kr | [ oos 2tls .
_E1€2 N2 =0,1; - - - ;
. {S}{S}kl N]Nz ;0 soFrs {s].n a&k;r} {81n 2,7528}’ k 0717 ’N]/z’.

=

l=0,17 A ,N2/2

Where,

1= d2,0<k<N1/2
1"11,k=0,N/2

ey {250<L<N2/2
2°\1,1=0,N2/2

and
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CSklso’ l=0,N2/2
SCki=0, k=0,Ni/2
Ski=0, k=0,Ni/2 or '1=0,N2/2

The calculation described above is called Fourier analysis, Conversely, obtaining a function

value
N2

Ni/2
Frs=). { cos —2—7;\(":—7'2 (CCxi cos 2rls , ¢Sy sin 2ELs )
k=0 1= '

N2 No

Ny/2
+sin—271fl—'fr-2 (SCit cos —21‘-2—3-+SSH sin 2Lls ) } ,r=0,1, - - - ,Ni-1;s
10

N. N2
=091) e 9N2"'1

at the equipartition mesh points of fundamental rectangle of period from cosine and sine

elements is called Fourier synthesis,

(2) Directions
CALL FFT2DR/D(A, KA, M, INV, W, ILL)

CALL FFT3DR/D(A, KA, LA, H, INV, ¥, ILL)

Argument | Type and | Attribut Content °
kind 1) |e
A Real type | Input/ou | Fourier analﬁsis: If F is input, cosine and sine elements are
Two—d'imens tput - output, The order of storing the outputs is the direct
ional product of the case of one dimension, For instance, CSjy
array is stored in A(I+], 2.2 (¥(2)-1)+1+J) in the case of two
(Three-dim | dimensions,
ensional Fourier synthesis: If cosine and sine elements are stored in
array) the above order, a function value F is output in natural
order,
size 21D x M@ (M1 SH(2) M)y
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Argument | Type and Attribut Content
kind (1) |e

KA Integer Input Value of the first subscript in the array declaration of A
type KAE:Z"(l?

LA Integer Input Value of the second subscript in the'array deélaration of A
type La=2"®@

| Integer Input Zﬁ('),Eﬁ(z),Eﬁ(s) represents the number of equipartitions in
type each direction of axis,
One-dimens M(D>1, H(2)>]1, and H(3)>1.
ional
array

INV Integer Input Fourier analysis is done at INV=(,
type Fourier synthesis is done at INV=].

W Real type | Work Size ZH(Z) in the case of two dimensions,
One-dimens | area Size nKrt(Eﬁ(z),Eﬂ(s)) in the case of three dimensions,
ional |
array

ILL Integer Output | ILL=0: Normal termination, ILL=30000: Argument error.,
type

=] For FFT2DD and FFTDD, all real types should be changed to double precision real types.

(3) Example

A function value at 128128 equipartition mesh points of fundamental square of period

[0.1]2 of periodic function

f(x,y)=(1+cos2rx+2cosdrx) (-sin2rx-2sindnx)

is obtained by Fourier synthesis and applied to Fourier analysis,

DIMENSION A(128,128),B(128,128),€(€128),5(2),M(2)

N=128
C(1)=1.0
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c(2y=2.
C(3>=3.
S(1)=-1.
S(2)=-2.
DO 10 J=1.,N
DO 10 I=1,N
AClI,J)=0.

10 B(1,J)=0.
NH1=N/2+1
DO 20 J=1.,2
DO 20 1=1,3
ACI,J+NH1)=C(I)*S(J)

20 B(I,J+NH1)=A(I,J+NH1)
KA=N
M(1)=7
M(2)=7
INV=1
CALL FFT2DR(A,KA,M,INV,C,ILL)
INV=0
CALL CLOCKM(IO)
CALL FFT2DRCA,KA,M,INV,C,ILL)
CALL CLOCKM(I1)
IT=11-10
DO 30 J=1,N
DO 30 I=1,N

30 EM=AMAX1(ABS(A(CI,J)-B(I,J)),EM)
WRITE(6,600) IT,ILL,EM

600 FORMAT(C10X,'TIME=',17,"MS',2X,'ILL=",16,2X,'EM =',E11.3)

STOP
END

(4) Summary

The order of storing cosine and sine elements is the direct product of the case of
one-dimensional real Fourier analysis. Refer to the explanation and the exahple of use of
argument A and the explanation of suhroutiqe FFTR,

(1987. 05. 19) (1987. 08. 08)
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FFTC/B (Complex fast Pourier analysis)

Complex Fast Fourier Analysis

Programm | Ichizo Ninomiya; .April 1981
ed by

Format | Subroutine language: Assembler, Size: 267 lines each

(1) Outline
When sample value X;,j=0,1,---,N-1(Xo is a value in the origin) in N equipartition
point of a period of a periodic function is given, the periodic component Cj,j=0,1,---,N-1

is given by the following Fourier variable

N-1
Ci=) X, j=0,1, -+ ,N-1
k=0

X3

where

v )

On the contrary, when periodic component C; is given, X; is given by the following inverse

transformation:

N-1
Xj=Y C*,§=0,1, - -+ ,N-1
k=0

This routine is used to perform the above calculation using the complex fast Fourier conversion

technique when N is of the form N=2 is given,

(2) Directions

CALL FFTC/B(A, ¥, INV, ILL)
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Argument | Type and Attribut | Content
] kind (1) |e

A Complex Input/ou | For forward transformation, Xk is input and Cj is
type tput output, Por inverse transformation, Ck is input and X;
One-dimens is output,  Cj-1(Xj-1) is output in A(J).
ional
array

M Integer Input Used to indicate that the size of array A is 27, M=2
type ’

INV Integer Input INV = 0 indicates forward transformation and INV = 1
type indicates inverse transformation,

ILL Integer quput ILL = 0: Normal end,
type ILL = 30000: ¥ = 1

*1 For FFTB, the complex type should be changed to a double precision complex type,

(3) Performance
Because this routine uses the technique of the radix 4 complex fast Fourier transform and is

written in assembly language, it is farst and accurate,

(4) Note

FFTS or FFTD is available for the same purpose as FFTC or FFTB, Note, however, that PFTS and
FFTD are a little different from FRTC and FFTB in the meaning of arguments and Fourier transform
definitions, PFFTS/D requires an work area B as large as input vector A, but FFTC/B does not,

Moreover, the latter is faster, So, it is more advantageous to use FFTC/B.

(1987. 08. 10)
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FFTR/FFTRD (Real Fast Pourier Analysis)

Real Fast Fourier Analysis

Programm | Ichizo Ninomiya, Ahril 1981
ed by

Format | Subroutine language: Assembler; size: 214 lines

(1) Outline
If the values Xj,j=0,1,---,N-1 at N=2 equipartition points of a period of a real

periodic function starting from the origin as the left end are input, FFTR/FFTRD calculates the
cosine components Cj,j=0,1,---,N/2 and sine components S;j,j=1,2,---,N/2-1 using

the technique of real fast Fourier analysis, Where,

. N .
Cj=% kgo kaOSZJNkI’ j=0’1,"'9N/2

eo=ens2=1,€;=2, j=2,---,N/2-1

N-1
Sj-% kEOXk sin ZJN,CR" J=1 ’2""aN/2‘1

() .'Directions
CALL FFTR(A, M, ILL)

CALL FFTRD(A, M, ILL)
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Argument | Type and | Attribut Content
kind (x1) |e
A Real type | Input/ou | One-dimensional array containing P elements, If the
. One-dimens' tput values at 2! equipartﬁtion points of a period of the
ional periodic function are input sequentially starting from the
array one at the origin, the sine and cosine components are entered

in this order, where each components are entered in natural
order, That is, the K-th order cosine components are entered

in A(K+1), and the J-th order sine components are entered in

A(N/2+J+1).
L] Integer Input Indicates t h'a t one period is
type . equally divided into qu. M=0
ILL Integer Output °| If M<O, ILL=30000 is output, and calculation is not executed,
type Otherwise, calculation is executed, and ILL=0 is output,

x] For FFTRD, real types should be changed to double precision rzal types,
(3) Performance
Because this routine is written in the assembly language, and an effort is made to reduce the

number of calculations of trigonometric functions, its speed and precision are high,

(4) Calculation oethod.

Unlike Bergland's D algorithm, bit reversal rearrangement is executed (calling the subroutine
BITREV) in the beginning, -
(5) Note

There are many methods for Pourier analysis, Without special conditions, however, real fast

Fourier analysis should be used with the number of divisions put in the form of Eﬂ.

Bibliography
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FFTRIZ/FFTRID (Real Rast Fourier Synthesis)

Real Fast Fourier Synthesis

Programm | Ichizo Ninomiya, April 1981
ed by

| Format Subroutine language; Assembler; size: 196 lines

(1) Outline

If the cosine components Cj, j=0,1,---,N/2 and the sine components

S;, j=1,2,---,N/2-1 of a real periodic function are input, FFTRI/FFTRID calculates the
valuees Xj, j=0,1,---,N-1 at N equipartition points of a period of that function,

starting from the origin as the left end, using the technique of real fast Fourier analysis,

Where, V2
. N/2-1 .
Xk‘ZCJ‘ cos aﬁk + Z S,'singnf—jﬁ, k=0,1,---,N-1
i=0 j=1 ,

, and N is an integer in the form of N=2",

(2) Directions
CALL FFTRI(A, M, ILL)

CALL FFTRID(A, M, ILL)

Argument | Type and Attribut Content
kind (1) [e

A Real type | Input/ou| One—dimensional array
One-dimens | tput containing 2! elements, If the K-th order cosine
ional components are entered in A(K+1), and the J-th order sine
array components are entered in A(N/2+J+1), the values at 2!

eqﬁipartition points of a period are entered sequentially

starting from the one at the origin,

| M Integer Input Indicates that a period is divided into 2! equal parts,

type M=0
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Argument | Type and | Attribut Content .
kind (1) |e

ILL Integer Output If M<0, ILL=30000 is output, and calculation is not executed,
type . Otherwise, calculation is executed, and ILL=0 is output.

=] For FRTRID, all real types should be changed to double precision real types,

(3) Performance

Because this routine is written in the assembly language, and an effort is made to reduce the

number of calculations of trigonometric functions, its speed and precision are high,

(4) Calculation method

The calculation is executed by reversing the algorithm of real fast Pourier analysis

(FFTR, FFTRD). Refer to the bibliography " of FFTR.

' . (1987.08.10)

151



[SZ

FFTS/D (Complex Past Fourier Transform)

Complex PFast Fourier Transform

Programm.| Ichizo Ninomiya, April 1977
ed by

Format Subroutine language: FORTRAN; size: 124 and 129 lines respectively

(1) Outline
If sample values Xj, j=0,1,--+,N-1(Xo is the value at the origin) at the N
equipartition points of a period of a periodic function is given, each of the periodic components

Cj, j=0,1,---,N-1 is given as the Fourier transform

N-1
1 E: ks
;. —— W’_, =0,1,---,N-

Where, W=exp(-2mi/N). Conversely, if the periodic components C; are given, X; is
given by the inverse transform

N-1

Xj = 1W ’;o Ck W, §=0,1,--+,N-1

This routine is used to perform the above calculation by fast Fourier transform when N is in the

form of 2 .

(2) Directions

CALL FFTS/D(A, B, N, INV, ILL)



Argument | Type and | Attribut Content
kind (1) |e

A Complex Input/ou | For forward transformation, Xx are input to output Cj.
type tput For inverse transformation, Cj are input to output Xj.
One-dinens " Cj-1(Xj-1) is entered in A(j).
ional
array

B -Complex Work Work area used in the subroutine,
type area
One-dimens
ional
array

N Integer Input Represents the size of arrays A and B, It should be of the
type . form of 2" N=2

INV Integer Input INV=0 means forward transformation, and INV=1 means inverse
type transformation,

ILL Integer Output ILL=0: Normal termination,
type 1LL=30000: When N is not in the form of 2'(M>0).

x] For ‘FFTD, all complex types should be changed to double precision complex types,

(3) Performance

Because this routine uses the techniques of Fourier transform and has the following

characteristics, its speed and precision are high,

1. The value of sine and cosine is calculated only when the absolute value of arguments is

within #/8.

2. The low-order approximation polynomials prepared in the routine are used instead of calling

Once the value is obtained, it is used eight times with a small correction added,

the elementary external sine and cosine functions,

(4) Note

1. Usually, Pourier transformation is defined as
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N-1
CJ - % kgo Xk ijy j=09l""’N‘l

Inverse transformation is also defined as
N-1

X; = 3 Ck Wk, j=0,1,---,N-1
k=0

However, it should be noted that this routine uses different definitions,

2. The special-purpose routines FFTR and FFTRI should be used for real number input data,

3. FFTC/B is available as the routine with the same function as this routine, Select and use
them properly,

(1987. 05. 08) (1987. 08. 10)
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FT235C/B and FT235R/D (Complex and Real Fast Pourier Transfora for the Case of Sample

Nusber of the Form of 238" )

Complex and Real Fast Fourier Transform for the Case of Sample Number of the Porm of 2"3“5"

Programm | Ichizo Ninomiya, April 1977
ed by

Format Subroutine language: FORTRAN; size: 178 and 42 lim;.s respectively

(1) Outline

FT235C/B and FT235R/D are the subroutines for making complex fast Pourier analysis (FT235C/B)
and real fast Pourier transform (FT235R/D) when the number of divisions of a period is of the
forn of N=2'3'5"

Because various definitions in FT235C/B are the same as in FFTC/B, and those in FT235R/D are

the same as in FRTR/D, refer to each explanation,

(2) Directions
CALL FT235C/B(A, B, N, INV, ILL)

CALL PT235R/D(A, B, N, ILL)

Argument Type and kind (x]) Attribut Content
e
FT235C FT235R

A Complex Input/ou | One-dimensional array containing N elements, In
type (x1) tput forward transformation, Xk are input to output
One-dimens C;j. In inverse transformation, Ck are input
ional to output Xj. Cj-1(Xj-1) is entered in
array A(3) .
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Argument | Type and kind (x1) | Attribut Content
e
Real type | Input/ou | One-dimensional array containing N elements, If
(=1) tput the values at N equipartition points of a period
One-dimens of the periodic function is sequentially entered,
ional the cosine and sine components are output in this
array order, Each components are output in natural
order. Precisely, the K-th order cosine
ccmpongnts are output to A(K+l), and the J-th
order sine components are output to A(N/2+J+1),
B Complex Real type | Work Work area, It must be of the same type and size
type («1) | (=) area as the argument A
One-dimens | One-dimens
ional ional
array array
N Integer Integer Input N must be the number of divisions in a period,
type type and be in the forn of N=2¢35" . ‘N>z,
K=1 should hold for FT235R/D.
INV Integer Input If INV=0, forward transformation is executed, If
type, INV=], inversé transformation is executed,
ILL Integer Integer Qutput | ILL=30000: When limits on the input are exceeded,
| type type Otherwise,  is output,

=] For FT235B, all complex types should be changed to double precision complex types;

For FT235D, all real types should be changed to double precision real types,

(3) Performance

Because this routine is not the N=2" type, its speed is slow as compared with other

routines, Therefore, it is reasonable for the 2 type to use the special-purpose routine for

that type,
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(4) Example of use
If "CALL FT235R/D(A.B, N, ILL)" is executed, “CALL FT235C/B(A, R, N/2,0, ILL)” is executed in
FT235R.

Therefore, N should be an even number (N=2‘3L5",K=1) . Because A and B are handled as a
. complex type one-dimensional array (array of ‘size H/2: (A(1)+iA(2),A(3)+iA(4)--- )) in
this call, they should be prepared for such handling. One example is to use the EQUIVALENCE
statement described in the example below, (It is necessary and sufficient that the top elements
of A and B are allocated to the even number address, )

c MAIN PROGRAM

DIMENSION A(720).,B(720)

COMPLEX CA(360),CB(360)

EQUIVALENCE(A,CA),(B,CB)

READ(5,500) (A(I),1=1,720)
S00 FORMAT(6F12.0)

CALL FT235R(A,B,720,ILL)

STOP
END

(5) Note

When FT235R/D is to be used, the number N of divisions 'must be in the forn of N=2*3'S" and
be an even nﬁmber. Because the arrays A and B are real type one-dimensional arrays of size N,
- and handled as a complex type one-dimensional array of size N/2, they should be prepared for such
handling, See the example,

(1987. 05. 08) (1987. 08. 10)
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TRIGQP/TRIGQD (Table of Trigonometric Function Arranged in Bit Reverse Order)

Table of Trigonometric Function Arranged in Bit Reverse Order

Programn | Tatsuo Torii, December 1978
ed by

Format Subroutine Language: FORTRAN; Size: 51 and 52 lines respectively

(1) Outline

TRIGAP/TRIGAD generates a trigonometric function table that is required for fast sine and
cosine transforms and the Chebyshev series expansion of functions, .

It defines the n-bit decimal fraction j*=ji2 '+j222++--+jn2™ less than 1 for the n-bit
integer §=712% o2 4« - +52%", jie {0,1}, and calculates the complex trigonometric

function e¥**, j=0,1,2,---,

(2) Directions
CALL TRIGQP(C, M, 1CON)

CALL TRIGAD(C, M, ICON)

Argument | Type and Attribut Content
kind (xI) |e

C Real type | Output C(1)=cos(m/4)
One-diaens C(2j)=cos(n/4);j* 1sj<2-1
ional C(2j+1)=sin(z/4)j* 1sj<2!1
array .

o Integer Input Size of array C 221 Mz1
type

ICON Integer Output | ICON=0: Normal, ICON=30000: Parameter error,
type

(3) Performance

If the number of data items in the trigonometric function table is 2 , the required
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arithmetic operations are M square roots, and 2" multiplications,

(4) Calculation. method

Putting Wj= /AL* gor simplicity, they obey the following recurrence formulas,

Wo=e™*t ,Wi=e™%" Initial value

W21=(W2'-l)'/ 2, The imaginary part of square roots is positivie,
Wal, =Wat-1.; Wo, 1s j<21'l

Wol,ot-1, j=Woi-1, ;- Wal, osj<! v

1=1,2,.--

(1987. 05. 12) (1987. 08. 10)
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VCHB1S/D,DCHB1S/D,ICHB1S/D,VCHB3S/D,DCHB3S/D,ICHB3S/D
(Evaluation of Chebyshev Series) (VCHB1S/D)
(Differential Coefficient of Chebyshev series) (DCHB1S/D)
(Bvaluation of Indefinite Integral) (ICHB1S/D)
(Bvaluation of Shifted Chebyshev Series) (VCHB3S/D)
(pifferential Coefficient) (DCHB3S/D)

(Bvaluation of Indefinite Integral) (ICHB3S/D)

Evﬁluation of Chebyshev Series (VCHB1S/D)
Differential Coefficient (DCHB1S/D)

Bvaluation of Indefinite Integral (ICHB1S/D)
Evaluation of Shifted Chebyshev Series(VCHB3S/D)
Differential Coefficient (DCHB3S/D) -

Bvaluation of Indefinite Integral (ICHB3S/D)

Programm | Tatsuo Torii, December 1978
ed by

Format Subroutine Language: FORTRAN
: Size: 75, 76, 75, 76, 75, 76, 80, 81, 80, 81, 80, and 81

lines respectively

(1) Outline

The subroutines perform the following calculations for the series 20,,«".0&7';((::) of the
Chebyshev polynemials of first kind,

1. Obtains the value of seriés (1) at arbitrary points xe [-1, 1].

2. Calculates differential coefficients at the point X,

3. Obtains the integral fl(ZOskm_akT(t))dt with upper linit ze -1, 1.

VCHB3S, DCHB3S, and ICHB3S obtain the value of the series, differential coefficient, and

{ T
integral j; with respect to the series ZO:I«N' axTE(x) of shifted Chebyshev polynonials,

(2) Directions

CALL VCHB1S/D(A, N, X, F, ICON)



CALL DCHB1S/D(A, N, X, F, ICON)
CALL ICHB1S/D(A, N, X, F, ICON)
CALL VCHB3S/D(A, N, X, F, 1CON)
CALL DCHB3S/D(A, N, X, F, ICON)

CALL ICHB3S/D(A, N, X, F, ICON)

Argument Type and Attribut Content
kind (x1) |e -

A Real type | Input Size of array A=N, Fourier
One-dimens coefficients ag,ar, ---,aN-1 are stored in A(1), A(D),
ional ..., and A(N). N=1
array ‘

N Integer
type

X Real type | Input -1=X=1.

F Real type | Output | Calculation-value of each subroutine,

ICON Integer Output | ICON=0: Normal, ICON=30000: Parameter error.

| type

x1 For double precision subroutines, all real types should be double precision real types.
(3) Calculation method

The value at the point xe [—1,1] of the Chebyshev series

Sn(x)= Y. ‘aTk(x)
Osk<N

can be obtained with the recurrence formula, named Clenshaw;s algorithm .
by=0
by-1=an-1
bir=2xbic+ 1-bis 2+ '
k=N-2,N-1, - - -,1,0
Sw(x)= (bo-b)

or
=xbi-bp+ 2

The sum of (N-1)-th order Chebyshev series is obtained by N times of multiplication,
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Arrays are not used for the sequence {bi} that is the intermediate result, A differential

coefficient

Z 1
Qk x Iz-x
k=1 dx k()

» >at the pt';int x of the N-th order Chebyshev series is obtained witn the recurrence formula
br+1=0
by=Nay
bi=2xbi—bk+ 1-+kak
k=N-1,N-2, - - - ,1

Differential coefficient =bjp,

The indefinite integral of Chebyshev series is

x . : . T N N :
[ o, OTk@dz= 1 a Th(@)dz=) Sl (i (2)- (1)

Where 0N+1?0N=0.

Thus, the integral value can be obtained by
b+ 1=0, cN=an-1/2N
by=cn, Sy=cn _
cr= (Qre-1-Ciee 1) /2k
bk=2xbk+1-bks2+Ck » Sk-1=Ck—Sk
k=N,N-1, - - - ,1
Integral value=xbi-b2+Sj.

