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I. NUMPAC rout ine 

Library programs of NUMPAC are roughly divided into two cathegories. ie .• function subprograms 

and subroutine subprograms. There are some general rules for each of them and the rules are used 

in this manual for simple description. Please read the following explanations carefully before 

using NUMPAC. 

(I) Function subprogram 

(I) Function name and type 

The function name of the real type follows the rule of the i~plicit type specification of 

FORTRAN. 

Example : BJO. ACND 

The function name of the double precision real type consists of the function name of the 

corresponding real type with adding 0 to the head of it. The function name of the quadruple 

precision real number type (if exists) c~nsists of the function name of the'corresponding real 

type with adding Q to the head of it. However. ther~ are some exceptions. 

Example : SINHP. DSINHP. QSINHP 

Example of exception : ALOGl. DLOGl. QLOGl 

It is severely observed that the function name for double precision begins with 0 and that for 

quadruple precision begins with Q. Note that the function name should be declared with a 

suitable type in each program unit referring to the function. 

Example : DOUBLE PRECISION DCOSHP. DJl 

REAL*8 DCELll,DCELI2 

REAL*16 QSINHP,QASINH 

Because the function name of double precision always begtns with 0 and that of quadruple 

precision with Q, it is conve'nient to use the IMPLICIT statement considering other variables. 

Example: IMPLICIT REAL*8{D) 

IMPLICIT REAL*8{A-H,O-Z) 

In this way. you need not declare the function nJme. separately. 

(2) Accuracy of function value 

Function routines are created aiming at the accuracy of full working precision as a rule. 

However. this cannot be achieved completely because of fundamental or technical difficulty I). 
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Especially, it is not achieved ·for functions of two variables and functions of complex variable. 

(3) Limit of argument 

(a) The domain is limited. 

Example : ALOGl 

This function calculates log(1 +x) Therefore, x>-1 should be satisfied. 

(b) The singular point exists. 

Example : TANHP 

This function calculates tan