The value can be obtained with a similar method for shifted Chebyshev polynomials,

(4)- Example

For simplicity, the numerical differentiation and integration are tested by an exponential

function, The value of

1@ @, [ f@ar

=i i=-4,-3,..-
$—4,1 4, 3, ’3,4
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is obtained by expanding the funciton on the interval (-1, 1]

f(x)=e*

into Chebyshev series under a required precision using VCHB1S, DCHB1S and ICHB1S, Also, the

example includes the calculation of

@), f (x) ,foxf(x)dx,x=0. 1,+-.,8

where the same exponential function

f(x)

is expanded over an interval [0, 8] with shifted Chebyshev series, This requires variable

transformation for changing an interval [0, 8] to [0, 1].

10

TEST FOR SUBROUTINE VCHB1S,DCHB1S AND ICHB1S
DIMENSION A(257)

EXTERNAL F

EPSA=1.0E-0S5

EPSR=0.0

NMIN=0

NMAX=257 ’
CALL FCHB1S(F,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ILL1)
A(N>=AC(N)*0.5

H=0.25

X=-1.0

CONTINUE

CALL VCHB1S(A,N,X,V,ILL2)

CALL DCHB1S(CA,N,X,D,ILL3)

" CALL ICHB1SCA,N,X,VI,ICON)

600

ICON=ICON+ILL1+ILL2+ILL3

TRUEV=EXP(X)

ERV=TRUEV-V

ERD=TRUEV-D

ERI=TRUEV-EXP(-1.0)-VI

WRITE(6,600) X,V,ERV,D,ERD,VI,ERI,N,ICON
FORMAT(1HO,4X,F8.3,3(F15.06,E15.03).,218).
X=X+H '
IF(X.LE.1.0) GO 70O 10

sTOP

END

FUNCTION F(P)
F=EXP(P)
RETURN

END

TEST FOR SUBROUTINE VCHB3S,DCHB3S AND ICHB3S
DIMENSION A(257)

EXTERNAL F

EPSA=1.0E-05

EPSR=0.0

NMIN=0

NMAX=257
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10

CALL FCHB3S(F,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ILL1)
ACN)=ACN)*0.5 ‘

Y=0.0

H=1.0

CONTINUE

APPLY THE VARIABLE TRANSFORMATION

X=Y/8.0

- CALL VCHB3S(A-N,X,V,ILL2)

CALL DCHB3S(A,N,X,D,ILL3)

CALL ICHB3S(A,N,X,VI,ICON)
ICON=ICON+ILL1I+ILL2+ILL3

D=D/8.0

Vi=VIx*8.0

TRUEV=EXP(Y)

ERV=TRUEV-V

ERD=TRUEV-D

ERI=TRUEV-1.0-V1

WRITE(6,600) Y,V,ERV,D,ERD,VI,ERI,N,ICON

600 FORMAT(1HO0,4X,F8.3,3(F15.06,E15.03),218)

Y=Y+H

IFC(Y.LE.8.0) GO T0 10

STOP

END

FUNCTION F(P)

APPLY THE VARIABLE TRANSFORMATION

Q=8.0*P

F=EXP(Q)

RETURN

END

Bxpansion of €* by { Tk(x)} , sum of series, differential coefficient,
and indefinite integral
X Sum of series Error Differential Error Integral Error
coefficient

-1.00 0. 367879 -0. T45E-08 0. 367879 0.291E-06 | 0. 000000 0. 373E-08
-0.75 0. 472367 -(0. 745E-08 0. 472366 0.1126-06 | 0. 104487 0. 745B-08
-0.50 0. 606531 0. 1496-07 0. 606531 -0.104B-06 | 0. 238651 0. 745B-08
-0.25 0. 778801 -0. 1498-07 0. 778801 -0.5968-07 | 0. 410921 0.0
0.00 1. 000600 0.0 1.000000 0.1346-06 | 0.632121 | -0.745B-08
0.25 1. 284025 0.0 1. 284026 -0.1196-06 | 0.916146 0. 745E-08
0.50 1. 648721 -0. 298E-07 1. 648721 -0.5966-07 | 1.280842 | -0.224E-07
0.75 2. 117000 0.0 2.117000 0.596E-07 | 1.749121 0. 745E-08
1.00 2.718282 -0, 596E-07 2.718281 0.1198-05| 2 350402 | -0.522E-07

Note: Precision required for development: €==l()'5; number of samples: N=9,
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Expansion of e* by { T*k(:c/S)} , sum of series, differential coefficient

and indefinite integral,

X Sun of series  Error Differential Error Integral Error
coefficient

0.0 0. 999996 0. 381B-05 0. 999893 0. 107E-03 0. 000008 | -0.763E-05
10 2.718304 | -0.219E-04 2. 718166 0. 1@55—03 1.718302 | -0.200E-04
2.0 7.389103 | -0. 4686-04 7.389107 | -0. 507E-04 6. 389076 | -0.201E-04
3.0 20. 085506 0. 3056-04 20.085672 | -0.135E-03 | 19.085360 | -0.229E-04
4.0 94. 598145 0. 5;125-05 94. 597870 0.2806-03 | 953.598206 | -0.553E-04
5.0 148.413208 | -0.496E-04 | 148.413406 | -0.248E-03 | 147. 413169 | -0.114E-04
6.0 403. 428611 0.183E-03 | 403. 428878 | -0. 839E-04 402. 428771 0. 229E-04
7.0 | 1086. 63305 0. 916E-04 | 1096. 63201 0. 1136-02 | 1095. 63314 0.0

8.0 | 2980.958 0.0 2980. 9678 -0. 983E-02 | 2979. 95788 0. 122E-03

Note: Precision required for expansion: £=107 ; number of samples: N=17.
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VCHB2S/D,ICHB2S/D
(Bvaluation of Second Kind Chebyshev Series) (VCHB2S/D)

(Bvaluation of Indefinite Integral) (ICHB2S/D)

Bvaluation of Second Kind Chebyshev Series(VCHB2S/D)

Bvaluation of Indefinite Integral (ICHB2S/D)

Programm | Tatsuo Torii, December 1978
ed by

Format Subroutine Language: FORTRAN; Size: 47, 48, 47, and 48 lines
respectively

(1) Outline
VCHB2S/D and ICHB2S/D obtain the value at the point x of the second kind Chebyshev series
Y. adi(x) ¢
Osk<N .

and intekral

[ Yot e

(2) Directions
CALL VCHB2S/D(A, N, X, F, ICON)

CALL ICHB2S/D(A, N, X, F, ICON)
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Argument | Type and Attribut Content
kind (1) |e

A Real type | Input Size of array A=N. Fourier
One-dimens coefficients ag,aj, - --,aN-1 are stored in A(1), A(D),
ional ..., -and A(N), N=1
array

N Integer
type

X Real type | Input -1=X=1.

R Real type | Qutput Calculated value of each subroutine,

1CON Integer Qutput ICON=0: Normal, ICON=30000: Parameter error,
type :

x1 For double precision subroutines, -all real types should be double precision real types,
(3) Calculation method
Because the recﬁrreyce formula of the Chebyshev polynomials of second kind is the same as that
of first kind except for the initial conditiéns, the value of series (1) is obtained with
bx = 0, , bN-1 = an-1, , bk = Z:bke1-bre2tak, , k = N-2, N-3,---,1,0, and

value of series (1) = by.

Also, indefinite integral (2) is obtained by

N N
D BTy (x)- ), (-1)F et
k=1 k=1 _

Therefore, the calculation conforms to the indefinite integral (ICHB1S) of the first kind

Chebyshev series,

(4) Example
By expanding the exponential function € over an interval of [-1, 1] using the second kind
Chebyshev series (and FCHB2S), the value and integral of this series are found, The point X is
* a sample point on the interval [-1, 1] divided into eight equally parts,
C TEST FOR SUBROUTINE VCHB2S AND ICHB2S
DIMENSION A(255)
EXTERNAL F

EPSA=1.0E-05
EPSR=0.0
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10

600

NMIN=0
NMAX=255
CALL FCHB2S(F,EPSA,EPSR,NMIN,NMAX-A,N,ERR,ILL1)
H=0.25
=-1.0
CONTINUE
CALL VCHB2S(A-N,X-VA,ILL2)
CALL ICHB2S(A,N,X,VI,ICON)
ICON=ICON+ILL1+ILL2
TRUEV=EXP(X)
ERV=TRUEV-VA
ERI=TRUEV-EXP(-1.0)-VI
WRITE(6,600) X,VA,ERV,VI,ERI,N,ICON
FORMAT(1HO,4X,F8.3,2(F15.06,E15.03),218)
X=X+H
IF(X.LE.1.0) GO TO 10
STOP
END

FUNCTION F(P)
F=EXP(P)
RETURN

END

Expansion of €* by {Uk(x))}, sum of series, and indefinite integral

X Sum of Error Integral Brror
series

-1.00 | 0.367879 0.0 0.000000 | -0.373E-08
-0.75 | 0.472367 0.745E-08 | 0.104487 0. 745E-08
-0.50 { 0.606531 -0.0 0. 238651 0. 745E-08
-0.25| 0.778801 -0.2986-07 | 0.410921 | -0.745E-08
0.00 | 1.000000 0.0 0.632121 | -0.745E-08
0.25 1 284025 0.0 0.916146 | -O0. 7455-08‘
0.50 | 1.648721 -0.298E-07 | 1.280842 | -0.224E-08
0.75( 2.117000 0.0 1. 749121 0. 7453—03
1.00| 2.718282 | -0.596E-07 | 2.350402 | -0.522E-07

Note: Required precision €=105 for expansion

Number of samples N=15

(1987. 05. 25) (1987. 8. 10)
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49
VCOSS/D,VSINS/D

(Evaluation of cosine series) (VC0SS/D) (Bvaluation of sine series) (VSINS/D)

Bvaluation of Cosine Series (VCOSS/D)

Evaluation of Sine Series(VSINS/D)

Programm | Tatsuo Torii, December 1978
ed by

Format | Subroutine Language: RORTRAN; Size: 38, 39, 38, and 39 lines
| respectively

=] For double precision subroutines, all real types should be double precision real types,

(1) Outline

VCOSS/D and VSINS/D obtains the values of the cosine series ZO<-I<<N axcoskO and sine
series Z:=|ak8inke ]

(2) Directions
CALL VCOSS/D(A, N, T, F, 1CON)

CALL VSINS/D(A,N, T, F, ICON)

Argument | Type and Attr Content
kind (x1) | ibut
e
A Real type | Inpu | Size of array A=N, ‘
One-dimens | t For VCOSS/D, ag,Qy, - -,an-1 are stored on A,
ional
array
N Integer " | For VSINS/D, ai,---,aN are stored on A
type N2=1
T Real type | Inpu | Arbitrary real number, Retained,
t
F Real type | Outp | Evaluation of cosine (VCOSS) and sine (VSINS) series at O=t,
ut :
1CON Integer Qutp | ICON=0: Normal, ICON=30000: Parameter error,
type ut

%1 For double precision subroutines, all real types should be double precision real types,

(3) Calculation method
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The sum of the cosine series is obtained by Clenshaw's method as well as the sum of the
Chebyshev series of first kind,
The sum of the sine series can be obtained by multiplying the sum of the Chebyshev series of

second kind by siné.

(4) Example
1. Example of cosine series calculation
If a periodic function can be expanded in Fourier series, then it is easily integrated term
by term. Now, the integration of the sine series is obtained below as an example of using
the subroutine VCOSS,

The termwise integration of a generating function of the sine function is written by

3 . =
sin® 4.V akCoS
j(; 1-2tcos+t? kgo i

where

a=-t-"k, k=1

, (10=-{2}E:;;|(1k, Thus, the integrand is expanded and integrated termwise by using the'subroutine

FSINOS,

" The value of the cosine series is obtained by using the subroutine VCOSS varying the upper
linit @ of the integration with 1/12=, 2/12=, ..., and 6/127%, The analytic solution of

this integration is expressed as

1 1—2tcosq>+t2 "
= log { ——————
2t { (1_t)2 }

c TEST FOR SUBROUTINE VCOSS
’ DIMENSION A(256)
EXTERNAL F
COMMON T
TRUEC(P,T)=ALOG((1.0-2.0*T*COS(P)+T*T)/(1.0-T)*xx2)x0.5/T
T=0.5
NX=6
HPI=2.0xATAN(1.0)
H=HPI/FLOAT(NX)
EPSA=1.0E-05
EPSR=0.0



10

600

20

NMIN=0

NMAX=255

CALL FSINOS(F,EPSA,EPSR,NMIN,NMAX,A,N,-ERR,ILL)
NP1=N+1

$=0.0

DO 10 I=1,N

K=NP1-1 .

ACK+1)=-A(K) /FLOAT(K)
S=A(K+1)+S

CONTINUE

A(1)=-§5-8

THETA=H

DO 20 I=1,NX -

CALL VCOSS(A,NP1,THETA,VA,ICON)
ICON=ICON+ILL
ERV=TRUECTHETA,T)-VA
WRITE(6,600) I,VA,ERV,T,N,ICON
FORMAT(1H0,4X,14,F15.06,E15.03,F8.3,218)
THETA=THETA+H

CONTINUE

STOP

END

FUNCTION F(P)

COMMON T
F=SIN(P)>/(1.0-2.0xTxCOS(P)+T*T)
RETURN

END
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Development and calculus of sine generating functions

[0} Calculus Error
w/12 0.127774 -0. 1198-07
27 /12 0. 429115 -0, 2178-07
3w /12 0. 775452 ~ -0. 3008-07
4m/12 1. 098612 -0, 274E-07
S57/12 1. 377436 -0. 1948-07
6m/12 1. 609438 -0. 190B-07

Note:.rkequired precision 107 (input) for sine series expansion,
Parameter t=1/2 (input)

Number of samples N=31 (output)

.2. Example of sine series calculation

Elliptic Integral

The calculation example of

® do
F(p,0)= f
0 »/1-sinasin0

is given below, Por simplicity, suppose a=m/4, If the integrand developed into cosine series
is integrated termwise, it becomes a sine series except the constant terms. Thus, the sum is
obtained for various ¢, The constant terms can be separately calculated and added, In the
following example, the variable ¢ is assigned as @=1/12#x, 2/12=, ..., and 6/127:,‘

c TEST FOR SUBROUTINE VSINS.
DIMENSION A(257)
EXTERNAL F
NX=6
HPI=2.0%ATAN(C1.0)
H=HPI/FLOAT(NX)
EPSA=1.0E-05
EPSR=0.0
NMIN=0
NMAX=257 _ .
CALL FCOSCS(CF,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ILL)
ACN)=A(N)*0.5
M=N-1
CONST=A(1)%0.5
DO 10 I=1,M
ACI>=ACI+1)/FLOATCI)

10 CONTINUE

T=H
DO 20 I=1,NX
CALL VSINS(CA,M,T,V,ICON)
V=V+CONST*T
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JCON=ICON+ILL

WRITE(6,600) 1I,V,N,ICON
FORMAT(1HO,4X,14,F15.06,218)
T=T+H ’
CONTINUE

STOP

END

FUNCTION F(P)
F=1.0/SQRT(1.0-0.5*SIN(P)*x*2)
RETURN ' :

END

~173

/15



/7¢

Elliptic calculus

(0] Calculus Error
w/12 0. 263297 Number of samples = 17
27 /12 0. 535623
3Im/12 0. 826018 True value
4 /12 1. 142429 1. 14242906
57/12 1. 487885
6m/12 1. 854075 1. 85407468

474 T

(1987. 05. 28) (1987, 08.11)
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8. Numerical quadrature

[Method of choosing numerical integration routines)

To meet various cases, NUMPAC includes a large number of excellent quadrature routines such as
one-dimensional and multidimensional integrations, finite and infinite interval integrations, and
fixed rule and automatic integrations, If they are carefully selected based on the following
- guides, significant effects can be achieved in both precision and speed, For simplicity, the’
name of recommended routines is represented with the one for single precision,

(A) One-dimensional definite interval

1. Well-behaved analytic function

(1) Fixed rule quadrature GASNS

(2) Automatic quadrature QDAPBS, DEFINS, and AQNN9S
2. Analytic function of oscillatory type QDAPBS
3. Function of peak type AQNNIS
4, Analytic function with singularity at end points DEFINS
9. Function with singularity and discontinuity AQNNIS
6. Function of uncertain behavior AQGNNIS
7. Integral over a whole period of periodic function : TRAPZS

(B) When f{x) is a well behaved function in the integral ](;we"f(x)dx in a one-dimensional
semi-infinite interval .
1. Fixed rule quadrature GSLNS
2. Automatic quadrature | HINFAS and HINFES 4'
(C) One-dimensional infinite interval
1. When f(x) is a well-behaved function in the form of f:e"zf(:r)dx
(1) Fixed rule quadrature GSHNS
(2) Automatic quadrature INFINS

2. When f(x) decreased rapidly in the form of F(x)dx TRAPZS

(D) Multidimensional, fixed rule quadrature

1. Function input MQPRRS
2. Data input MaNCDS
3. Higher dimension MQFSRS
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(B) Multidimensional automatic guadrature AQMDS and AQGNDS
To help raise the precision of results, pre-processing should be executed, PRor example, divide
integration intervals if necessary, or turn the upper and lower limits to numbers represented

without error such as ( or 1 by variable transformation,

De : S 4 &)
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AQCHYS/D (Automatic quadrature of Cauchy principal value integrals)

Automatic Quadrature of Cauchy Principal Value Integrals

Programm | Takemitsu Hasegawa; February 1984

ed by

Format | Subroutine language; FORTRAN Size; 319 and 322 lines respectively

(1) Outline

When integrand function f(x), lower limit a, upper limit b, and pole c are given, AQCHYS or

AQCHYD automatically calculates the approximate value

In(c)
of the Cauchy principal value integral
b gy .
I(c)=p fx(_xc)d.r , a<c<b
a

It calculates the solution with precision that satisfies

1I1(c)-In(c) | sSmax(ga e 1I(C) 1)
- where €4 is the requested absolute precision and €, is the requested relative precision,

AGCHYS is a routine for single precision and AQCHYD is one for double precision,

(2) Directions

CALL AQCHYS/D(A, B, C, FUN, EPSA, EPSR, NMIN, NMAX, JUMP, S, N, ERR, 1CON)

Argument | Type and Attribut Content
kind (1) (e |
A Real type | Input Lower limit of integral domain,
B Real type | Input Upper limit in integral domain, A<B
C Real type | Input - [ Pole C of principal value integral,
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Argument | Type and | Attribut Content
kind (x1) |e
FUN Real type | Input Given function f(x). The user should prepare a function
function subprogram f(x) having a variable x,
subprogran
EPSA Real type | Input Requested absolute error ca (EPSA) and relative error er
EPSR | (EPSR) for approximate value S of an integral,
EPSA=0, EPSR=0.
NMIN Integer Input Lower limit (NMIN) and upper limit (NMAX) of the number of
NMAX type function FUN evaluations,
NMIN is usually set to 9. NMAX is usually set to 200 to 900,
When NMAX=514, NMAX is assumed to be 514 (single
precision), When NMAX=2050, NMAX is assumed to be 2050
(double precision).  O<NMINNMAX,
JUMP Integer Input JUMP is usually set (.
type If you want to calculate for the same function f(x) with the
same value for ea but with different values for pole C, set .
JUMP to 1 when calling this routine second time and after,
Then, the values of FUN camputed and stored in the first call
are reused,
S Real type | Dutput Approximate value of integral,
N Integer Output | Total number of function FUN evaluations,
type
ERR Real type | Qutput | Estimation of absolute error of §,
ICON Integer Output | ICON=0:Normal termination, '
type ICON=10000: The accuracy of the approximate value of the

integral has reached the level of rounding error,
1CON=20000: Convergence does not occur even after the
function has been evaluated NMAX times,

ICON=30000: Parameter error,
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%1 For double precision subroutines, all real types should be changed to double precision real

types,
(3) Calculation method

To make explanation simple, the integration interval is assumed to be [-1, 1]. An integral

is transformed as follows:

1 1 _
P £ ar [ LEO gripeyincize)

In the first integrand at the right-hand side, ¢ is no longer a pole, F(x) is expanded in
Chebyshev polynomial, The order of expansion is increased more gradually than doubly until
the requested accuracy is satisfied, This is to save the number of function evaluations,

The expansion coefficients are calculated efficiently by using FFT,

(4) Example
The integral
'1 1
. = ———dx
[ 22
that has ten poles C=0,1i-0.01 (i =1, 2 ..., 10), when the values of parameter a are 1, 1/2,

and 1/4, is calculated,
-4
ca=10 and er=0,

As shown in the above example, when the integrand function contains a parameter (a in this

example), the parameter is put in the common area to communicate with the main program,

(5) Notes

1. This method should be used only when pole C is in the integration interval and |c-a] and

-16

lc-b>1077 (AQCHYS) or 107'° (AGCHYD) is satisfied,
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2. When this routine is called repeatedly for the same function f(x) with the same value for
ca but with different values for pole C, set JUMP to 1 when calling this routine second time
and after, Then, the value of'FUN used for the first time is reused repeatedly, This
enables efficient calculation and greatlﬁ saves calculation tize, (For this operation, er

should be set to 0.0.)

Bibliography

1) Tatsuo Torii and Takemitsu Hasegawa: "FFT of real function gradvally increasing sample
points”, Information Processing Soc. of J#pan. Vol, 24, No.3, pp.343-350 (1983).

2) Takemitsu Hasegawa and Tatsuo Tbrii: "Automatic quadrature of Cauchy principal value
integrals®, Kagakukenkyuhi Sogokenkyu (A) Reports of Applied Mathematic Symposium

(Representative: Nakashima and Yoneda)”, pp. 163-174 (1983).
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AQCOSS/D and AQSINS/D (Automatic Quadrature of Semi-Infinite Integral of Oscillatory

Function)

Automatic Quadrature of Semi-infinite Integral of Oscillatory Function

Programm | Toshio Yoshida, September 1982

ed by

Format | Subroutine Language: FORTRAN; Size: 164, 168, 164, and 168 lines
respectively

(1) Outline

AQCOSS/D and AQSINS/D calculate the semi-infinite integral f f(x)cos qxr dx (same as for
a

f f(x) sin qx dx) within the prescribed absolute precision & for the function f(x) that
a

attenuates with the increase of x.

(2) Directions

CALL AQC0SS/D(A, @, F, S, EPS, LF, LA, NF, NS, ¥, ILL)

CALL AQSINS/D(A, Q, F, S, BPS, LF, LA, NF, NS, W, ILL)

Argument Type and Attribut . Content
kind (x1) |e

A Real type | Input Lower limit a of definite integral,

Q Real type | Input q of integrand function, g0,
Real Name of f(x) of integrand functioﬁ, The function as an

R number Input actual argument for this name should be prepared as a
type function subprogram with only one integral variable, The
function name of f(x) should be defined as the EXTERNAL declaration
subprogram in the program that calls this subroutine,

S Real type | Dutput | The values of an definite integral is output,
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Argument Type and | Attribut Content
kind (1) e
Positive number that represents a prescribed absolute
EPS Real type fnput accuracy,
Single precision: 103~107
Double precision: 10°5~1071
These are standard values, (See 3 in "Note®)
Ry Integer Input Upper limit of total number of calculations of function
type f(x). LPF>12. The adequate value is several thousands,
Upper limit of the number of operations that f(x) requires
LA Integer Input to obtain a function g(x).
type LA>10. The adequate value is several hundreds,
NP Integer Output” | Total number of calculations of a function f(x), If NPOLF,
type control escapes from the'routine, stopping the calculation,
NS Integer Output
type Number of sampling times of an integrand function in
z/q
j;m g(x)cos qr.
W One-dimens | Work Size LA,
ional | area
array of.
real
number
type.

This argument represents a calculation state in the

routine, It is set to ( in the routine, Each time the

next state is activated, a certain value is added,
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Argument | Type and | Attribut Content
kind (x1) |e
z/q
(1) Integration of j;m g(x)cos qx dx
(a) If the length of a small subinterval becomes
extremely small, 1 is assumed,
ILL Integer Output (b) If a discontinuity is detected, 10 is assumed,

(c) If a logarithmic singular point is detected, 100
is assumed,

(d) If an algebraic singular point is detected, 1000
is assumed,

(e) If the order of an algebraic point is up to -1,
20000 is assumed,

(2) When the value of a function g(x) is to be obtained by

Buler transformation, if the number of calculations of f(x)

becomes greater than LA, 15000 is assumed,

(3) 1f NP>LF, 10000 is assumed,

(4) If limits on the input are exceeded, 30000 is assumed,
If 10000 or more is assumed, control escapes from the

routine, stopping the calcuvlation,

x] PFor double precision subroutines, all real types should be double precision real types,

(3) Calculation method

An integral value is obtained by changing the semi-infinite integral A f(x)cos qx dx to

the finite interval

a+z/q

g(x)cos qx dx, and applying to it the adaptive automatic

numerical integration method" by Ninomiya based on the Newton-Cotes 9-point rules,

However, suppose
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g(x)=), (-1)*fi=Y (-1 *f (x+kn/q)
k=0 k=0

The value of the function g(x) at a sampling point must be obtained by calculation, Then, if
the series fi decreases very slowly with the increase of k, the calculation of the series

Z(-l )kfk does not converge easily,
k=0

However, if the series is converted into a fast convergence series by Buler transformation, the
value of g(x) can be obtained with a very few number of terms, Actually, the first several terms
of the series should be added as they are, and Euler transformation should be applied to the
subsequent terms,

In this routine, the series is transformed to

© 5 @ k
Y DK=Y (1R Y (1R A TE
k=0 k=0 k=6 ok

, and the terms are summed up until | Akfk/Z'“'l | equals €g/# or less (&: required absolute

precision),

If other than this method is used, an enormous number of function calculations may be required

for this kind of integration,
(4) Bxample

This program obtains the value of

® coszx
J s ta

using AGCOSS.

c MAIN PROGRAM
DIMENSION W(100)
EXTERNAL FUN )
CALL AQC0SS(€1.0,1.0,FUN,S,1.0E-4,5000,100,NF,NS,W,ILL)
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WRITE(6,1000) S,NF,NS,ILL
1000 FORMAT(1H ,*'S=',E15.6,3X,'NF=',18,3X,"NS=",18,3X,'ILL=",
1 I5)
STOP
END
Cc FUNCTION SUBPROGRAM FOR F(X)
REAL FUNCTION FUNCX)
FUN=1.0/X
RETURN
END
In this example, the result of calculation is

S= -0.337394E+00 NF= 208 NS= 21 ILL= 0

If the value of
f" sinx
0 xdx

is obtained by using AQSINS (required absolute precision 10'4. the result of calculation is

S= 0.157078E+01 NF= 195 NS= 21 ILL= 10

The result of these examples is obtained within the required precision,

 (5) Note

1. If the lower limit a of an integral is a singular point of the integrand function, and f(x)
becomes oo at that point, an integral value can be obtained by replacing it with an adequate
finite value (0 for'example), However, it is more effective to use the adaptive automatic
numerical integration method AQNN9S/D in the interval [a, 7#/q] containing a singular point, and
this routine for the remaining interval excluding the singular point. A .

2. j:‘ z/qg(x)cosqxdx is calculated in the same manner as AQNN9S/D, For details, see the
explanation of AQNN9S/D.

3. If the prescribed absolute precision EPS is taken very small as compared with the integral
value, the calculation does not converge, EPS should be selected to be the estimatgd integral
value,

4. This routine should be used only when an integral value exists, or f(x) attenuates with the
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increase of x, This is because the result of the integration is output in the meaning of
summation of divergent series even when the integral value diverges or oscillates (f(x) =

constant, for example),

Bibliography

1) Ichizo Ninomiya; Adaptive Automatic Numerical Integration Based on Newton-Cotes 5 (7,9) Point
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AQCPACK(AQNNSC/B,QDAPBC/B,AQNDC/B,-AQGNN7C/B,HINFAC/B,AQNN9C/B,

INFINC/B,DEFINC/B,AQMDC/B) (Automatic Quadrature for Complex Valued Functions)

Automatic Quadrature for Complex Valued Functions

Programm | Ichizo Ninomiya, Takemitsu Hasegawa, and Yasuyo Hatamo, August 1982

ed by

Rormat | Subroutine Language; FORTRANT?

" (1) Outline
AGCPACK calculates the definite integrals of one, two, and three dimensions of a real variable
complex valued function using automatic Quadrature methods, The routines whose name ends with

C/B are for 4- and 8-byte complex valued functions,
(2) Directions

AGNN5C/B
CALL AGNN7C/B (A,B, P, S, EPS, LF, NF, ILL)
AQNN9C/B
CALL DEFINC/B(A, B, F, S, EPS, N, ILL)
CALL GDAPBC/B(A, B, F, S, ERR, N, ILL)
CALL HINFAC/B(F, S, EPS, N, ILL)
CALL INFINC/B(F, S, EPS, N, ILL)
CALL AQMDC/B (4, LSUB, F, EPSA, EPSR, NHIN, NMAX, S, ERR, ¥, ILL)

CALL AQNDC/B (ME, M, ARUN, BFUN, F, EPSA, EPSR, NMIN, NMAX, S, ERR, N, ILL)
The contents of an argument are the same as those of corresponding argument each subroutine
whose end character C/B is replaced with S/D, Where, C is an 8-byte complex number type, and B

is a 16-byte complex number type.

(3) Calculation method
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Bach subroutine uses the same calculation method as the corresponding subroutine of a real
version, The absolute values (ABS and DABS) are used in the convergence test of an real
- version, However, the sum of absolute values
Nx+iyi=|x| + | y]

(CABS1 and CDABS1) is used in that of a complex version,

The reason why the sum of absolute values is used instead of the absolute value of usual complex

numbers

N x+iy l 2= A/ 2P+

is that the former is much faster and inexpensive,

() Example

The following are the program for calculating the definite integral

x .
f e'*dx
0

by AQNN9B, and its output. ’

COMPLEX*16 S,FUN

REAL*8 PI

EXTERNAL FUN

PI=3.14159265358979324D0

CALL AQNN9B(O0.DO,PI,FUN,S,1.D-10,2000,NF,ILL)

WRITE(6,600) S,NF,ILL ‘
600 FORMAT(10X,2D20.10,216)

STOP

END

FUNCTION FUNCX)

COMPLEX*16 FUN

REALx*8 X
FUN=DCMPLX(DCOS(X)>,DSINCX))
RETURN

END

< Qutput result >

0.1387778781D-15 0.2000000000D+01 41 0
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(5) Note

1. A complex valued function can be calculated with its real and imaginary parts handled

separately by using a suﬁroutine for real valued functions, but it is more natural and faster to

use present subroutines,
2. It is essential to declare the integrand function and integral value as complex numbers,

(1987.07.21)(1987.08.21)(1987.0#.27)
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AQDCCS/D,AQDCOS/D
(Automatic quadrature of closed type by Clenshaw-Curtis method) (AQDCCS/D)

(Automatic quadrature of open type by Clenshaw-Curtis method) (AQDCOS/D)

Automatic Quadrature of Closed Type by Clenshaw-Curtis Method (AQDCCS/D)

Automatic Quadrature of Open Type by Clenshaw-Curtis Method (AQDBCOS/D)

Programm | Tatsuo Torii; July 1978
ed by

Format Subroutine language; FORTRAN  Size; 106, 107, 104, and 105 lines
respectively

(1) Outline

AQDCCS/D and AQGDCOS/D each automatically obtain the approximate value of integral ‘ljif(ar)(ir
of bounded function f(x) which is smooth in a finite interval (a, b) in the specified
precision, The base of this method depends on the expansion of f(x) to a Chebyshev éeries on
the interval [a,b] and on the termwise integration, Therefore, the faster the convergence of
this series, the less number of samples this integral method requires to attain the required
precision, The smoother the function, the faster the convergence of the Chebyshev series,

If an integrand function is defined on the closed interval [a,b], it is preferable to use the
c]ysed-type quadrature of which samples include both end points, If it is given in an open

interval, the open-type quadrature must be used,

(2) Directions
CALL AQDCCS/D(A, B, F, EPSA, EPSR, NMIN, NMAX, S, ERR, N, ICON)

CALL AQDCOS/D(A, B, F, EPSA, EPSR, NMIN, NMAX, S, ERR, N, 1CON)

Argument | Type and Attribut Content
kind e
A B Real type | Input A and B are lower and upper limits of the integration
interval,
F Real type | Input The user defines an integrand function as the function
Function subprogram of one variable,
subprogram
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Argument | Type and | Attribut Content
kind e )

EPSA Real type | Input Required precision, EPSA and EPSR are the limits of absolute

EPSR and relative errors, respectively (=0).
NMIN Integer Input Lower and upper limits of the number of samples,
NMAX type NMAXZ=NMIN=0

AGDCCS/D:  NMAX=1025
AGDCOS/D: NMAX=1023

S Real type | Output -|S is an approximate value of the integral to be determined,
ERR ERR is an estimated value of the absolute error,
N Integer Qutput Number of samples used to compute §.

type

ICON Integer Output | ICON = 0: Normal,
type ICON = 10000: Required precision is too severe, The

. operation result can be regarded as normal because the
maximum precision available with the computer used has been
already obtained,
ICON = 20000: Abnormal, The required precision cannot be
obtained even though the number of samples is increased to
the Timit NMAX.
ICON = 30000: Parameter error,

(3) Performance
Fast Fourier cosine transform based on the midpoint rule is used for Chebyshev series expansion
of an integrand function, When the number of samples is N, therefore, the number of real

oultiplications is about N/2logaN.

(4) Calculation method

Interval [a, b] is transformed to [-1, 1] by linear transformation, and integrand function

J(l) is expanded to a Chebyshev series which is termwise integrated,

1 1 1
[ gwar=L[ @rret)at

. 1=
-f Y aaTa(t)dt
-1k=0

capp (Q2 .04, a5 .
"02(1-3“3-5‘“5-7+ )

Errors of closed- and open-type quadratures are evaluated by ( |an-2 | + | an|)/N with N+1

sanple points and 4( | aN- | + |an-2| )/N with N-1 points, respectively,
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Where, coefficient 4 is an expedient,

A "relative error” in each quadrature is the one obtained by dividing each evaluated absolute
error by the norm of the integrand function I f(t)+f(-t) lla , where the function norm is
Nflle=max | f(x;) | , and x; is a sample point, '

The levei of rounding errors (computation or propagation errors) are evaluated by
16ull f(t)+f(-t) 1
where u is the minioum unit of machine precision,
Safety coefficient 16 is determined from experience, This completes preparation, The
convergence criteria are explained below,
‘ Given required precision values E;' (absolute error), and £ (relative error), at le;st one
of the following conditions is satisfied, it is-judged that convergence has attained:
Bvaluation value of absolute error < max { €4, computation error}
Evaluation value of rel;tiv? error S €
If neither conditions are satisfied, the number of samhles is doubled each time like 17, 33, 69.
and so on, in case of closed-type quadrature, or 15, 31, 63, and so on, in case of open-type
quadrature,
If €a=€,=0 is given, the result with the highest precision (rounding errors are predominant
over truncation errors) can be obtained,

The validity of the above convergence criteria depends on the smoothness of integrand function,
If integrand function f(t) is sufficiently smooth, error evaluation is successful with less
number of samples required (about Efs), If f(t) cannot be differentiable, however, more number
of samples are needed .and the error evaluation value tends to be too lower than the actual 6he.
Bven if f(l) is analytic on the interval [-1, 1] in the réal axis, the similar situation occurs

as the singular point approaches [-1, 1].

(5) Example

As the test, we use the following three kinds of problems whose analytic solutions are known:

—t)l Lt to1/2,8/4,15/16
W fll-ztx+t2 () 10e 2t t12oms
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@ f I-T_c:-;dz=2tan"é- a=1,1/4,1/16
-1a
1

3 f lcosaa:d:r:=-‘%-sina a=4,16,64

The following program performs the above integral calculations changing required precision €
t0 102,107,105, .-+ and prints the index (ICON) which indicates whether operations have
been done normally for calculated values, errors, error evaluation, number of samples, and

calculation,

c TEST PROBLEMS FOR SUBROUTINE AQDCCS AND AQDCOS.

c 1978.11.15
DIMENSION PARAM(3,.3)
DATA PARAM/0.5,0.75,0.9375,1.0,0.25,0.0625,4.0,16.0,64./
COMMON T.,J
EXTERNAL F
ZERO=AMACH(ZERO)
EPSA=1.0E-02
EPSR=0.0
NMIN=0
NMAX=1025
A=-1.0
B=1.0

10 WRITE(6,600) EPSA

600 FORMAT(1HO/4X,32HPERMISSIBLE ABSOLUTE ERROR BOUND,E15.3/)
DO 20 J=1.3
DO 20 I=1,3
T=PARAM(I.,J)
CALL AQDCCS(A,B,F,EPSA,EPSR,NMIN,NMAX,S,ERR,N,ICON)
TS=TRUE(T,J)
ERROR=TS-S
WRITE(6,601)4,1,T,TS,S,ERROR,ERR,N,ICON

601 FORMAT(1H,214,F8.4,2F15.06,2E13.03,218,5X,6HAQDCCS)
CALL AQDCOSCA,B,F,EPSA,EPSR,NMIN,NMAX,S,ERR,N,ICON)
ERROR=TS-S : .
WRITE(6,602) J,I1,T,TS,S,ERROR-ERR,N,ICON

602 FORMAT(1H ,214,F8.4,2F15.06,2E13.03,218,5X,6HAQDCOS/)

20 CONTINUE

EPSA=EPSA*1.0E-02
IFCEPSA.GT.ZERO0YGO TO 10
STOP
END

FUNCTION F(P)
COMMON T.J
GO0 TO (1,2,3)>.,J
1 F=(1.0-T*T)/(1.0-2.0*TxP+T*T)
RETURN
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2 F=T/(T*T+P*P)
RETURN

3 F=COS(T*P)
RETURN
END

FUNCTION TRUE(P.,J)
GO TO0 (1,2,3),J
1 TRUE=(C1.0/P-P)*ALOG((1.0+P)/(1.0-P))

RETURN
2 TRUE=2.0%xATANC(C1.0/P)
RETURN
3 TRUE=2.0%SIN(P)/P
RETURN
END
Calculation result under required precision 107°
Calculated Error Number Normal or
Problem | Parameter | Kind integral Error evaluation of Abnormal
value samples
t=1/4 AQDCCS 1.647918| 0.0 0. 781E-06 33 0
AQBCoS 1.647918| 0.0 0. 781E-06 31 0
n t=3/4 Aapcecs 1.135114 [ 0, 596B-07 0. 166E-05 65 10000
AQDCoS 1.135114 | 0. 298B-07 0. 166E-05 63 10000
t=15/16 | AQDCCS 0. 443557 | 0. 104E-06 0. T14E-05 257 10000
AQGDCOS 0. 443548 | 0. 858E-05 0. 647E-05 127 10000
a=] AQGDCCS 1. 570796 { -0. 298E-07 0 531E-06 17 0
AGBCOS 1. 570796 { -0. 298E-07 0. 472E-06 )| 0
2 a=1/4 AQDCCS 2.651635 | 0. 596E-07 0. 184E-05 65 10000
AQDCOS 2.651635 | 0. 1198-06 0. 184E-05 63 10000
a=1/16 | AQBCCS 3.016755 | 0, 1798-06 0. 735B-05 257 10000
AQBCOS 3.016755 | 0.238E-06 0. 735E-05 255 10000
a= AQDCCS -0.378401| 0.0 0. 469E-06 17 0
) AQDCOS -0.378401( 0.0 0. 476E-06 31 0
3 a=16 ‘| AQDCCS -0. 035988 | -0. 484E-07 0. 477E-06 33 0
AQDCOS -0. 035988 | -0, 829E-07 0. 477E-06 63 0
a=64 AQBCCS 0. 028751 | -0. 424E-07 0. 477E-06 129 0
AQBCOoS 0.028751 | 0. 405B-07 0. 477E-07 127 0

(1987. 05. 21) (1987. 08. 03)
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AQIOSC/B (Automatic quadrature of oscillatory infinite integral of complex-valued function)

Automatic Quadrature of Oscillatory Infinite Integral of Complex-Valued Function

Progranmed Takemitsu Hasegawa; February 1986

Format Subroutine language; FORTRAN Size; 698 and 704 lines

respectively

(1) Outline

When a complex-valued function f(x) is given, AQIDSC or AQIOSB calculates the approximate value

of the oscillatory infinite integral

I= f uf(x)e""‘dx, az0

with requested absolute error €4.

~

AQIOSC is a routine for single precision and AQIDSB is one for double precision,

(2) Directions

CALL AQIOSC/B (A, OMEGA, FUN, EPSA, NMIN, NMAX, SC, NFUN, ERR, 1CON)

Argument Type and Attr Content

kind (x1) | ibut

e
A Real type | Inpu | Lower limit of integral domain, A=(
. _
CHEGA Real type | Inpu | Frequency @, 2m|ew|>1. E-T (single precision) and

t 2r|w|>1. E-15 (double precision)., w>(
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FUN Complex Inpu | Given function f(x), For the function as an actual
type t argument of this function, the user should prepare a
function function subprogram having a variable x,
subprogram

EPSA Real type | Inpu | Requested absolute error ca for approximate value SC

t or SS of an integral,

EPSA>0
NMIN " | Integer Inpu | Lower limit (NMIN) and upper limit (NMAX) of the number
NHAX type t of function FUN evaluations, NMIN is usually set to

9. NMAX is usually set to 200 to 900, Khen NMAX=513,
NMAX is assumed to be 513 (single precision),
When NMAX=2049, NMAX is assumed to be 2049 (double

precision), (<NMINCNMAX,

SC Real type | Outp App;oximate value of integral I.
ut
NFUN Integer Qutp | Total number of function FUN evaluations,
type ut
ERR Real type | Outp | Bstimation of absolute error of SC
| ut
ICON Integer Outp iCON=0; Normal termination,
type ut | ICON=1000, 10000, or 11000; The accuracy of the

approximate value of an integral has reached the level
of rounding error,

ICON=2000, 12000, 21000, or 22000; No approximate
value satisfied the requested accuraéy (EPSA) even
after NMAX function evaluations are used,

1CON=30000; Parameter error,

*] For double precision subroutines, all real types should be changed to double precision real

types, All complex types should be changed to double precision complex types.
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(3) Calculation method

Integral

I- f " f(x)eidr=3 Sn

n=0

is represented as

Se= [ F(x)edx

Tn-1

, where a<xp<x{<x2<-++ is the root of sinwx=0,

(a) Set {Sn} of tﬁe a.pproximate value of each Sn is efficiently calculated by using Chebyshev
polynomial expansion of f(x). |
(b) Alternating series with slow convergence,

Y S

n=0
, 1s subjected to the Sidi acceleration method, a generalized Richardson extrapolation, to
-improve the convergence,

By combining these two methods (a) and (b), the approximate value of an integral can be obtained

efficiently.

(4) Example

When w=], 11, 21, -, 91 for the values of the parameter a being 1, 4, T.
I= fo e (10+1) e dr

is calculated, e a=10-4.

c EXAMPLE FOR AQIOSC

c FEBRUARY 15,1986
IMPLICIT COMPLEXx*8(C)
COMMON ALPHA
EXTERNAL CFUN
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A=0.EO
EPSA=1.E-4
NMIN=9
NMAX=400
WRITE(6,1000)
1000 FORMAT(1HO,'TEST '///1H ,'ALPHA OMEGA'., 8X,'REAL'.,
* 9X,"IMAGINARY',6X,"N',5X,"ERR ICON®)
DO 20 IALPHA=1,7.,3
ALPHA=FLOAT(C(IALPHA)
WRITE(6,1010)
1010 FORMAT(1H )
DO 10 IOMEGA=1,100,10
OMEGA=FLOAT(IOMEGA)
CALL AQIOSCCA,OMEGA,CFUN,EPSA,NMIN,NMAX,CSS,NFUN.,
*ERR,ICON)
WRITE(6,1020) ALPHA,OMEGA,CSS,NFUN,ERR,ICON
1020 FORMAT(1H ,F5.2,F6.2,2E16.7,15,E10.2,17)
10 CONTINUE
20 CONTINUE
STOP
END

FUNCTION CFUN(XD
IMPLICIT COMPLEX=*8(C)
COMMON ALPHA
CFUN=EXP(-ALPHAxX)x(10.E0,1.E0)
RETURN .
END
As shown in the above example, when the integrand function contains a parameter (a« in this
exanple), the parameter is put in the common area to communicate with the main program,
(5) Note
1. When there is a point x=p (or a sharp peak point) that the function f(x) is singular or near
singular in the integration interval [a, o), this method should be used for integrals in the

interval [p+d, o) (&>0) beyond this point, Por integrals in the [a, a+d&] interval, however,

another method should be used,

Bibliography
1) Takemitsu Hasegawa and Tatsuo Torii; "Oscillatory semi-infinite integral based on Chebyshev
series expansion”, Preprints of Working Group for Numerical Analysis, IPSJ 10-3 (1984).

(1987. 08. 05)
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AQIOSS/D (Automatic quadrature of oscillatory infinite integral)

Automatic Quadrature of Oscillatory Infinite Integral

Programmed Takemitsu Hasegawa; February 1985

by

Format Subroutine language; FORTRAN Size; 663 and 677 lines

respectively

(1) Outline

When a constant-sign function f(x) is given, AQI0SS or AQIOSD calculates the approximate value
of the oscillatory infinite integral

Ic= f f(x)coswxdx, I= f f(x)sinwxdx, az0
[+ ] a

with requested absolute error €gq4.

AQIOSS is a routine for single precision and AQIOSD is one for double precision,

(2) Directions

CALL AQIOSS/D(A, OMEGA, FUN, KEY, EPSA, NMIN, NMAX, SC, SS, NFUN, ERR, 1CON)

Argument Type and Attr Content

kind (x1) | ibut

e
A Real type | Inpu | Lower limit of integral domain, A=(
t
OMEGA Real type | Inpu{ Prequency w, 27 |w]|>L E-T (single precision) and

t 27 |w|>1. E-15 (double precision)

FUN Real type | Inpu | Given function f(x). For the function as an actual
function t argument of this function, the user should prepare a
subprogram function subprogram having a variable x,

199
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KEY Integer Inpu KEY should be set to 0, 1, or 2 for obtaining the
type t cosine integral Ic, the sine integral Is, or both,

respectively. 0=KBY=2

EPSA Real type { Inpu | Requested absolute error €a for approximate integral
t SC or-SS,
EPSA>0
NMIN Integer Inpu | Lower limit (NMIN) and upper limit (NMAX) of the number
NMAX type - t of function FUN evaluations, NMIN is usually set to

9. NMAX is usually set to 200 to 900, When NMAX=513,
NMAX is assumed to be 513 (single precision),
When NMAX=2049, NMAX is assumed to be 2049 (double

precision). (O<NMINCNMAX,

SC Real type | Outp | Approximate value (SC) of cosine integral Ic and
S ut | approximate value (SS) of sine integral Is,
NFUN Integer Outp | Total number of function FUN evaluations,
type ut
ERR Real type | Outp | Estimated value of absolute error for SC and SS.
ut .
ICON Integer Outp | ICON=0; Normal termination,
type ut ICON=1000.-10000. or 11000; The accuracy of the

approximate value of an integral has reached the level
of rounding error,

ICON=2000, 12000, 21000, or 2200C; No approximate
value satisfied requested precision (EPSA) even after
the number of function evaluations réached NMAX,

1CON=30000; Parameter error,

%] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Calculation methed
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1= ["1(2) cos wxdz=3 Sn
a n=0

cosine integral is represented as follows:

n

Sp= i f(x)coswxdx, So= f Jrof (x)coswxdx,
1 a

Zn-

where a<xg<xj<x2<e-+ is the root of coswx=(,

(a) Set {Sn} of the approximate value of each Sn is efficiently calculated by using Chebyshev
polynomial expansion of f(x).

(b) Alternating series with slow converence,

pILA
n=0

, is subjected to the Sidi acceleration methed, a generalized Richardson extrapolation, to
improve the convergence,

By combining these two methods (a) and (b), the approximate value of an integral can be obtained
efficiently,

Sine integral Is is calculated in the same way,

(4) Example

When w=]1, 3, 5, 7, 9 for the value of parameter « being 1, 2, 3,
If= j; e ** cos wxdx, I*= j; e “sinwxdx

is calculated, ea=10’4.

c EXAMPLE FOR AQIOSS
COMMON ALPHA
EXTERNAL FUN
A=0.DO
EPSA=1.E-4
KEY=2
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NMIN=9
NMAX=200
WRITE(6,1)
1 FORMAT(1HO,'TEST FOR AQIOSS*///1H ,'ALPHA OMEGA',7X.,
*"COSINE*,9X,*"SINE*,8X,"'N',7X,"ERR ICON")
DO 10 IALPHA=1.,3
ALPHA=FLOAT(IALPHA)
WRITE(6,2)
2 FORMAT(1H >
DO 20 IOMEGA=1,9.2
OMEGA=FLOAT(IOMEGA>
CALL AQIOSS(A,OMEGA,FUN,KEY,EPSA,NMIN,NMAX.,
*SC,SS,N,FUN,ERR-ICON) ..
WRITE(6,3) ALPHA,OMEGA,SC,SS,N,FUN,ERR,ICON
3 FORMAT(1H ,F5.2,F6.2,2E15.7,15,E10.2,17)
20 CONTINUE-
10 CONTINUE
STOP
END

FUNCTION FUNCX)
COMMON ALPHA
FUN=EXP(-ALPHAx*X)
RETURN

END

As shown in the above example, when the integrand function contains a parameter (a in this

example), the parameter is put in the common area to communicate with the main progranm,

(5) Notes

1. When there is a point x=p (or a sharp peak point), at which the function f(x) is singular or
near singular in thé integration interval [a, oo), this method should be used for integrals in
the interval [p+d, o) (J>0) beyond this poinL For integrals in the [a, a+d] interval,
however, another method should be used,

2. When both cosine integral Ic and sine integral Is are needed for the same function f(x),
calculatiop of the function f(x) can be used commonly, This method thus has an advantage that
both approximate values can be obtained by the time needed for function calculation of eifher Ic

or Is,

Bibliography
1) Takemitsu Hasegawa and Tatsuo Torii; "Oscillatory semi-infinite integral based on Chebyshev
series expansion®, Preprints of Working Group for Numerical Analysis, IPSJ 10-3 (1984).

(1987. 08. 05)
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AQMDS/D (Automatic multiple integration based on the interpolatory type quadrature

increasing the sample points with arithmetical progression)

Automatic Multiple Integration Based on the Interpolatory Type Quadrature Increasing the Sample

Points with Arithmetical Progression

Programm | Takemitsu Hasegawa: April 1980
ed by .

Format Subroutine language; FORTRAN Size; 562 and 563 respectively

(1) Outline

AGMDS and AQMDD are automatic integration routines that calculate multiple integration

in a curved boundary region to obtain approximate value S with precision satisfying

| S-I| smax(ea,erl11)
. where €5 is an absolute error and €, is a relative error.

It uses a product formula that repeatedly applies an interpolatory type quadrature increasing
sample points with arithmetical progression in each coordinate axial direction, (For the
interpolatory type quadrature, this routine uses an open formula which does not use both ends of
an integration interval as sample points, QDAPBS/D uses a closed formula, AGMDS/D uses an open
formula to handle functions which are near singular at the ends of the integration interval, as
well as smooth functions, The product formula is effective for smooth or oscillatory-type

functions, in paticular,

(2) Directions

CALL AQMDS/D (M, LSUB, FUN, EPSA, EPSR, NMIN, NMAX, S, ERR, N, 1CON)

Argument | Type and | Attr Content
kind (1) | ibut
e
| Integer Inpu | Multiplicity of integral calculus, 1=M<3
type t
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Argument | Type and Attr Content
kind (%1) | ibut
e
LSUB Subroutine | Inpu | Name of the subroutine subprogram that calculates upper and lower
t limits of integration,. Number k
sﬁbprogram in the direction of coordinate axis Xk, on which integration is
being done, is put into the first argument (K)., The second
argument (X) is the name of an one-dimensional array having M
elements, Values of X1 and X2 enters X(I) and X(2). The
lower limit of integration is put into the third argument (A),
and the upper limit is put into the fourth argument (B). This
subprogram must be declared in the EXTERNAL statement in the main
progranm,

FUN Real type | Inpu | Name of an integrand, This function needs to have only one
Function t one-dimensional array having M elements as an actual argument
subprogran (X) . Value of X is put into X (i

). (1=<1 =M). This function subprogram must be declared in the
EXTERNAL statement in the main program,

EPSA Real type | Inpu | Requested absolute error €5 (BPSA) and relative error €, (EPSR)

EPSR t for approximate value S of an integral, EPSA=(, EPSR=0,

NMIN Integer Inpu | Lower limit (NMIN) and upper limit (NMAX) of the number of times

NMAX type t the integrand function FUN is to be evaluated for an integral in

the direction of each coordinate axis, NMIN=T and NMAX=100 (in
case of AGMDS) or NMAX=511 (in case of AGMDD) are suitable, When
NMAX=511 is specified, NMAX=511 is assumed,
S Real type | Outp | Approximate value of an integral.
ut
ERR Real type | Outp | Estimation of the absolute error of S,
ut

N Integer Qutp | Total number of evaluations of the integrand function FUN,
type ut : :

1CON Integer Outp | ICON=0: Normal termination, ICON=30000: Parameter error,
type ut If integration in the direction of each coordinate axis does not

. converge even if NMAX function evaluations are used, ICON is set
as follows: ICON=200 when the coordinate axis is x3, ICON=2000
when the coordinate axis is a2, ICON=20000 when the coordinates
axis is xy. If requested accuracy is too high and, as the
result of integration in the direction of a certain coordinate
axis, the accuracy of the approximate value of the integral has
reached the level of the rounding error of the computer, ICON is -
set as follows: ICON=100 when the coordinate axis is X3,
ICON=1000 when the coordinate axis is X2, ICON=10000 when the
coordinate axis is xy. If two or more such events occur
simultaneously, ICON is set to the sum of the respective values,

2] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Example
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The program helow.calculates the following triple integral with the value of parameter p

allowed varied:

1 2 3
1
[1dx'£zdx2j:3dx3 A8(4-cospx|—-Ccospx2-COSPI3)

c EXAMPLE ...AQMDS...
EXTERNAL FUN,LSUB
COMMON P
EPSA=1.0E-4
EPSR=0.0
NMIN=7
NMAX=100
M=3
DO 10 IP=1,10
P=FLOAT(IP)>*0.5
CALL AQMDS(M,LSUB,FUN,EPSA,EPSR,NMIN,NMAX,S,ERR,N,ICON)
10 WRITE(6,100) P,S,ERR,N,ICON
100 FORMAT(iH ,'P=',F4.1,5X,'S=',E15.7,5X,"ERR="',E10.2,5X,
*'N=',17,5X,"ICON=",15)
STOP
END

FUNCTION FUNCX)

DIMENSION X(3)

COMMON P
FUN=1.0/(C4.0-COS(PxX(1))-COS(PxX(2))-COS(P*X(3)))/48.0
RETURN :

END

SUBROUTINE LSUB(K,-X-A,B)
DIMENSION X(3)
GO 70 (1,.2,3),K
1 A=-1.0
B=1.0
RETURN
2 A=-2.0
B=2.0
RETURN
3 A=-3.0
B=3.0
RETURN
END

As shown in this example, if the integrand function contains a parameter (p in this example),

it is put in a common region to communicate with the main program,
(4) Performance

With EPSA=1. 0D-7, we tested the following three triple integrals using double precision

subroutine AGMDD, The results are as follows,
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1 1

A fff _—'dxldIZd'rsy p=1"—’_

'3"”2”’ o2 {18

_—‘_—dxdxzdx3’ P==Fy5 %

ff ig] 1-2pri+pF 4’2’4

Cc fff cospx;dxidradxs, p=8,16,32

where region D is [-1,1]3,

Proble A B C

p 1 172 174 74 | 172 3/4 8 16 32

Number | 12, 167 | 59, 487 | 350, 847 | 11,215 [ 29,791 | 223,543 | 29,663 | 65,151 | 272, 199
of
sample
s

The three values for parameter P in each problen correspond, from left to right, to

(integration is) "easy, ” “rather difficult,” and "difficult®,

(5) Notes

1. When this routine is called several times, it calculates weight of a one-dimensional
integral and sample points only when it is called for the first time, So, it can save time a
little in calculation when it is called second and subsequent time,

2. If ICON is other than (0 and 30000, the integration results do not satisfy requested
precision, but the absolute error can be estimated from argument BRR

3. If ICON is 200, 2000, or 20000, requested accuracy may be satisfied by increasing the NMAX
value, |

4. Multiple integration generally uses many sample points, resulting in remarkable accumulation
of rounding errors, Generally speaking, therefore, AGMDD can be used when EPSA and BPSR are less
than 0.5B-4 If satisfactory precision cannot be obtained with AGMDS when NMAX=60, use of AQMDD

may improve precision,

Bibliography
1) Tatsuo Torii, Takemitsu Hasegawa, and Ichizo Ninomiya; "Interpolatory automatic integration

increasing sample points with arithmetical progression® Information processing, Vol. 19, No, 3,

and pp. 248-255 (1978).
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Japan, pp. 951 (1980).

3) Ichizo Ninomiya; "Newly registered numerical analysis software”, Nagoya University Computer
Center News, Vol 10, No.3, pp.278-308 (1979).

4) Takemitsu Hasegawa; "Automatic multiple integration based on interpolatory type quadrature
increasing sample points with arithmetical progression”, Nagoya University Computer Center News,
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AQNDS/D, AQ3DS/D, AQ2DS/D., and AQ1DS/D (Automatic multiple quadrature)

Automatic Multiple Quadrature

Programm | Ichizo Ninomiya, Takemitsu Hasegawa, and Yasuyo Hatano: March 1979
ed by .

Format | Subroutine language; FORTRAN Size; 622 and 623 lines respectively

(1) Outline

Suppose we calculate multiple integrals:

uy U
1=fh dxl---j:ndxn-f(xl'"xn) )
, where
u=a,uz=u2(x1) ,u3=u3(x1,x2) * - ¢9)

Li=b, l2=l2(x1) , I3=13(x1,%2) - - -
Now, €a,Ey, which are the upper limits of absolute and relative errors for approximate value S
of inteéral I, are given to calculate S satisfying

|s-I| smax(ea, el 11) (3)

We use a product formula by which various automatic integration metheds for one variable are
repeatedly used in éach dimensional direction, The following six types of automatic formulas are
available for one variable, They can be used in arbitrary combinations,

(1) Adaptive Newton-Cotes 9-point rule,

(2) Clenshaw-Curtis integration—Formula that adds data points in a geometri¢ progression (common
ratio ~/2),

(3) Double exponential function type integration formula,

(4) Double exponential function type integration formula (semi-infinite inierval),

(5) Double exponential function type integration formula (infinite interval).

(2) Directions
CALL AGNDS/D (ME, M, AFUN, BFUN, FUN, EPSA, EPSR, NMIN, NMAX, S, ERR, N, 1CON)
CALL AQ3DS/D{(ME, AFUN, BFUN, FUN, EPSA, EPSR, NMIN, NMAY, S, ERR, N, ICON)
CALL AQ2DS/D (ME, AFUN, BFUN, FUN, EPSA, EPSR, NMIN, NMAX, S, ERR, N, 1CON)

CALL AQ1DS/D(ME, AFUN, BFUN, FUN, EPSA, EPSR, NMIN, NHAX, S, ERR, N, 1CON)
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Argument | Type and Content

kind (1) | ibut
e

ME Integer Inpu | One-dimensional array with M number of elements, The integration
type t formula to be used for each dimensional direction is specified by
One-dimens the number,
ional 1<SHES).
array When ME=1, the adaptive Newton-Cotes 9-point rule is used,

When ME=2, the Clenshaw and Curtis formula is used,

When MB=3, the double exponential function formula (finite
interval) is used,

When ME=4, the double exponential function formula
(semi-infinite interval) is used,

When MB=5, the double exponential function formula (infinite
interval) is used,

M Integer Inpu | Multiplicity of integration, M=1 is assumed for AQIDS/D, M=2 is
type t assumed for AQ2DS/D, and M=3 is assumed for and AQ3DS/D. 1sSM<3

AFUN Real type | Inpu | Name of a function subprogram for calculating the lower limit

BFUN Function t (AFUN) and upper limit (BRUN) of a definite integral., Bach has
subprogram two arguments, The first argument (X) is the name of a

one-dimensional array having M number of elements, The value of
x1 is set in X(1), the value of x2 is set in X(2), and the
value of x3 is set in X(3). The second argument (K) contains
the number of the dimensional direction in which calculation is
being performed, When the region of the definite integral is
defined by the function of an integration variable, the values of
these arguments are called to define the values of ARUN and BFUN,
Both arguments need to be declared in the EXTERNAL statement in
the calling program,

FUN Real type | Inpu | Name of a function subprogram that calculates integrand function
Function t f. It must be a function of only one one-dimensional array
subprogram having M number of elements,

This argument needs to be declared in the EXTERNAL statement in
the calling program,

EPSA Real type | Inpu| Upper limit €5 of absolute error and upper limit €, of

EPSR t relative error of approximate

| value S of an integral. €q,&,20
NMIN Integer Inpul Lower and upper limits of the
NMAX type t number of evaluations of f in each dimensional direction,
NMIN=10 and NMAX=100 are suitable, However, if the value
conflicts with those specific to the component routine for each
integration formula, it is automatically replaced with a standard
value,
S Real type | Outp | Approximate value of integral,
ut

ERR Real type | Outp | Estimated absolute error of S,

ut

N Integer Outp { Number of actual evaluations of f,
type ut
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Argument | Type and | Attr | Content
. kind (1) | ibut

e
1CON Integer Outp | Condition code, The termination state of integration for X is
type ut indicated at the place of 10,000, that for x2 at the 100, and

that for x3 at the place of 1. Bach time one of the following
events occurs, the number given to it is added to each place,

(1) Normal termination: 0

(2) Integration does not converge even when NMAX is exceeded: 2

(3) The event in (2) exceeds the number of times obtained by
NMAX/10: 20 -

(4) An error other than (2) and (3) occurs: 1

(5) The event in (4) exceeds the number of times obtained by
NMAX/10: 10 .
For the above events, S and ERR indicate an approximate value and
estimated value of an error respectively, If N exceeds
MAX=min (NMAX=xM, 1000000), 5000 is added to the above-mentioned
value, [CON=30000 indicates a parameter error,

x] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Example
The program shown below uses the Clenshaw-Curtis formula for X1, and double exponential

function type formula for x2 for the following definite integral:

fldxlfl-zl dx2
0 0 Vxl+a2

C xxx EXAMPLE (AQ2DS) xx*x
EXTERNAL FUN,AFUN,BFUN
DIMENSION ME(2
ME(1)=2 :
ME(2)=3
CALL AQ2DSC(ME,AFUN,BFUN,FUN,1.E-3,1.E-3,10,100,S,ERR/N,
*xICON>
WRITE(6,610) S,ERR,ICON :
610 FORMAT(1H ,'S =',F13.5,' ERR =',E10.2,' ICON =',16)
STOP
END

FUNCTION AFUN(X,K)
AFUN=0.0

RETURN

END

FUNCTION BFUNCX,K) "'
DIMENSION X(2)

BFUN=1.0 )
IF(K.EQ.2) BFUN=BFUN-X(1)
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RETURN
END
C
FUNCTION FUNCX)
DIMENSION X(2)
Y=ABS(X(1)+X(2))
IF(Y.LT.1.E-70) GO TO 2
FUN=1.0/SQRT(Y)
1 RETURN
2 FUN=0.0
GO TO 1
END
(4) Note

Read paper in bibliography n.2) for details of an automatic integration formula for one
variable and the corresponding component subroutine, For selection of integration formulas, read

paper in bibliography n.4)
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AQNN5S/D,AQNN7S/D,AQNN9S/D/Q

(Adaptive quadrature based on Newton-Cotes 5(7,9) point rule)

Adaptive Quadrature Based on Newton-Cotes 5(7,9) Point Rule

Programm | Ichizo Ninomiya February.>1978
ed

' Format | Subroutine Language; FORTRAN Size; 93, 94, ard 99, 100. 103, 104 lines

(1) Outline

Given integrand f(x), lower limit a, upper limit b, and requested accuracy €, the definite
integral j; b,f (x)dx is evaluated with the absolute error tolerance e by using the adaptive
quadrature, Adaptive quadrature is a very effective method adjusting the density of the sample
points according to the behavior of the integrand, This routine is based on the Newton-Cotes
5(7,9) point rule, A lot of new.modifications (the error estimation, distribution of error to
local subinterval, detecting and treatment of discontinuities and singularities etc,) are added,
and it has higher reliability and requires the smaller number of samples compared with the

existing methods, 2

(2) Directions
CALL AQNNSS/D(A, B, FUNC, S, EPS, LF, NF, ILL)
CALL AQNN7S/D(A, B, FUNC, S, EPS, LF, NF, ILL)

CALL AQNN9S/D/Q(A, B, FUNC, S, EPS, LF, NF, ILL)

Argument | Type and Attribut . Content
Kind = e

A Real type | Input Lower limit of definite integral,

B Real type | Input Upper limit of definite integral, A<B is required,

FUNC Real type { Input Name of integrand, The user should prepare the function as
Function . the actual argument corresponding to this argument as a
subprogram [ function subprogram with the integration variable as the only

one argument,
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Argument | Type and | Attribut Content :
Kind = e
S Real type | Output [ The value of definite integral is output,
EPS Real type | Input Positive number representing requested precision,
For single precision 10"3«;10'6 is reasonable, and for
double precision 10'5~10"5.
LF Integer Input Upper bound of sample frequency of functions, LF>12.
type Several thousands are suitable,
NF Integer Output | Sample frequency of functions. The calculation is
type interrupted, and the control escapes from the routine when
NF>LF,
ILL Integer Output | The situation of the calculation in the routine is output,
type It is set to O first in the routine, and is increased by

adding constants discribed below each time one of the
following cases occurs,

(1) When length of small subinterval becomes extremely
small : 1

(2) When a discontinuity is detected : 10

(3) When a logarithmic singularity is detected : 100.

(4) When an algebraic singularity is detected : 1000,

(5) When NF>LF : 10000

(6) When the order of algebraic singularity is -1 or less :

20000
(7) When the input limitation is vio]ated : 30000

When (5), (6). or (7) occurs, the calculation is interrupted,

% All real types should be changed to be double (quadruple) precision real number types in the

case of double (quadruple) precision subroutine,
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(3) Performance

Integrand is classified into the following five types according to the characteristic of its
behavior,

(1) Smooth type : The function is smooth, and the change is slow,

(2) Peak type : There are steep peaks and valleys,

3) Oscillatory.: There is a violent vibration with short wave length,

(4) Discontinuous type : There is a discontinuous point in the value of function or the
derivative,

(5) Singular type : There are logarithmic singularities or algebraic singularities,

This routine is strong for the peak type as well as the smooth type because of the lecality of
its algorithn, Bven the integrands of the discontinuous type or the singular type can be handled
effectively by this routine, when abnormal points are located at easily detectable places such as
the ends or the middle point of integration interval, Hoever, this routine is comparatively weak
for oscillatory type integrands, Though the evaluation frequency of integrand may increase,
sometimes this routine is robust because it always gives an appropriate integral value,

Out of three routines, 9-point rule is recommended because of its high reliability. The
following table shows the result of experiment of 21 test problems D of Kahaner, where
reliability is the percentage of the cases where calculated value of definite integral actually

satisfies requested accuracy,

Requested 1073 10 107
accuracy ‘ '
Routine name Reliabil | Average Reliabil [ Average Reliabil | Average
ity (%) | Number of | ity (¥) | Number of | ity (%) | Number of
samples samples samples
AGNNSD 95 61 90 106 | 90 346
@QNN?D 86 51 90 105 86 231
AQGNNID 95 82 95 123 90 234
ONCT= 86 19 86 201 81 437
QUADx= 95 149 90 269 86 465

% QNC7 is a subroutine based on 7T-point method by Kahaner,

xx QUAD is a subroutine based on 10-point method by Kahaner,
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(4) Examples
The following shows a part of a program to calculate the value of definite integral

1
j; (x™@+1+sinx)dx with AGNNIS changing values of a from 0,1 to 0.9 in stepsize of 0,1

c MAIN PROGRAM
COMMON A
EXTERNAL FUN
DO 10 I=1.,9
A=FLOAT(I>*0.1
CALL AQNN9S(0.0,1.0,FUN,S,1.E-4,5000,NF,IND)
10 CONTINUE
STOP
END
c FUNCTION SUBPROGRAM FOR INTEGRAND
FUNCTION FUNC(X)
COMMON A
FUN=1.+SINCX)
IF(X.GT.0.) FUN=X*x(-A)+FUN
RETURN
END
The auxiliary variable in integrand program (A in this example) is allocated in the COMMON
region to make communication between main program and integrand subprogram, When the function
value becomes infinity in the singular point, it is necessary to replace it with a suitable finit

value (0 for instance) to use this routine,

(5) Note

1. If necessary, it is desirable to normalize ihe length of the integration interval and the
apsolute value of the integral value to the order of unity with suitable variable conversion,
The name of integrand subprogram must be declared in EXTERNAL statement in the main program,

2. To improve accuracy, it is recommended to formulate the problem so that abnormal points
shoulq be situated at ends of the integration interval and, if possible, at origin of the
integral variable, Refer to the explanation of the example,

3. As described in the directions of the variable ILL, the obtained integral value is not
always invalid even if ILL#0 (except ILL=10000) in this routine, For instance, the integral
value is correct though ILL=1000 when algebraic singularity is detected and handled correctly,
If the obtained integral value is not sure, it is recommended to use two routines to compare

their results,
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AQOSCS/D (Finite Fourier Integral)

Finite Fourier Integral

Programmed Takemitsu Hasegawa, March 1983

by

Format Subroutine Language: FORTRAN; Size: 874 and 878 lines

respectively

(1) Outline
AQDSCS/D obtains the value of the finite Fourier integrals

b b
Ic=f f(x)cos(Crwx)dx , . Is=f F(x)sin(Crox)dx

for a given function f(x) at the precision of the convergence criterion ¢,

AGDSCS(D) is for single (double) precision,
(2) Directions

CALL AGOSCS/D(A, B, OMBGA, FUN, KBY, EPSA, EPSR, NMIN, NMAX, SC, SS, N, ERR, 1CON)

Argument Type and Attr Content
kind ibut
(s1). e
A Real type | Inpu | Lower limit of integral domain,
t
B Real type | Inpu [ Upper limit of integral domain, A<B
t
OMEGA Real type | Inpu | Frequency o.
t
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FUN Function Inpu | Given function f(x). A function as an actual argument
subprogran | t for this functien should be prepared as a
of real single-variable function subprogram with integration
number variables only,
type,
KEY Integer Inpu | If KBY=0, only Ic is calculated, If KBY=1, only Is is
type t calculated, If KEBY=2, Ic and Is are calculated at the
same time, (SKEY=2
EPSA Real type | Inpu | Prescribed absolute error ca (EPSA) ard relative error
EPSR t er (EPSR) for approximate integration values SC and
SS. EPSA=0. . |
NMIN Integer Inpu | Lower and upper limits (MMIN and NMAX) of the number of
NMAX type t evaluations of the function FUN. The adequate values
are NMIN = § and NMAX = several hundreds, If NMAX=513
is specified, we set NMAX=513 (single précision),
If NMAX=2049 is specified, we set NMAX=2049 (double
precision). (<NMINCNMAX,
sC Real type | Qutp SC is the approximate value of Ic, SS is the
SS ut | approximate value of Is,
IN Integer Outp | Total number of evaluations of the function FUN,
type ut
ERR Real type | Outp | Estimated absolute value for SC and SS.
ut
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ICON Integer Outp | ICON=0: Normal termination,

type ut If 1CON=9999; (b-a) | |<0. 01, usual integration methed
is used, The result is correct,

ICON=10000: When the accuracy of the approximate value
of integration reaches the level of a r;unding error,
1CON=20000: When the integration does not converge even
if the number of evaluations of a function reaches
NMAX,

1CON=30000: Parameter error,

x] For double prepision subroutines, all real types should be set double precision

real types,

(3) Calculation method

The function f(x) is expanded in the Chebyshev polynomial and termwisely integrated, (1) The
nusber of expansion terms is more slowly increased than doubling until the required precision €
is satisfied. (2) Bxpansion coefficients are calculated by using the fast Fourier trahsform.
(3) The value of terowise integration is stably and efficiently calculated by using the 3-term
recurrence formula stably and efficiently, These three features enable efficient automatic

integration,
(4) Example
1 ' 1
j; exp(ax)cos(2rwx)dx , j(; exp(ax)sin(2rwx)dx

are calculated on the assumption that w = 8, 32, 128 while the values of parameter a are 4 and

8.

Assume that er=ea=1 E-3.
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c EXAMPLE FOR AQOSCS
COMMON ALPHA"
EXTERNAL FUN
A=0.0
B=1.0
KEY=2
EPSA=1.E-3
EPSR=EPSA
NMIN=9
NMAX=100
ALPHA=2.0
WRITE(6,1) .
1 FORMAT(1HO,*'TEST FOR AQOSCS'//1H ,'ALPHA OMEGA',13X.,
*'COS',13X,°SIN',4X,*'N",7X,"ERR ICON")
DO 10 I=1.,2
ALPHA=ALPHA+ALPHA
DO 20 J=1,.3
OMEGA=8.0%4.0x%x(J-1)
CALL AQOSCS(A,B,OMEGA,FUN,KEY,EPSA,EPSR,NMIN,NMAX.,
*SC,SS,N,ERR,ICON)
WRITE(6,2) ALPHA,OMEGA,SC,SS,N,ERR,ICON
2 FORMAT(1H ,F5.1,F7.1,2E16.7,15,E10.2,16)
20 CONTINUE
10 CONTINUE
STOP
END
FUNCTION FUNCX)
COMMON ALPHA
FUN=EXPCALPHA%X)
RETURN
END

If the integrand function contains a parameter (a in this example) as in this example, it is

put in the COMMON region to communicate with the main program,

(5) Note

When the function f(x) diverges or has a sharp peak at the point x=p in the integration
interval [a, oo), this method should be used to approximate the integral over [p+&, o) (&>0),
and another method must be used for the integration of the interval [a, at+d].
2. If both cosine and sine integral Ic, Is are required for the same f(x),. the calculation of the
function f(x) is commonly used, Therefore, there is an advantage that both approximate values

can be obtained by one of the function calculations of the two Is,

Bibliography
1) Takemitsu Hasegawa and Tatsuo Torii; "Semi-Infinite Oscillatory Integral Based on Chebyshev

Series Expansion, ” Preprints of Working Group for Numerical Anmalysis, IPSJ 10-3 (1984).
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DEFINS/D and IMTDES/D/Q (Automatic numerical quadrature by double exponential

formulas — finite interval)

Automatic numerical»Quadrature by Double Exponential Formulas —Finite Interval—

Programa | Yasuyo Hatano; March 1977
ed by

Format Subroutine language; FORTRAN Size; 264, 269, 136, and 137 lines
respectively

(1) Outline
DEFINS/D and IMTDES/D/Q are automatic numerical integration routines, “each of which calculates
: b
definite integral ff(:r)d:r with the precision within absolute error €, using
Ja

Takahashi-Mori’s double exponential foroula?3)

, when integrand f(x), lower limit a, upper
limit b, and the required precision € are given, Especially, it can obtain a high precision
result by a small amount of calculation even if there are singular points of x™%(0<a<1) type

at énd points in the integral interval, Note, however, that f(X) is assumed to be analytical

except .at end points,

(2) Directions
CALL DEFINS/D(A, B, F, S, EPS, N, ILL)

CALL IMTDES/D/Q(A, B,F, S, EPS, , ILL)

Argument | Type and | Attribut Content
kind (1%) |e
A B Real type | Input Upper and lower limits of a definite integral, A+B
F Real type | Input Name of integrand function, The user should prepare a
Function | corresponding function subprogram having only one integration
subprogram variable as an argument,
S Real type | Output | The value of a definite integral is generated, If ILL is
neither 0 nor 30000, an approximate value obtained last is
generated,
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Argument

Type and

kind (1%)

Attribut

e

Content

EPS

Real type

Input

Positive number (&) indicating required precision, A
standard value for single

precision is about 10°° and that for double precision is

about 10"0,

Integer

type

Output

Number of actual evaluations of function,

ILL

Integer

type

Qutput

The situation of calculation in the routine is indicated,
DEFINS/D: This argument is set to 0 at first in the routine,
and the predetermined value is added to it each time the
following conditions are met:

(1) The required precision is automatically lowered because
the function value increases rapidly near the lower limit of
the interval: 1 -

(2) The event of (1) occurs near the upper limit of the
interval: 2

(3) Convergence does not occur even if the maximum number

of sample points available for the routine is used: 10000

(4) A restriction on the input argument is violated: 30000

ILL

Integer

type

Qutput

IMTDES/D  ILL=0: Normal termination. ILL=10000: Convergence
does not occur even if the maximum number of sample points
available for the routine is used, ILL=30000: No calculation
is done because a restriction on theAinput argument is

violated,

*] For double precision routines, real types are all assumed to be double precision real

types,

(3) Calculation methed
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Definite integral I=f|f(x)ds can be represented by I=j; Flo(t))p (D)t if it is
= 0
subjected to X transformation x=@(l). I is then determined by applying the trapezoidal rule
to this, The transformation formula used for DEFINS/D @ is

x=tanh(%sinht) ,~1srs1l,-ostso

and that for IMTDES/D % is

z=tanh {Z sinh Z(71-715) ) .15z, ts1

(4) Performance

Each of these subroutines features a less frequency of evaluation, It is efficient for such an
integrand function that shows a smooth change or relatively gradual vibration, Especially for
those which show singularity of x™*(0<a<1) at end points, it shows a remarkable efficiency
which is not available for any other routines. In this case, however, it may find it difficult
to obtain precision of 10 digits or more, It is not suitable for those which have peaks at the
center of an interval or which have a discontinuity point (see Table 1 on page 210 of
bibliography >).

The following table shows the results of experiment of Kahaner”s 21 test problems 4). The
reliability here indicates a ratio at which the calculated value of a definite integral actually

satisfies the required precision,

Required 1073 10 10°°
precision
Name of Reliab | Average Reliab | Average Reliab | Average
routine ility | nunber of ility | number of ility | number of
evaluations evaluations evaluations
DEFIND 95% 81 90% 114 §6% 138
IMTDED 86 59 90 113 81 131

223



22 )

(5) Example

C.... EXAMPLE OF DEFINS....
EXTERNAL FUN
A=-1.0
B=1.0
EPS=1.0E-4
CALL DEFINSCA,B,FUN,S,EPS,NF,ILL)
WRITE(6,610) ILL,S,NF
10 CONTINUE :
STOP .
610 FORMAT(1H ,10X,SHILL= ,15,3X,2HS=,E22.14,3X,2HN=,15)
END
FUNCTION FUNCX)
P=(1.0+X)%(1.0-X)
FUN=0.0
IF(P.GT.0.0) FUN=1.0/SQRT(P)
RETURN
END
Bibliography
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Bull, R I.M.S., Kyoto Univ., 9, PP.721—741_(1974)

2) Masatake Mori; "Curve and Curved Surface,® p.24, Kyoiku Shuppan (1974)
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GASNS/D,GLBNS/D,GSCNS/D,GCSNS/D,GLGNS/D,GSLNS/D,GSHNS,/D

(Gaussian quadrature)

Gaussian Quadrature

Programm | Ichizo Ninomiya and Yasuyo Hatano: January 1984

ed by

Format Subroutine language; FORTRAN

Size; 50, 51, 28, 29, 27, 27, 600, 600, 322, 322, 58, 60, 68, and 69

lines respectively

(1) Outline
Bach of these subroutines calculates a one-dimensional integral using the Gaussian quadrature

rules,

GASNS or GASND calculates a finite interval integral
b
Y=f f(x)dx
a

using the Gauss-Legendre rule,

GLBNS or GLBND calculates a finite interval integral

Y=j;bf(:r)dx

using the Gauss-Lobatto rule,

GSCNS or GSCND calculates a finite interval integral

b
Y= L F(x)dz/ N/ (T-T) (BT

using the Gauss-Chebyshev rule,
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GCSNS or GCSND calculates a finite interval integral

b
Y= j; F(x) cos——dx"(zz(“f;_‘gb)

using the Gauss-cosine rule,

226



GLGNS or GLGND calculates a finite interval integral

b
Y= j; f(x) log $=odx

using the Gauss-logarith rule.

GSLNS or GSLND calculates a semi-infinite integral

Y= j; mé‘f(x)dx

using the Gauss-Laguerre rule,

GSHNS or GSHND calculates an infinite integral

Y= f_ :efzf(a;-)dx

using the Gauss-Hermite rule,

(2) Directions

CALL GASNS/D(A, B, FUN, N, Y, ICON)
CALL GLBNS/D(A, B, FUN, N, Y, 1CON)
CALL GSCNS/D(A, B, FUN, N, Y, ICON)
CALL GCSNS/D(A, B, FUN, N, Y, ICON)
CALL GLGNS/D(A, B, FUN, N, Y, ICON)
CALL GSLNS/D(FUN, N, Y, ICON)

CALL GSHNS/D(FUN, N, Y, ICON)
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Argument | Type and | Attribut Content '
kind (1) |e

A Real type | Input Lower limit of definite integral,

B Real type | Input Upper limit of definite integral,

FUN Real type | Input Name of integrand f(x). For the function as an actual
function argument of this function, the user should prepare a function
subprogram subprogram with only the integration variable as an argument,

N Integer Input Number of sample points,
type GASNS. GLBNS, GSCNS, GSLNS, GSHNS-++1<N=<20,

GASND, GLBND, GSCND---1=N=50.
GSLND, GSHND+~-1SN<38,
GCSNS, GCSND---1=N<33,
GLGNS, GLGND+--1SN=17,

Y Real type | Qutput The value of the definite integral is output,

ICON Integer Output ICON=0: Normal termination,
type 1CON=30000: The restriction on input argument N was not

observed,

il For double precision subroutines, all real types should be changed to double precision real

types,

(3) Example

Cxxxxx EXAMPLE FOR GASNS x*xxxx
EXTERNAL FUN.

A=0.0
B=1.0
E=EXACT(A,B)

DO 1000 N=1.,20

CALL CLOCKM(ITA)

CALL GASNSC(A,B,FUN,N,Y-ICON)
CALL CLOCKM(ITB)

ERR=E-Y
IT=ITB-ITA ‘
WRITE(6,610) N,ICON,Y,ERR,IT
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610 FORMAT(1H ,'GASNS',13,'
*E10.3,15)

1000 CONTINUE

2000 STOP
END

FUNCTION FUNCX):
'FUN=EXP (-X)

RETURN

END

FUNCTION EXACTCA,B)
EXACT=—EXP (~B)+EXP (-A)
 RETURN IR
END

229
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HINFAS/D/Q and HINFES/D (Numericﬁl Quadrature by Double Bxponential Formulas —

Semiinfinite Interval —)

Numerical Quadrature by Double Exponential Fortiulas ——Semiinfinite Interval—

Programm | Yasuyo Hatano, May 1977
ed by

Format | Subroutine Language: PORTRAN;.-Size: 261, 262, 261, and 262 lines
respectively,

(1) Outline

HINFAS/D/Q and HINFES/D are automatic integration routines for calculating the definite
integral j;mf(:r)d:c over a seniinfinite interval with an absolute error of ¢ or less using
the double exponential function type integration formula h of Takahashi and Mori when the
integrand function f(x) and the required precision € are given, Especially HINFES(D) uses a
formula to be represenied in the form of Ff(x)=g(x)e™ using a stable function g(x). Bven
if f(x) is slow in conversion to 0 with x—oo, a high-precision solution can be obtained at -

x=0 with a singularity of about x ®(O<a<1),

(2) Directions
"CALL HINPAS/D/Q (F, S, EPS, N, ILL)

CALL HINFES/D (F.S, EPS, N, ILL)

Argument | Type and Attr Content

kind (x1) | ibut

e
F Real type | Inpu | Name of an integrand function, The user- should prepare a
Function 't subprogram for this integrand function as the one that has only
subprogran one integration variable as an argument,
S Real type | Outp | The value of a definite integral is output. If ILL is neither 0

ut nor 30000, the last obtained approximation value is output,
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Argument | Type and | Attr Content
kind (x1) | ibut
e
EPS Real type | Inpu | Positive number (&) that represents a required precision, 105
t is adequate for single precision, and .10'8 is .adequate for
double precision, Retained,
N Integer Outp | Actual number of evaluations of a function,
type ut
ILL Integer Dutp | Indicates a calculation state in the routine, This argument is
type ut

first set to 0 in the routine, Each time one of the following
states'is activated, a certain value is added correspondingly,
(1) 1 when required precision is automatically lowered because
the function value increases sharply with x—(,

(2) 2 when required precision is automatically lowered because
the function value is slow in convergence to ( with x—oo,

(3) 10000 if the function does not converge with a maximum
allowable number of samples of the routine are used,

(4) 30000 when EPS<0 is specified,

x] For double precision routines, all real types should be double precision real types,

&) Calcﬁlation method

Trapezoidal rules should be applied to the integration variable x that is converted as

described below in the definite integral f(; J(x)dx.

x=exp(-g-sinht) , —osStse

is used for HINFAS(D)", and

m=exp{—§-(t—exp(—t))}, ~ostse

is used for HINFES(D) V.
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(4) Performance

A considerably good result is obtained even if the function value is slow in convergence to 0
with x—oo or an integral cannot be effectively obtained with the Gauss—Laguerre formula,
However, it is difficult to obtain a precision‘of 10 digits or more (refer to Table 1 (page 210)

of the hibliographyZ)).
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INFINS/D (Numerical Quadrature by Double Exponential Formulas —— Infinite Interval—)

Numerical Quadrature by Double Exponential Formulas ——Infinite Interval—

Programm | Yasuyo Hatano, April 1977
ed by

Format . | Subroutine Language: FORTRAN; Size: 250 and 251 lines respectively,

(1) Outline
INFINS/D is an automatic integration routine for calculating the definite integral
j::f(x)dx over an indefinite interval with an absolute errcr of & or less using the double
exponential function type integration formula n of Takahashi and Mori when the integrand
function f(x) and the required precision & are given, A high-precision solution can be

obtained even when f(x) is slow in convergence to () with T —too,

(2) Directions

CALL INFINS/D (F, S, EPS, N, ILL) T

Argument | Type and Attribut Content
kind (x1) |e

F Real type | Input Name of an integrand function, The user should prepare a
Function function subprogram for this integrand function as the one
subprogram that has only one integration variable as an argument,

S Real type | Output The value of a definite integral is output, If ILL is

neither 0 nor 30000, the last obtained approximation value is

output,

EPS Real type | Input Positive number (e) that represents a required precision,
107° is adequate for single precision, and 1078 is

adequate for double precision,

N Integer Qutput Actual number of evaluations of a function,

type
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Argument | Type and Attribut » Content
kind (1) |e

ILL Integer Output | Indicates a calculation state in the routine, This argument
type is first set to 0 in the routine, Each time one of the

following states is activated, a certain value is added
correspondingly,

(1) 1 when required precision is automatically lowered
because the function value is
slow in convergence to () with X ——oo,

(2) 2 when the state of (1) is activated with x—-oo,

(3) When the function does not converge even if a maximum
allowable number of sample points of the routine are used,

10000

(4) 30000 when BPS<0 is specified,

%] For double precision routines, all real types should be double precision real types,

(3) Calculation method
Trapezoidal rules should be applied to the integration variatle x that is converted as
described below in the definite integral f f(x)dx b

x=sinh(%sinht), —osr,ls®

(4) Note

A considerably good result is obtained even if the function value is slow in convergence to {
with x—too or an integral is not effectively obtained with the Gauss-Hermite formula, However,-
this routine is inadequate for the function that has a peak point or oscillates violently near

the origin (refer to Table 1 (page 210) in bibliography 2 ).
Bibliography

1) Masatake Mori; “Curve and Curved Surface,” p, 24, Kyoiku Shuppan (1974).

2) Ichizo Ninomiya and Yasuyo Hatano; “Newly Registered Program SSL,” Nagoya University Computer
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MQFSRS/D (Multiple quadrature by fully symmetric rules)

Multiple Quadrature by Rully Symmetric Rules

Programm | Ichizo Ninomiya: April 1981
ed by

Format | Subroutine language; FORTRAN Size; 250 lines each

(1) Outline
When the following multiple integral for n-dimensional (1=n<50) hyperrectangle (
a;sxisbi, i=1,---,n) is given;

fbldrlf:dxz ----- ‘/:dx,,f(x, SRy e eeee +Tn)

a

MQFSRS or MQFSRD calculates its values using the 3rd, 5th, Tth, and 9th fully symmetric rules,

MOQFSRS is for single precision and MQFSRD is for double precision,

(2) Directions

CALL MQRSRS/D(N, A, B, FUN, MET, ND, S, ILL)

Argument | Type and Attribut Content
‘kind (1) |e
N Integer Input Multiplicity of integral, 1sSN<50
type
A Real type | Input Lower limit of integral domain,
ﬂne-dimens
ional
array
B Real type | Input Upper limit of integral demain.
One-dimens
ional
array
FUN Real type | Input Integrand function, The user must prepare the actual
Function argument as a function subprogram that uses only integration
subprogran variables as arguments,
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Argument | Type and Attribut Content
kind (1) |e
MET Integer Input One-dimensional array with two elements, MET(l) shows the
type order of the fully symmetric rule and should be one of 3, 5,
One-dimens 7. and 9. MET(2) is used only for Tth or 9th rule. The
ional value is ] or 2, having the following meanings:
array MET(2)=1: Sample points near edges of a region are used,
MET(2)=2: Sample points near the center of a region are
used,
ND Integer Input Number of equipartitions of a side in the direction of each
type coordinate axis, 1=ND(I),I=1,--- N
One-dimens
-ional
array
S Real type | Output Approximate value of integral,
ILL Integer Output ILL=0: Normal termination, ILL=K: ND(K) <(.
type 1LL=30000: N and MET violated the limits,

x] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Calculation method
To make explanation simple, suppose a region is the product [-1,1]" of the interval [-1,1]
The fully symmetric rule is a nonproduct-type multiple numerical integration rule, which uses
sample points consisting of a group of small number of non-zero coordinate elements that are
arranged to be fully symmetric (about exchange and inversion coordinate axes) in respect to the
origin, The weight factor by which the function value at each data point is multiplied is
determined so that the integration rule becomes accurate for a pulynomial with the highest order,
This routine uses the third, fifth, seventh, and ninth integration rules. The fully symmetric
rules are not so good in precision, but the increase of the number of sample points along with an
increase of dimension n is comparatively moderate, It can thus be applied to rather high
dimensions, The number of sample points F is given by dimension n as follows:
3d: F=2n+1 T7thF = 4/3n(n® + 2) + 1
5th: F =20 + 1 9th: F =2/3n(n - 2)(n? - 1) + 4n(@n— 1) + 1

The table below lists the values of F when N ranges from 3 to 20.
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N 3 5 1 9
3 1 19 45 m
4 9 33 97 193
5 1 91 181 421
6 13 73 305 825
1 15 99 477 1485
8 17 129 705 2497
9 19 163 997 3973
10 21 201 1361 6041
11 23 243 1805 8845
12 25 289 - 2337 12545
13 21 339 2965 17317
14 29 393 3697 | 23353
15 31 451 4541 | 30861
16 33 913 0905 | 40065
17 35 579 6597 | 51205
18 37 649 7825 | 64537
19 39 723 9197 80333
20 41 801 10721 98881

The weight factor depends on the number of dimensions n, and vibrates harder as n increases
(this tendency is eminent as the order becomes large). Therefore, this routine is not expected
to have good precision with fully symmetric rules, It is suitable for integration of higher

dimensional, smooth functions with low accuracy,

(4) Example

We calculate the integral

é[i‘/_‘: ----- j:: cos (3(1—Il)$2$3$41'5$6+%)d1€ld-32'>"dx’6

in six-dimensional area [-1 ,1]6,
Fully symmetric rules are applied to 64 small areas produced by halving the area in the
direction of each coordinate axis, The program and its output are as follows.

c EXAMPLE FOR MQFSRS
DIMENSION A(6),B(6),MET(2),ND(6)
EXTERNAL FUN
N=6
MET(2)=1
EXACT=0.8585247
DO 10 I=1,N
ND(I)=2
ACId>=-1.0

10 B(I>=1.0
WRITE(6,600)

600 FORMAT(1HO,'TEST FOR MQFSRS'//
*1H ~,'N ORDER',8X,"EXACT',7X,*RESURT"®
*,3X,"ABS ERR',3X,'REL ERR'/) .

DO 20 J=3,9.,2
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MET(1)=J
CALL MQFSRS(N,A,B,FUN,MET,ND,S,ILL)
AER=S-EXACT
RER=AER/EXACT
20 WRITE(6,610) N,J,EXACT,S,AER,RER

610 FORMAT(1H ,I11,16,2E13.5,2E10.2)
STOP -
END

FUNCTION FUNCX)

DIMENSION X(6)

FUN=COS((1.0-XC(1))*xX(2)xX(3)*X(4)xX(5)*xX(6)
*x3.0+0.5)/64.0

RETURN
END

TEST FOR MQFSRS

N ORDER EXACT RESURT  ABS ERR  REL ERR

6 3 0.85852E+00 0. 86449E+00 0.60E-02 0. 696-02
6 5 0.85852E+00 0. 85897E+00 0. 44E-03 0. 52E-03
] 7 0.85852E+00 0. 85769E+00 -0. 84E-03 -0.97E-03
] 9 0.858526+00 0. 85800E+00 -0. 52B-03 -0. 61B-03

Bibliography
1) J. McNamee & F. Stenger; "Construction of Pully Symmetric Numerical Integration PFormulas”,

Numer, Math,, Bd, 10, pp.327-344 (1967).
. (1987. 05. 25)
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MQNCDS/D (Multiple Quadrature by Product of Newton-Cotes Rules (Data Input))

Multiple Quadrature by Product of Newton-Cotes Rules (Data Input)

Programm | Ichizo Ninomiya, April 1981
ed by

Pormat Subroutine Language: FORTRAN; Size: 60 and 61 lines respectively

(1) Outline

MQNCDS/D obtains the value of an n dimensional multiple integral

./:ldxlj;zzdxz ----- j:”dx,.f(n,xz,...,xn)

using the product of Newton-Cotes rules when the value of an integrand function Jf is given as
data on the equally spaced mesh points of an n dimensional (1=n=10) hyperrectagular
region (aisxisb;,i=1l,---,n) .

MANCDS(D) is for single (double) precjsion,

(2) Directions

CALL MGNCDS/D(F, N, NC, NP, H, S, ILL)

Argument | Type and | Attribut Content
kind (1) |e

B Real type | Input The values at the mesh points of an integrand function should
N~dimensio be input, The value of each subscript in the array
nal array declaration of F should be exactly equal to the number of -

sample points in the corresponding direction of the
coordinates of the hyperrectangle,

N Integer Input Multiplicity of an integral, I=<N=10
type
NC Integer Input Number of divisions in each direction of coordinates,
type 1=NC(D), I=1, ---, N
One-dimens
ional
array
NP Integer Input Number of sample points of Newton-Cotes rules used in each
type direction of coordinates,
One-dimens v 1=SNP(I) =11, I=], +--, N. NC(I)-(NP(I)-1) is the number of
ional sample points in each direction of coordinate (see
array “Example”).
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Argument | Type and Attribut Content
kind (x]1) |e
i Real type | Input Mesh interval in the each direction of coordinates,
One-dimens
ional
array
S Real type | Output Approximate value of the integral,
ILL Integer Qutput ILL=0: Normal termination,
type ' ILL=K: The input argument corresponding to the K-th direction
exceeded the limits,
ILL=30000: N=0 or N>10.

%] For double precision subroutines, all real types should be changed to double precision

real. types,

(3) Bxample
A 2-dimensional square region 0sx151,0sx2s1 is divided into 20 parts in each axial
direction, and the value of a function f(x1,x2)=e™sinx; is given to each mesh point as

data, Then, the integral

foI fo'f(x],xz)dx]dxz

is found by this subroutine,
The subinterval in each axial direction is divided into two or four and Newton-Cotes 1l1-point or

6-point rules are used correspondingly, The program and its output are as follows:

00010 C xxx EXAMPLE FOR MQNCDS =xxx

00020 GENERIC

00040 DIMENSION NC(2),NP(2),H(2),A(21,21)
00050 H(1>=0.05

00060 H(2)>=0.05

00065 WRITE(6,620)

00070 DO 20 I=1,21

00080 F=SIN(FLOAT(I-1>/20.E0)

00090 DO 20 J=1,21

00095 20 ACI,J)=EXP(FLOAT(J-1>/20.E0)*F
00098 T=(1.-C0SC(1.E0))*(EXP(1.EO0)-1.)
-00100 DO 30 I1=2,4,2

00110 NC(1)=1I1

00120 NP(1)=20/11+1

00130 DO 30 12=2,4,2

00140 NC(2)=12

00150 NP(2)=20/12+1

00160 CALL MQNCDS(A,2,NC,NP,H,S,-ILL)
00180 E=S-T
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00187
00190
00200
00210
00220
00230

MBIV N

(4) Note

SN

620

610
30

[eNeNoNoNpuy

FORMAT(9X,4H ILL,7X,1HS,14X,1HT,14X,1HE)
WRITE(6,610> I1,12,ILL,S,T,/E
FORMAT(314,3E15.5)

CONTINUE .
STOP
END

S T E
0.78989E+00 0.78989E+00 -0.23842E-05
0.78989E+00 0.78989E+00 -0.30398E-05
0.78989E+00 0.78989E+00 -0.30398E-05
0.78989E+00 0.78989E+00 -0.30398E-05

The formulas of up to 11 sample points are prepared, However, it is generally better to divide

each side into several equal parts (by increasing the value of NC) and use the formulas with

relatively small number of sample points, rather than the formulas with unnecessarily large

nunber of sample points,

(1987. 08. 08)
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MQPRRS/D (Multiple Quadrature by Product Rules)

Multiple Quadrature by Product Rules

Programm | Ichizo Ninomiya, March 1979
ed by

Rormat Subroutine Language: FORTRAN; Size: 79 and 80 lines respectively,

(1) Outline

MQPRRS/D calculates the value of the n dimensional multiple definite integral

bl b2 bn
f wl(xn)dxxf w2(x2)dx: f Wn(Xp)dxn-F(x1, X2, ***, Zn)
aQ ap a,

using product formulas of various one-dimensional rules when dimensions n(1sns=10), lower
linits aj,---,a2,---,an, upper linits by, bz, -+, bp, and an integrand function
f(x1, x2, ++-, xp) are given,
The following are available as one-dimensional integration rules,

(1) Newton—Cotes rule (w(x)=1)

(2) Gauss-Lobatto rule (w(x)=1)

(3) Gauss-Legendre rule (w(x)=1)

(4) Gauss-Laguerre rule (w(x)=e™, a=0, b=w)
-z2

(5) Gauss-Hermite rule (w(x)=e™, a=-», b=w)"

(2) Directions

CALL MQPRRS/D(N, A, B, FUN, MET, NPT, NDV, S, P, ®, I'SW, ILL)

Argument | Type and Attribut Content
kind (1) |e

N Integer Input Multiplicity of an integral. 1=<N=Z10
type

A Real type | Input Indicates the lower limit of an integral domain, Elements
One-dimens corresponding to infinite integral rules are arbitrary,
ional
array
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Argument | Type and Attribut Content
kind (1) |e

B Real type | Input Indicates the upper limit of an integral domain, Elements
One-dimens corresponding to infinite integral rules are arbitrary,
ional
array

FUN Real type | Input Integrand function, A function as an actual argument for
Function this integrand function should be prepared as a function
subprogram subprogram with integration variables only,

MET Integer Input Represents the integration method used in each direction of
type the coordinate axes,

One-dimens MET=1 - Newton-Lotes rule

ional MET=2 Gauss-Lobatto rule

array MET=3 Gauss-Legendre rule
MBT=4 Gauss-Laguerre rule
MET=5 Gauss-Hermite rule .,

NPT Integer Input Represents the number of sample points of the integration
type methed used in each direction of the coordinate axes,
One-dimens 1=NPT(l) =20 However, assume 1=<NPT(I) =11 for
ional Newton-Cotes rule, .
array

NDV Integer Input Number of equipartitions of a side in each direction of the
type coordinate axes, 1=NDV(I) :

One-dimens Elements corresponding to infinite integral rules are
ional arbitrary,
array

S Real type | Dutput Approximate value of the integral,

P Real type | Work One-dimensional array of a size larger than the total number
One-dimens | area of data points (number of data points times number of
ional divisions) in each direction of the coordinate axes,
array .

W Real type | Work Work area of the same size as P,

One-dimens | area
ional
array

ISW Integer Input If 1SW=0, sample points and weights are calculated, If
type 1SW+#0, calculation of sample points and weights is cmitted,

and those of previous call are reused,

ILL Integer Output ILL=0: Normal termination,
type ILL=30000: Limits on N are exceeded,

ILL=K: The argument concerning the direction of the K-th axis
exceeded the limits,

x]1 For double precision subroutines, all real types should be changed to double precision

real types,

(3) Example
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The value of the triple integral

fone-xdx,/::dy j;ldz -2Psin(q+y)/(1+29)

is obtained changing the value of the auxiliary variable q. Gauss-Laguerre 10-point rules are

used in the X direction, Newton-Cotes 3-point rules (Simpson rule) are used in the y direction,

and Gauss-lLegendre 5-point rules are used in the = direction,

Further, the interval [-1, 1] -is equally divided into 10 parts in the y direction, and the

interval [0, 1] is equally divided into two parts in the = direction,

-

VoO~NOUVSWN

OV UN P

MAIN PROGRAM
DIMENSION A(3),B(3),MET(3),NPT(3),NDV(3),P(100).,
*W(100)

EXTERNAL FUN
COMMON @

N=3

A(2)=-1.0
B(2>=1.0
A(3)=0.0
B(3)=1.0
MET(1)=4
MET(2)=1
MET(3)=2
NPT(1)>=10
NPT(2)=3
NPT(3)=5
NDV(2>=10
NDV(3)=2

b0 10 16=1,50
Q=FLOAT(IQ@>/10.0
ISWw=1Q-1

CALL MQPRRS(N:A'B'FUNrMET'NPT'NDVerP'WzISNfICON)

10 WRITE(6,610) Q,S,ICON
610 FORMAT(1H ,3HQ =,F5.1,2X,3HS =,E13.5,2X,6HICON =,

* 16)
STOP
END

FUNCTION FUNC(X)

COMMON Q

DIMENSION X(3)

FUN=X (1) %*%2*xSIN(X(2)+Q) /(X (3)x*x2+1. O)
RETURN

END

If the integrand function contains an auxiliary variable as in this examp]ev(Q in this

example),

it is put in the common area for communication between the main program and integrand

function subprogram, If the same integration formula is repeatedly used in the same region as in

this example, it is better to use the ISW function and omit the calculation of sample points
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weights after the first call,

(4) Note

1. The name of the integrand function subprogram must be defined in the EXTERNAL declaration in
the ca]liné program,

2. Because A, B, and NDV are arbitrary in the Gauss-Laguerre and Gauss-Hermite fules. the
corresponding elements need not be defined,

3. Up to 11 sample points are prepared for Newton-Cotes rule, and up to 20 sample points are
prepared for other rules, However, it is generally better to divide the interval into a number
of equal parts.and use in each subinterval the formula with relatively small number of sau;p]e
points rather than the formula with unnecessarily- large number of sample points,

4 This subroutine calls the following slave subroutines to obtain sample points and weights.

(1) Newton-Cotes rule . (TNCOTS/D)
(2) Gauss-Lobatto rule (TGLOBS/D)
(3) Gauss-Legendre rule (TGLEGS/D)
(4) Gauss-Laguerre rule (TGLAGS/D)

(5) Gauss-Hermite rule (TGHERS/D)

(1987. 05. 07)
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QDAPBS/D (A Quadrature of Interpolatory Type Increasing the Sample Points with Arithmetic

Progression)

A Quadrature of Interpolatory Type Increasing the Sample Points with Arithmetic Progression

Programm | Takemitsu Hasegawa, April 1977
ed by

Format | Subroutine Language: FORTRAN; Size: 142 and 302 lines respectively,

(1) Outline

QDAPBS/D is an automatic integration routine for calculating the definite integral

j:if(x)ctt with the highest precision that can be obtained with a computer when the integrand
function f(x) and the lower and upper ends a and b of the integration interval are given,
In this routine, the number of sample points is increased by arithmetical progression (in units
of eight points), fherefore, it rarely wastes the samples, and is efficient, Also, it is high

in precision for smooth integrand functions,

(2) Directions

CALL GDAPBS/D(A, B, F, S, EPS, N, ILL)

Argument | Type and Attribut Content
kind (x1) (e

A Real type | Input Lower end of integration interval,

B Real type | Input Upper end of integration interval,

F Real type | Input Name of an integrand function, User should prepare a
'Function function subprogram with one integral variable only,
subprogram

S Real type | Output The approximate value of a definite integral.is output, If

1LL=10000, the last obtained approximate value is output,

EPS | Real type | Output Estimation of errors of the approximate integral S,

N Integer Input/ou | The lower limit of the number of sample points is assumed to
type tput be the input. The number of samples actually used is output,

N=16 (QDAPBS) or N=32(QDAPBD) should be used as the input,

247



Argument | Type and Attribut Content
kind (21) |e
ILL Integer Output ILL=0: Normal termination,
type ILL=10000: When the approximate integral does not converge

even if 200 sample points (QDAPBS) or 512 sample points
(QDAPBD) are used,

ILL=30000: B=A.

x] For double precision subroutines, all real types should be changed to double precision real

types.

(3) Calculation methed
The integration interval [A, B] is converted into [-1, 1], and sequence of interpolation
formulas are prepared and integrated by progressively adding a set of eight sample points at a

time that is a subset of a sequence of Chebysheve distribution in the interval [-1, 1].

Bibliography

1) Ichizo Niromiya and Yasuyo Hatano; "Newly Registered Program SSL,” Nagoya University Computer
Center News, Vol.8, No.3, pp.209-263 (1977).

2) Tatsuo Torii, Takemitsu Hasegawa, and Ichizo Ninomiya; "Interpolatory Automatic Integration
Method That Increases the Number of Samples by Arithmetic Progression,” Information Processing,

Vol. 19, No.3, pp.248-255 (1978).

(1987. 05. 07) (1987. 08. 08)
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ROMBGS/D (Romberg Quadrature)

Romberg Quadrature

Programm
ed by

Ichizo Ninomiya, April 1977

Format

Subroutine Language: FORTRAN; Size: 30 and 31 lines respectively

(1) Outline

ROMBGS/D is an automatic integration routine based on classic Romberg quadrature, It

’ b
calculates the definite integral ff(x)dx with the precision ¢, when the lower and upper
a

ends « and b of the integration interval, integrand function Jf(x), and convergence

criterion € are given,

(2) Directions

CALL ROMBGS/D(A, B, P, S, EPS, ILL)

Argument | Type and Attribut Content

kind (x1) |e

A Real type | Input Lower end of an integration interval,

B Real type | Input Upper end of an integration interval,

F Real type | Input Name of an integrand function, A function as an actual

Function argument for this integrand function should be prepared as a
) subprogram function subprogram with a single integration variable only,

S Real type | Output The value of a definite integral is entered, If ILL=1, the
last obtained approximate value is contained,

EPS Real type | Input Convergence criterion, If the absolute value of the
difference between two consecutive approximate values becomes
smaller than EPS, it is assumed that convergence has been
attained, EP5>0

ILL Integer Qutput ILL=0: Normal termination,

type ILL=30000: EPS=<0
ILL=1: When convergence is not attained even if the
integration interval is divided into 8192 parts in ROMBGS,
and 16384 parts in ROMBGD,

x] For double precision subroutines, all real types should be changed to double precision

real types,

249 -
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(3) Example
1 X
Jo(x)=7z-j; cos(x sin 0)do
be an example of integration of a function containing an auxiliary variable,

The following program obtains Jo(x) changing the auxiliary variable x from 0.1 to 5.0 in

steps of 0. 1.

MAIN PROGRAM

COMMON X

EXTERNAL BES

PI=3.141593

X=0.0

DO 1 J=1, 50

X=X+0.1

CALL ROMBGS(0.0,PI,BES,S,1.0E-6,ILL)
B=S/PI

CONTINUE

END

FUNCTION SUBPROGRAM FOR INTEGRAND
FUNCTION BES(THETA)

COMMON X

BES=COS(X*SINCTHETA))

RETURN
END

This routine is adequate only when the integrand function is well behaved, If the integrand

function varies sharply, other routines such as adaptive automatic integration routines should be

(1987. 08. 11)
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TNCOTS/D/Q,TGLEGS/D/Q,TGLAGS/D/Q.,
TGCHBS/D/Q,TGHERS/D/Q,TGLOBS/D/@

(Tables of weights and sample points for quadrature formulas)

Tables of Weights and Sample Points for Quadrature Formulas

Programm | Ichizo Ninomiya and Yasuyo Hatano : January 1984

ed by

Format Subroutine language; FORTRAN

Size; 31, 32, 32, 35, 36, 36, 36, 37, 37. 45 46, 46, 41 42, and 42

lines respectively

(1) Outline

Bach of these subroutines calculates the tables of weights and sample points for a quadrature

formula,

1. TNCOTS, TNCOTD, or TNCOTQ calculates the samplc point xk and weight Wk for the Newton-Cotes

rule

1 n
[ @dz=Y it 48

2. TGLEGS, TGLEGD,. or TGLEG@ calculates the sample point xk and weight Wk for .the Gauss-Legendre

rule

1 n
[ £ @dz=Y et ) o8

3. TGLAGS, TGLAGD, or TGLAGQ calculates the sample point xk and weight Wk for the'Gauss—Laguerre

rule
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f "o (x)dz=) Wief (xx) +En
0 k=1 :

4. TGCHBS, TGCHBD, or TGCHBQ calculates the sample point xk and weight Wk for the

Gauss-Chebyshev rule

1 n
[ 1 @ds/ /1= =3 i ey o8,

5. TGHERS, TGHERD, or TGHERQ calculates the sample point xk and weight Wk for the Gauss-Hermite

rule

e @ds=Y0r o o8

6. TGLOBS or TGLOBD calculates the sample point xk and weight Wk for the Gauss-Lobatto rule

1 n-1
[ @dzHag (-1)+3 s Gy HoF (1) 4y

(2) Directions

CALL TNCOTS/D/Q(N, X, ¥, EPS, 1CON)
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CALL TGLEGS/D/Q(N, X, W, EPS, 1CON)

CALL TGLAGS/D/Q(N, X, W, EPS, 1CON)

CALL TGCHBS/D/Q(N, X, ¥, EPS, 1CON)

CALL TGHERS/D/Q(N, X, W, EPS, ICON)

CALL TGLOBS/D/Q(N, X, ®, EPS, ICON)

Argument | Type and Attribut Content
kind (1) |e
N Integer Input Number of sample points n,
type TNCOTS/D/Q-+-2=N<Z11,
TGLEGS/D/Q+++2SN=3T.
TGLAGS/D/Q---1SN<39.
TGCHBS/D/Q---1SN=50.
TGHERS/D/Q- - -1 SN0,
TGLOBS/D/Q---1=N=20,
X Real type | Output |Size N. The table of sample points xk is output
One-dimens (k=1,2, *++, n).
ional
array
W Real type | Output | Size N, The table of weights wk is output (k=1,2, *+-,n), .
. | One-dimens
.ional
array
EPS Real type | Input Convergence criterion in the Newton method for calculating
sample points xk (for instance, the zero point of Legendre
polynomial Pn(x) for TGLEGS).
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Argument | Type and Attribut Content
kind (x1) |e

ICON Integer Output ICON=0: Normal termination,
type

ICON=10000: EPS was too small, so it was raised as follows:

ICON=30000: The restriction on input argument N was not

observed,

Single precision «-- 10°®

Double precision +- 107"

Quadruple precision +-+ 10752,

%] PFor double or quadruple precision subroutines, all real types should be changed to double or

quadruple real types,

Bibliography

1) Yamauchi, Uno; and Hitotsumatsu; “Numerical analysis method 111 for computers”, Baifukan,

p.279 (197D).
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TRAPZS/D (Numerical Quadrature by Trapezoidal Rule — Infinite Interval —)

Numerical Quadrature by Trapezoidal Rule ——Infinite Interval—

Programm { Yasuyo Hatano, April 1977
ed by

Format Subroutine Language: FORTRAN; Size: 81 and 82 lines respectively.

(1) Outline
TRAPZS/D is an automatic integration routine for calculating the definite integral

F(x)dx with an absolute error of € or less according to trapezoidal rules when the

integrand function Jf(x) and the required precision & are given, It is effective when

f(x) is fast in convergence to ( with T—too,

(2) Directions

CALL TRAPZS/D (F, S, H, EPS, N, MAXF, ILL)

Argument | Type and Attribut Content
kind (x1) |e

F Real type | Input Name of an integrand function, The user should prepare a
Function function subprogram for this integrand function as the one
subprogram that has only one integration variable as an argument,

S Real type | Output Definite integral values are output, If ILL is neither { nor

3000, the last obtained approximation value is output,

| Real type | Input/ou | An initial value of the step size is assumed to be the imput,
tput The input is decreased 50% by 50% during the calculation,
and the value of the step size at the final stage is output.

>0

EPS Real type | Input Positive number (e) that represents a required precision,
107 is pininun with single precision, and 1079 s

minimun with double precision,
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Argument | Type and Attribut Content
kind (z1) |e
N Integer Qutput | Actual number of evaluations of a function,
type
MAXF Integer Input Upper limit of the number of evaluations of a function,
type S<HAXF
ILL Integer Output | Indicates a calculation state in the routine, This argument
type is first set to 0 in the routine, Bach time one of the

following states is activated, a certain value is added
correspondingly,

(1) 1 when required precision is automatically increased
because the function value is
slow in convergence to ) with X —-o0, and the required
precision cannot be obtainéd within MAXF,

(2) 2 when the state of (1) is activated with I—+oo,

(3) 10000 when the function does not converge even with
N<HAXF,

(4) 30000 when limits on the input argument are exceeded,

%] Por double precision subroutines, all-real types should be double precision real types,

(3) Performance

This routine is effective even when a solution is not well obtained with Gauss-Hermite or double

exponential function type formulas if f(x) 1is fast in convergence to ) with x—too (refer to

Table 1 (p, 210) of bibliography V).

{4) Note

If this routine terminates with ILL=1 or 2, the initial value H of the step size should be

increased,

Bibliography
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9. Ordinary 'differential eguati on:




ODEBSS/D/Q (Solution of initial value problems for systems of first order differential

equations by the rational extrapolation method)

Solution of Initial Value Problems for Systems of First Order Differential Equations by the

Rational Extrapolation Method

Programm | Ichizo Ninomiya: April 1980
ed by

Format Subroutine language; FORTRAN Size; 146 and 147 lines respectively

(1) Outline

When system of n first order differential equations
Y i=fi(x,y1,¥2,° <> Un) »1=1,2, - -1,
initial condition y;(x0)=1;,1=1,2,---,n,
initial value ho ot; the step size of independent variable x, the number of integration steps m
, and target value Xe of an independent variable are given, ODEBSS, ODEBSSD, or ODEBSQ outputs
a solution and derivative y; (%s),y"i(xt),1=1,2,--+,n at output point xy=min(xa,xe, and
which is the value of the differential coefficient. To do this, the subroutine uses an automatic
step size control algorithm based on the Bulirsh-Stoer rationai extrapolation method, Here Xa
is the v;'ilue of the independent variable that is reached after m steps of integral calculation

from initial values X9, ho.

(2) Directions

CALL ODEBSS/D/Q(X, H, Y, N, DY, EPS, DIFFUN, NSTEP, XEND, ERR, NFUN, IND)

Argument | Type and Attrib Content
kind (x1) | ute

X Real type | Input/ | When initial value Xo of independent variable is input, final
output | value Xy is output,

H Real type |Input/{When initial value hp of the
output | step size is input, step size h adequate for further
integration from Xy is output,
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Argument | Type and Attrib Conteny
kind (x1) | ute
Y Real type | Input/ | When the initial value of the solution is input, the value of
One-dimens | output | the solution in Xy is output, One-dimensional array of size
ional N, :
array
N Integer Input | Number of unknowns n of equation, (<N=<1000
type
| DY Real type | Output | The derivative of the solution in Xy 1is output,
One-dimens One-dimensional array of size N,
ional
array
EPS Real type | Input | Error tolerance of solution,
DIFFUN Subroutine | Input | Subroutine to calculate derivatives as functions of X and Y,
name The user should prepare this subroutine in a form of DIFFUN
(X Y, DY),
NSTEP Integer Input | Number of integration steps m.
type NSTEP=( is handled as if m=0o and always causes Xf=Xe,
XEND Real type | Input | Target value X. of independent variable, (XEND-X)=*H>0 must
be satisfied,
ERR Real type | Output | Estimate value of absolute truncation error of each element of
One-dimens solution at final step,
ional
array
NFUN Integer Input/ | Input: When this routine is called for the first time or there
type output | is a discontinuous change in the equation, NFUN should be (.
To calculate only the final step again, NFUNKQ should be
input,
Output: The total number of times the derivative have been
calculated after NFUN<0 is output, )
“IND Integer Input/ | Input: When IND=0, the rational extrapolation method is used,
type output "When IND#0, the polynomial extrapolation method is
used,
Output: IND=0: Normal termination,

IND=10000: Required accuracy could not be obtained
after the process was repeated six times with the step size
halved,

IND=30000: Argument error,

A value other than the above shows the total number of times
the process has been repeated because it failed to obtain
required accuracy when called,

%] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Calculation method
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)

(4) Bxample

The program shown below solves initial value problem

v 1=y1/(2(z+1))-2xy2, y1(0)=1
y'2=y2/(2(x+1))-2xy1, y2(0)=0

- - The exact solution is shown as follows,

600

(5 Notes

yi=~x+1 cosx?
y=~x+1 sint®

TEST FOR ODEBSD

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION Y(2),DY(2),ERR(2),2(2)

EXTERNAL RHS

X=0.DO

H=0.1DO

Y(1>=1.DO

Y(2)=0.DO

N=2

EPS=1.D-7

NS=0

NF=0

XE=2.5D0

IND=0

CALL ODEBSD(X,H,Y,N,DY,EPS,RHS,NS,XE,ERR,NF,IND)
XX=XxX

S=DSQRT(X+1.D0>

Z(1>=DCOS(XX)*S

Z(2)=DSINCXX)*S

WRITE(6,600) H,X,(Y(JI,ZC(J),ERRCUJ),J=1,2),NF,IND
FORMAT(1H ,2D13.5,2(2D15.7,D011.3),218) :
STOP .

END

SUBROUTINE FOR DERIVATIVES

SUBROUTINE RHS(X,Y,DY)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION Y(2),DY(2)
DY(1)=Y(1)*x0.5D0/(X+1.D0)~-Y(2)*Xx2.DO
DY(2)=Y(2)*x0.5D0/(X+1.D0O)+Y(1)*xX*2.DO
RETURN

END

1. These routines are used in the following two major ways:

(1) Only the solution with a target value is output, To do this, the target value should be

put in XEND and NSTEBP should be set to () as shown in the above example,

(2) Results on the way to the target value are output, These two methods can be used for it:
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(a) The routine is called repeatedly with the target value kept in XEND and with relatively
small positivelvalues put in NSTEP. In this case, when the routine return§ from the subroutine,
the value of X is irregular because of automatic step size control.

(b) Output points are set appropriately (in equal intervals for instance) until the target
value is reached, The routine is called repeatedly while these output points are put in XEND one
by one, This has an advantage that output is obtained at regular points, If, however, output
points are set too often, the sfep size is forcibly changed each time the routine escapes at an
output point, This may deteriorate the original function of automatic step size control,

2. What can be controlled with EPS and estimated with ERR is a local truncation error and not
a true error,

3. If EPS is 1 or less, it means an absolute error for each component of the solution, ‘lf it
exceeds ], it means an error relative to the maximum value,

4. Note the way of input of NFUN,

5. If IND indicates a value other than 0, 10000, and 30000, the value of the solution is not
necessarily inaccurate, .

6. The RKF4AS, RKF4AD, RKM4AS, and RKM4AD routines are very similar to these routines, Select

the most appropriate one to your purpose,

Bibliography
1) R Bulirsch and J, Stoer; "Numerical Treatment of Ordinary Differential Equations by

Extrapolation®, Numer, Math,, Vol 8, pp.1-13 (1966). .
(1987. 06. 29) (1987. 08. 21)
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RK4S/D/Q/C/B

(Solution of initial value problems of systems of ordinary differential equations of the first

order by the classic Runge-Kutta method of the fourth order)

Solution of Initial Value Problems of Systems of Ordinary Differential Equations

of The First Order by The Classic Runge-Kutta Method of The Fourth Order

Programm | Ichizo Ninomiya; March 1979
ed by

Format Subroutine language; FORTRAN Size; 27, 28, 28, 28, and 29 lines
respectively .

(1) Outline
When systems of n 9rdinary differential equations of the first order
v i=fi(x,Y1,U2,°<*,Un) »1=1,2, -+~ ,n; initial condition ¥i(x0)=ni, 1=1,2,---,m,
step size h of independent variable X, and number of steps of integration m are given, this
routine calculates numerical solution ¥i(xr), 1=1,2,-+-n for
x=x0+rh, r=1,2,---,m
using the classic Runge-Kutta method of the fourth order, then outputs

Vi (Xa) ¥ i(Xn), i=1,2,---n

(2) Directions

CALL RK45/D/Q/C/B(X,H, Y, N, DY, DIFFUN, NSTEP, NFUN, ILL)

Argument | Type and Attrib Content
kind () | ute ’

Xxx Real type | Input/ | When initial value xo of independent variable X is input,
output | value Ta=Xx0+mh after m number of steps is output,
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Argument | Type and Attrib Content
kind (%) ute

Hxx Real type | Input | Step size h of independent variable, H#(, H<Q is also

acceptable,

Yx Real type | Input/ | When the initial value of the solution is input, the value of
One-dimens | output | the solution for x=x, is output,
ional One-dimensional array of size N.
array

N Integer Input | Number of unknowns of equation, N>,
type

DY= Real type | Qutput | The values of the derivatives of the solution in x=xa are
One-dimens stored in the first N components, One-dimensional array with
ional the size of 3N,
array

DIFFUN Subroutine | Input | Subroutine to calculate derivatives as functions of X and Y,

name The user should prepare this subroutine in the form of
DIFFUN(X, Y, DY).
NSTEP Integer Input | Number of steps of integration m, m=]
type
NFUN Integer Input/ | NFUN must be set to () when this routine is called for the first
type output | time, Thereafter, the total number of times the derivatives
subroutine has been called is output to this argument,
ILL Integer Qutput | ILL=0: Normal termination, ILL=30000: N=0, NSTEP=0 or
type 1=0. 0.

x For RK4D (RK4Q, RK4C, RK4B), Y and DY should be changed to double precision real type
(quadruple precision.real type, complex type, double precision complex type).

=« Por RK4D (RK4Q, RK4C, RK4B), X and H should be changed to double precision real type
(quadruple precision'real type, real type, double precision real type),

(3) Example

Suppose we solve linear equations

y1=-u
Y’ 2=y1-y2/x

that are obtained by variable transformation y1=y,y2=-y" from Bessel’s differential equations
y"+y’ /x+y=0 of the Oth order, under the initial condition y1(0)=1,y2(0)=0, The exact
solution is Yr=Jo(x) ,y2=J1(x) .
The program prints intermediate results and errors every five steps with step size h of x (. 1.
It thus integrates 50 steps,

DIMENSION Y(2),DY(6),E(2)

EXTERNAL BES

N=2

X=0.0
H=0.1
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Y(1>=1.0
Y(2)=0.0
NFUN=0
NSTEP=5
WRITE(6,600) X.,Y
DO 10 1I=1,10 _
CALL RK&4S(X,H,Y,N,DY,BES,NSTEP,NFUN,ILL)
EC(1)=Y(1)-BJO(XD
EC2)=Y(2)-BJ1(X)
10 WRITE(6,600) X,Y,E

600 FORMAT(1H ,10X,F5.1,2E15.7,2E11.3)
STOP
END
SUBROUTINE BES(X,Y,DY)
DIMENSION Y(2),DY(6)
DY(1)=-Y(2)
IFC(ABS(X).LT.1.0E-2) DY(2)=0.5-X*xX*0.1875
IF(ABS(X).GE.1.0E-2) DY(2)=Y(1)>-Y(2)/X
RETURN
END

(4) Notes

1. The name of the subroutine for derivative must be declared in the EXTERNAL statement in the
calling program,

2. When this routine is called for the first time or when it is called at the point where the
values of the derivative change discontinuously, NFUN must be set to 0, Because NFUN is used for
both input and output, do not place a constant in this argument,

3. The local truncation error of the Runge-Kutta method of the fourth order is given by ez=cﬂ15‘

for step size h. One cannot say anything definitely abou; the ya]ue of a because it depends
on the equations, But, it can be considered about ] when solutions change slowly, When
selecting a value for h, consider this factor together with the length of integration interval,
In the above example, for instance, h should be about (,1 to obtain solutions in 4 or 5 digit
precision, if it is set to 0.01, not only a truncation error becomes too small (even smaller
than the minimum unit of rounding error in single precision), but also the number of integrations
increases, This makes rounding errors larger and causes poor results,

4. This subroutine is ﬁseful when solutions change gradually and step size h need not be
changed, When solutions change violently and there is a difficulty to select step sizes,
RKF4AS/D, RKM4AS/D, or ODEBSS/D having the function of automatic step size control should be
used,

(87. 06. 29)
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RKF4AS/D
(Solution of initial value problems of systems of first order differential equations by the

Runge-Kutta-Fehlberg fourth order method)

Solution of Initial Value Problems for Systems of First Order Differential Equations by

the Runge-Kutta-Pehlberg Fourth Order Method

Progracm | Ichizo Ninomiya; April 1980
ed by

Format Subroutine language; FORTRAN Size; 77 and 78 lines respectively

(1) Outline

When a system of n first order differential equations
v i=fi(x, Y152, -+, Un) »1=1,2, - - -y,
initial condition vi(x0)=ni,1=1,2,---,n,
initial vglue ho for the step size of independent variable x, the number of stéps of
integration m, target value Xe of the independent variable are given, RKF4AS/D uses the
automatic step size control algorithm based on the combination of the Runge-Kutta-Pehlberg fourth
and fifth order methods and outputs the solution at the output point xp=min(xn,Xe) and the
differential coefficient value yi(xs),y"i(xs),1=1,2,---,n,  Where, Xn is the independent

variable variable obtained after integral calculation of m steps from initial values xo, ho.

(2) Directions

CALL RKR4AS/D(X, H, ¥, N, DY, EPS, DIFFUN, NSTEP, XEND, ERR, NFUN, ILL)

Argument | Type and Attrib Content
kind (x1) | ute

X Real type | Input/ | When initial value xo of an independent variable is input,
output | final value xf is output, :

i Real type | Input/ | When initial value ho of a step size is input, proper step
output | size h for further integration from Xy is output,

Y Real type | Input/ | When the initial value of a solution is input, the value of the
One-dimens | output | solution in X5 is output. One-dimensional array of size N
ional
array
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is shown below,

The theoretical solution is as follows:

{y|=a/x+1 cos 12
yz=x+1 sin 2%

c TEST FOR RKF4AD
IMPLICIT REAL%*8 (A-H,0-2)
DIMENSION Y(2),DY(12),ERR(2),2(2)
EXTERNAL RHS
X=0.D0O
H=0.1DO
Y(1)=1.DO
Y(2>=0.DO
N=2
EPS=1.D-7
NS=0
NF=0
XE=2.5D0
CALL RKF4AD(X,H,Y,N,DY,EPS,RHS,NS,XE,ERR,NF,ILL)
XX=XxX
S=DSQRT(X+1.DO0)
Z(1)=DCOS(XX)*S -
Z2(2)=DSINCXX)*S
WRITE(C6,600) H,X,(YCJI,ZCJI),ERRCJI,JI=1,2),NF,ILL

600 FORMAT(1H ,2D013.5,2¢(2D15.7,D11.3).,218)

STOP
END

c SUBROUTINE FOR DERIVATIVES
SUBROUTINE RHS(X,Y,DY)
IMPLICIT REAL%*8 (A-H,0-2)
DIMENSION Y(2),DY(2)
DY(1)=Y(1)%0.5D0/(X+1.D0)-Y(2)*X*x2.DO
DY(2)=Y(2)%x0.5D0/(X+1.DO>+Y(1)*xX*2.DO

RETURN
END

(5) Notes
1. This routine 'is used in two major objectives below:

(1) To output only the solution for an target value, To do this, specify the target value in
XEND as in the example, then specify NSTEP=0,

(2) To output intermediate results until the target value is reached, There are two methods
for this,

(a) While keeping the target value in XEND, put a comparatively small, positive value in

NSTEP and repeat calling the subroutine, In this case, the values of X obtained after returning
from the subroutine are irregular because of automatic control of step size,

(b) Define output points properly, for instance, at equal intervals, before the target
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Argument | Type and Attriﬁ Content
kind (x1) |ute
N Integer Input | Number n of equations, (<N=1000
type
DY | Real type | Output | The differential cvefficient of the solution in Xy is stored
One-dimens in the original N elements and output, One-dimensional array
ional with size of 6N,
array
EPS Real type | Input | Brror tolerance of solution,
DIFFUN Subroutine | Input | Subroutine used to calculate differential coefficients as a
name function of X and Y. The user needs to prepare this subroutine
in the form of DIFFUN(X, Y, DY).
NSTEP Integer Input | Number of steps of integration m, NSTEP=( gives the same
type effects as m=e and always causes Xj=Te.
XEND Real type | Input | Target value X of independent variable, This argument must
satisfy (XEND-X)=H>0.
ERR Real type | Output | Estimated value of absolute truncation error of each element of
One-dimens solution at final step, -
ional
array
NFUN Integer Input/ | Input: Specify NFUN=0 when this routine is called for the
type output | first time or there is a discontinuous change in the equation,
To calculate only final step again, specify NFUN<(,
Output: If NFUN<( is specified, the total number of
evaluations of differential coefficients is output,
ILL Integer Output | ILL = 0: Normal termination
- type ILL = 10000: Predetermined accuracy was not achieved after

operation was repeated 10 times after change of the step size,
ILL = 30000: The limitations on the argument were violated,
Any value other than the above indicates the total number of
iterations of operation done if this routine failed to achieve
the expected accuracy in one call,

%] For double precision subroutines, real types should be cahnged to double precision real

types,

(3) Calculation method

(4) Example

Refer to the reference in bibliography !

)

A program to solve initial value problem

v 1=y1/(2(x+1))-2xy2,
y'2=y2/(2(x+1))-2xy1,

v1(0)=1
¥2(0)=0

268




value, Repeat calling the subroutine while putting such output points one by one in XEND, This
method has the advantage of obtaining output at regular points, If output points are given too
densely, however, the step size is forcibly changed each time an escape is made at each output
point, This results in deterioration of the original autematic step size control function,

2. What can be controlled by EPS and estimated by BRR is a local truncation error but not a
true error,

3. EPS is used to mean an absolute error for each element of a solution when it is 1 or less or
a relative error for the maximum value of the size when it exceeds 1.

4, Note tﬂe input method of NFUN,

5. Even if ILL takes a value other than 0, 10000, and 30000, the value of the solution is not
always inaccurate,

6. There are sister routines RKM4AS/D and ODEBSS/D which can be used in almost the same way as

this routine, Use them properly as the situation demands,

Bibliography

1) B. Fehlberg; “Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten
-Kontrolle und ihre Anwendung auf W& rmeleitungs-probleme, ” Computing, Vol.6, pp.61-71 (1970)
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RKM4AS/D

(Solution of initial value problems for systems of first order differential equations by the

Runge-Kutta-Merluzzi fourth order method)

Solution of Initial Value Problems for Systems of First order Differential Bquations by

the Runge-Kutta-Merluzzi Pourth Order Method

ed

Programm | Ichizo Ninomiya;

April 1980

Format | Subroutine language; FORTRAN  Size; 79 and 80 lines respectively

(1) Outline

When system of n first order differential equations

y'i=fi(xaylyy2, cee,Un),1=1,2,-+-,n,

initial condition y;(x0)=n:,1=1,2,---,n,

Initial value ho of the step size of independent variable x, the number of integration steps m

., and target value Xe of an independent variable are given, RKM4AS or RKM4AD outputs a solution

and values of derivative y;(xf),1=1,2,---,n at output point Ty=Min(Ta,Xe). To do this,

the subroutine uses an automatic step size control algorithm based on the Runge-Kutta-Merluzzi

fourth order method having the capability of evaluating accumulated truncation errors, Here Xn

from initial values X9, ho.

(2) Directions

_is the value of the independent variable that is reached after m steps of integral calculation

CALL RKM4AS/D(X, H, Y, N, DY, EPS, DIFFUN, NSTEP, XEND, ERR, NFUN, ILL)

Argument | Type and | Attribut Content
kind (x1) |e
) { Real type | Input/ou | When initial value xo of the independent variable is input,
tput final target value Xy is output,
H Real type | Input/ou| When initial value hp of the
tput step size is input, step size h adequate for integration

from x5 is output,
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Argument | Type and | Attribut Content
kind (x1) je
Y Real type | Input/ou | Khen the initial value of the solution is input, the value of
One-dimens | tput the solution in Xy is output, One-dimensional array of
ional size N,
array
N Integer Input Number of unknowns n of eguation, (<KN=1000
type
DY Real type | Work One-dimensional array with size 6N,
One-dimens | area
ional
array
EPS Real type | Input Error tolerance of solution,
DIFFUN Subroutine | Input Subroutine to calculate derivative as a function of X and ¥,
name The user should prepare this subroutine in the form of
DIFFUN(X, Y, DY),
NSTEP Integer Input Number of integration steps m, NSTEP=0 is handled as if
type m=00, and Xf=X. always results,
XEND Real type | Input Target value X of independent variable, (XEND-X)xH>0 must
be satisfied,
ERR Real type | Output Estimated value of absolute truncation error of each element
One-dimens of solution at the final step,
ional
array
NFUN Integer Input/ou | Input: When this routine is called for the first time or
type tput there is a discontinuous change in the equation, NFUN<(Q
should be input., To calculate only the final step again,
NFUN<Q should be input.
Qutput: The total number of times the differential
coefficients have been calculated after NFUN<( is output,
ILL Integer Output | ILL=0: Normal termination.
type ILL=10000: Required accuracy could not be obtained after the
process was repeated ten times with different step sizes,
ILL=30000: The restriction on the argument was not observed,
A value other than the above shows the total number of times
the process has been repeated because it failed to obtain
required accuracy,

%] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Calculation method

Refer to paper in bibliography D.
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(4) Example

The program shown below solves initial value problem

v 1=y1/(2(x+1))-2xy2, y1(0)=1
Y 2=y2/(2(x+1))-2xyy, 42(0)=0

The exact solution is shown as follows,

y1=~T+1 cOST®
U= +1 sinx®

c TEST FOR RKM4AD
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION Y(2),DY(12),ERR(2),Z2(2)
EXTERNAL RHS
X=0.D0O
H=0.1DO
Y(1>=1.DO
Y(2>=0.DO
N=2
EPS=1.D-7
NS=0
NF=0 .
XE=10.DO
CALL RKM4AD(X,H,Y,N,-DY,EPS,RHS,NS,XE,ERR,NF,ILL)
XX=X*X ’
S=DSQRT(X+1.D0)
2(1)=DCOS(XX)*S
2(2)=DSINCXX)=*S
WRITE(C6,600) H,X,(Y(J),Z(JI,ERRCIDI,JI=1,2),NF,ILL
600 FORMAT(1H ,2D13.5,2(2D15.7,D11.3).,218)
STOP
END

c SUBROUTINE FOR DERIVATIVES
SUBROUTINE RHS(X,Y,DY)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION Y(2),DY(2)
DY(1)=Y(1)*0.5D0/(X+1.D0)-Y(2)%X%x2.DO
DY(2)=Y(2)%x0.5D0/(X+1.D0)+Y(1)>xX*2.DO

RETURN
END

(5) Notes
1. These routines are used in the following two major ways:
(1) Only the solution with a target value is output, To do this, the target value should be
put in XEND and NSTEP should be set to 0 as shown in the above example,
(2) Results on the way to the target value are output, These two methpds can be used for it:

(a) The routine is called repeatedly with the target value kept in XEND and with relatively
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small positive values put in NSTEP. In this case, when the routine returns from the subroutine,
the value of X is irregular because of automatic step size control,

(b) Output points are set in appropriately (in equal intervals for instance) until the
target value is reached, The routine is called repeatedly while these output points are put in
XEND one by one, This has an advantage that output is obtained at regular points, If, however,
output points are set too often, the step size is forcibly changed each time the routine escapes
at an output point, This may deteriorate the original function of automatic step size control.

2. What can be controlled with EPS and estinated with ERR is an accunulated truncation error
and not a true error,
. 3. If BPS is 1 or less, it means an absolute error for each component of éhe solution, If it
exceeds ], it means an error relative to the maximum value,

4. Note the way of input of NFUN,

5 If ILL ind-icat_e's a value other than 0, 10000, and 30000, the value of the solution is not
necessarily inaccurate, .

6. The RKF4AS, RKF4AD, ODEBSS, and ODEBSD routines are very similar to these routines, Select

the most appropriate one to your purpose,

Bibliography

1) P, Merluzzi et al; "Runge-Kutta Integration Algorithms with Built-in Estimation of the
Accumulated Truncation Error®, Computing, Vol. 20, pp.1-16 (1978).

(1987. 06. 29)
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ALANGV/DLANGV (Langevin Function)

Langevin Function

Programm | Ichizo Ninomiya, April 1981
ed by

Format | Punction Language; 21 and 26 lines respectively

(1) Outline
ALANGY (DLANGY) calculates Langevin functions L{x)=cothx—1/x for a single (double)

precision real numbers x with single (double) precision,

(2) Directions
1. ALANGV(X) and DLANGV(D)
X(D) is an arbitrary expression of a single (double) precision real number type, DLANGV
requires the declaration of double precision,
2. Range of argument

There is no limit on arguments,

(3) Calculation method
1 If |x|=4, L(x)=xR(2?) is calculated with the optimal rational approximation R,
2. If 4<]x|<10 (or 4<|x [<20 in case of DLANGY),
L(x)=sign(z) (2e"*/(1-e!*)-1/]z|+1) is calculated,

3. If |x1=10 (or |x|=20 in case of DLANGY), L(x)=sign(x)(1-1/|x|) is calculated,

(4) Note

If L(x) is calculated based on the definition formula, precision is lost near x=0,

(1987.03. 31)
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ALOG1/DLOG1/QL0OG1/CLOG1/CDLOG1/CALOG1 (Function log(1+x))

Punction log(1+x)

Programm | Ichizo Ninomiya, April 1981, April 1977, December 1987
ed by v

Function Language: FORTRAN; Size: 18, 24, 34, 14, 15, and 15 lines
respectively :

Pormat

(1) Outline
ALOG1 (DLOG1, QLOGI) calculates log(l+x) for single (double, quadruple) precision real numbers T

with single (double, quadruple) precision,

CLOG1(CDLOG], CALOGI) calculates log(l+Z) for single (double, quadruple) precision complex
nunbers 2 with single (double, quadruple) precision,

(2) Directions

1. ALOG1(X), DLOG1(D), QLOG1(@), CLOG1(C), CDLOG1(B), and CQLOG1(Z)

X(D, Q) is an arbitrary expression of a single (double, quadruple) precision real number type,
C(B,Z) is an arbitrary expression of a single (double, quadruple) precision complex number

type. Functions other than ALOG] require the declarations of corresponding types,

2. Range of argument
X>-1, D>-1, and @>-]1 for ALOGI, etc.

C+#-1, B#-1, and Z#-1 for CLOGI, etc.

3. Brror processing

If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as (0, . (See "FNERST,")

(3) Calculation method
1. ALDG1/DL0OG1/aL0G1
(1) If x<-1, an error is assumed,

Q) If -1/2=x<1, transformation y=x/(x+2) is performed, and log(l+x)=log(l+y)/(1-y) is

calculated using the polynomial approximation of Yy,

3) If -1<x<~1/2 or x =1, log(l+x) is calculated as it is by the elementary function log(x
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2. CLUGl/CDLUG;/CQLUGl
(n If lz]=1
log(1+(2+x) -x+1P)/2+itan™ (u/(1+x)) is calculated. Where, z=x+iy,
log(1+(2+x)x+1?) is calculated using ALOGL/DLOG1/QLOGL, and tan™'(u/(1+x)) is

calculated using the standard function ATAN2/DATAN2/QATAN2,

(2 If |1+z]#0, log(1+2) is calculated as defined,
(3) If [1+z]=0, an error results,
(4) Note
If the function in this section is calculated using the staﬁdard function as defined, precision
is lost near the origin,

(1987. 07. 31) (1988. 02. 15)
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ASINH/DASINH/QASINH, ACOSH/DACOSH/QACOSH., and

ATANH/DATANH/QATANH (Inverse Hyperbolic Function)

Inverse Hyperbolic Function

Programm | [chizo Ninomiya, April 1974, revised in April 1977
ed by

Format Function Language: FORTRAN; Size: 18, 26, 37, 11, 12, 11, 18, 24,
and 34 lines respectively

(1) Outline
ASINH (DASINH, QASINH), ACOSH(DACOSH, QACOSH), and ATANH(DATANH, QATANH) calculate sinh"a:,
Cosh"x, and tanh 'z respectively with single (double, quadruple) precision for a single

(double, quadruple) precision real number x,

where,
sink 'z=log(x+V1+22)
cosh™'z=log(x+~1%-1)

“lp=l 1og XX
tanh™ x=75 log 4=

2 Direc‘tions
1. ASINH(X), ACOSH(X), ATANH(X), DASINH(D), DACOSH(D), DATANH(D), QASINH(@), QACOSH(a),
QATANH (@)

X(D, Q) are arhitirary expressions of a single (double, - quadruple) precision real type, The
name of a function of double (quadruple) precision requires the declaration of double
(quadruple) precision,

2. Range of argument

An inverse hyperbolic sine function has no limitation on arguments,

X=1, D=1, and @=1 for an inverse hyperbolic cosine function, |

|X1<1, ID|<1, and JQ]<1 for an inverse hyperbolic tangent function,

3. Brror processing
If an argument outside the range is given, an error message is priﬁted, and the calculation

is continued with the function value as (. (See FNERST.)
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(3) Calculation method
1 ASINH(DASINH)
(1) If |x|<3/4, sinh™'x is calculated by polynomial approximation,
(2) If |x|=3/4, the following calculation is executed,
y=|z| ,sinh"x=sign:t-sinh"y,sinh"y=log(y+m)
@) If y24096(y23-10%), sinh”'y=log2y.
2. ACOSH(DACOSH)
1 If &:<1, an error is assumed,
2 If 1<r<4096(1<r<3°108), the following calculation is executed,
cosh"x=log(:c+«/1_2-_l—)
@) 1f x<4096(x23-10%), cosh™'z=log2x,
3. ATANH (DATANH)
(1) If |x|=1, an error is assumed,
@ If |1x1=<1/3, tanh 'z is calculated by polynonmial approximation,
(3) If 1/3<|x|<1, the following calculation is executed.

-1 lix
tanh 1=75 log 1z

k4

(4) Note

All the functions in this section are simple functions that are defined with a logarithmic
function, However, if they are calculated as described in the definition expressions, precise
values cannot be obtained for the argument of small absolute values, Since special measures are

taken for the argument of small absolute values, values of the functions of this section do not

suffer the drop of accuracy,

(1987. 06. 30)
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CABS1/CDABS1/CQABS1 (Sum of Moduli of Real and Imaginary Parts of a Complex Number)

Sum of Moduli of Real and Imaginary Parts of a Complex Number

Programm | Ichizo Ninomiya, January 1980
ed by

Format Function Language: Assembler; Size: 42 lines

(1) Outline
CABS1 (CDABS1, CQGABS1) calculates l121l |=|_x|+|y| for a single (double or quadruple)

precision complex number 2=x+1iy with single (double or quadruple) precision,

(2) Directions
1. CABS1(C), CDABS1(B), and CQABS1(Z)
C (B, Z) is an arbitrary expression of a single (double, quadruple) precision complex
number type, CDABS1 (CQABS1) requires the declaration of double (or quadruple) precision,

2. There is no limit on arguments,

(3) Note
1. The elementary external function CABS (CDABS, CQABS) gives the absolute value
hzl 2=|z|=/\/ 1:2+y2 of a usual meaning of complex numbers 2=x+iy, However, it contains a
" square root and cannot be calculated directly, Thus, it is slow in calculation speed,
. In a convergence test, the smallness of complex numbers can be fully checked with the sum of
simple absolute values [I=1l |, This is the raison d'etre of the presént function routine,
By the way, in the tests with the same e, that is, in N=ll2<e and 2l <&, the latter
is stronger. That is, if =zl {<e, we always have 1=l 2<e,
2. CDABS1 (CQABS1) can be replaced with DCABS1 (QCABSI).

(1987. 06. 30)
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COMB/DCOMB/QCOMB (Binomial Coefficient)

Binomial Coefficient

Programm | Ichizo Ninomiya, April 1982
ed by

Format Function Language:vFOR‘l‘RAN; Size: 25, 26, and 26 lines respectively

(1) Gutline
COMB (DCOMB, QCOMB) calculates the following binomial coefficient for integers m,n with single

(double or quadruple) precision,

(2) Directions
1. COMB(M,N), DCOMB(M,N), and QCOMB (M, N)
M and N are arbitrary expressions of an integer type,
2. Range of argument
1=, 0=N=M
However, the range that function values overflow is excluded,
3. Error processing
If an argument outside the range is given, an error message is printed, and the calc.ulation

is continued with the function value as (. (See "FNERST. ")

(3) Calculation method
1. Let k=min(n,m-n),

2. If m<56 and k>8, we compute as follows; calling FCTRL (DRCTRL, QFCTRL).
. m!
k= T m-%) 1

3. In a case other than the above,

the recurrence formula
mCr=mC,-1 - m—_;:+1_

is repeated, beginning from mCo=1.
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EXP1/DEXP1/QEXP1, CEXP1/CDEXP1/CQEXP1 (Function exp(x)-1)

Function e*-1

Programm | Ichizo Ninomiya; December 1987, April 1981
ed by

Format | Function Language; FORTRAN  Size; 21, 25, 28, 19, 21, and 21
lines respectively

(1) Outline
EXP1, DEXP1, and QEXP1 each calculate €*-1, with single, double, or quadruple precision, for a
single, double, or quadruple real number X, |
CEXP1, CDBXP1, and CQEXP1 each calculate €-1, with single, double, or quadruple precision, for
a single, double, or quadruple complex number =,
(2) Directions | .
1. EXP1(X), DEXP(D), QEXP1(Q), CEXPI(C)..CDBXPI(B). and CQEXP1(Z)
X, D, and Q are arbitrary single, double, and quadruple real expressions respectively,
C, B, and Z are arbitrary single, double, and quadruple complex expressions res;pectively.
The function names other than those for single precision need the declaration of the
corresponding types,
2. Range of argument
EXP1 etc.: X=174.673,Ds174.673,Qs174.673
CEXP1 etc, : REAL(C)§174.6'73,REAL(B)§174.673,REAL(2)§174.673 )
| IMAG(C) | s2"%, | IMAG(B) | s2%%x, | IMAG(Z) | s2'%x,
3. Error processing |

If the specified argument is outside the range, an error message is printed but calculation

continues with the function value assumed to be (0, (See FNERST.).

(3) Calculation method
1. EXP1/DEXP1/GEXP1
(1) f(x)=-1 in case of x<-18. 421 (in case of x<-41. 447 with DEXP1, and in case of
x<-77.633 with QEXP1).

(2) In case of |x|<1, polynomial approximations P and Q are used to calculate
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e*-1=2xP(z%)/ 1 Q(z))-zP (%) ].
(3) In case of X other than those in (1) and (2), €™-1 is calculated as defined,
2. CEXP1/CDEXP1/CAEXP1
(1) In case of Ix1sS1,
(e’—l)Cosy-Zsinzy/2+ie’siny is calculated, x+iy is used as the argument,
EXP1/DEXP1/QEXP1 is called to calculate e*-1, ‘

(2 Incase of |x| >, e*(cosy+isiny)-1 is calculated as defined,

(4) Note

If the function in this section is calculated by the standard function as defined, severe
cancellation occurs near the origin,

(1987. 07. 31) (1988. 01. 27)

- 284 .



FASTEE (Past High Precision Calculation of e)

Fast High Precision Calculation of e

Programmed { Ichizo Ninomiya, January 1983
by
Format Subroutine Language; FORTRAN and assembler

Size; 63 and 212 lines respectively

(1) Outline

FASTEE calculates and outputs the value of e at high speed with required precision,

(2) Directions

CALL FASTEE (N, P, W, ILL)

Argument Type and Attribut Content
kind (x1) e
N Integer type | Input | Number of decimal digits of e, 100=<N
P Double Work Size of N/10,
precision area
real type
One-dimensio
nal array
W Double Work Size of N/10.
precision area
real type
One-dimensio
nal array
ILL Integer type | Output | Error code,
ILL=0: Normal termination,
ILL=30000: 100>N

(3) Calculation method
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The Taylor series e=141/1141/2141/31++++ is truncated at the n-th term where n!>10=x(N) is
established according to the required number of digits N, Then, it is arranged into

=2+41/2(1+1/3 (1++<++(1/(n-1)) (1+1/n)) -++)), and calculated in the order of n, n-1, --.

(4 Note -
1. The output is separated every 10 digits, and printed every 100 digits per line,

2. The calculation speed on the M-200 is listed below,

N 1000 10000 100000

CPU | 0.012 second| 1.0 second | 100 seconds

(1987. 08. 11)
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FASTPI (Past High Precision Calculation of =)

Fast High Precision Calculation of =«

Programmed | Ichizo Ninomiya, 'January 1983

by

Format Subroutine Language: FORTRAN and assembler; Size: 54 and 382 lines

respectively

(1) Qutline
FASTPI calculates and outputs the value of @ with required precision,
(2) Directions

CALL PASTPI(N,P, W, ILL)

Argument Type and Attribut Content

kind (:1) e

N Integer type | Input | Number of decimal digits of m=. 100=N

P Double Work Size of N/10.
precision area
real type
One-dimensio
nal array

W Double Work Size of N/10.
precision area
real type

One-dimensio

nal array

ILL Integer type | Output | Error code, ILL=0: Normal termination,

1LL=30000: 100>N

(3) Calculation method

Machin's formula: #z=4arctan(l/5)-16arctan(1/239) is used,
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The Taylor series arctan(l1/md)=1/m-1/3m**3+1/5m**5—-«+ is truncated at
the tern of m*%x(2n+1)>10%xxN according to the required number of digits N and arranged
into
arctan(l/md)=1/m(1-1/m*%*2(1/3-1/m**2(1/5--++-1/m*%2(1/(2n-1
)-1/m*.*2 €1/C2n+1)) -+ -))) before the terns of the two a;c tangents are calculated

in the order of 2n+1, 2n-1, «--,

(4) Note
1. The output is separated every 10 digits, and printed every 100 digits per line,

2. The calculation speed on the M-200 is listed below,

N 1000 10000 100000

CPU | 0.056 second|{ 5 1 seconds| 643 seconds

Bibliography
1) Ichizo Ninomiya; "Calculation of m,” Proceedings of the 25th Symposium of Information
Processing Soc. of Japan (I11), pp. 1167-1168 (1982).

(1987. 08. 06)
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SINHP/DSINHP/QSINHP,COSHP/DCOSHP/QCOSHP.,
TANHP/DTANHP/QTANHP and COTHP/DCOTHP/QCOTHP (Trigonometric Functions for

the Argument = /2-x)

Trigonometric Functions for the Argumentm/2-x

Programm | Ichizo Ninomiya, January 1980
ed by ‘

Format Function Language; Assembler (guadruple precision type is FORTRAN)
Size; 117, 152, 47, 117, 152, 47, 134, 174, 55, 134, 174,
and 55 lines respectively

(1) Outline

SINHP (DSINHP, QSINHP), COSHP (DCOSHP, QCOSHP), TANHP (DTANHP, QTANHP) and COTHP (DCOTHP, QCOTHP)
calculate sinz/2-Xx, cosxw/2-x, tanm/2-x and cotm/2-x respectively with single (double,

quadruple) precision for a single (double, quadruple) precision real number x,

(2) Directions

1. SINHP(X), COSHP(X), TANHP(X), and COTHP(X), DSINHP(D), BCOSHP(D), DTANHP(D), DCOTHP(D),

QSINHP(Q), QCOSHP(Q), QTANHP(Q), QCOTHP(Q)

X (D,Q) is an arbitrary expression of a single (double, quadruple) precision real type,
The name of a function of double (quadruple) precision requires the declaration of double
(quadruple) precision, |

2. Range of argument
|X|s2"9=5.2.10°%, |D| s25'=2.2-10", | Q| s2!%=8.1-10"
3. Error processing
If a given argument is outside the range or a singular point, an error message is printed,

and the calculation is continued with the function value as 0. (See FNERST,)

(3) Note
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1. If an argument contains # as its factor, the value of a trigonometric function can be
calculated using usual external elementary functions such as SIN and COS. However, it is more
reasonable to use various functions in this section because of the following reasons:

(1) The value of # need not 'be written, (2) The speed is faster by two multiplications,

(3) Precision is higher,

For example, SINHP(X) is better than SIN(l. 570796#X), and DCOSHP(¥+X) is better than
DCOS (3. 1415926535897932D0xX).

COSHP (1. 0) becomes precisely 0, but COS(1. 570796) does not,

2. HP at the end of a function name means HALF PI, Because H at the end of a hyperbolic
function name means HYPERBOLIC, do not confuse them with each other,

3. If an argument contains an error, the function value contains an érror in its last digits,
The number of incorrect digits is roughly the same as the number of digits of integral part of
the argument, This is similar for standard functions,

4. Precision cannot be guaranteed for the function value near the pole of TANHP and COTHP,

(1987. 06. 29)
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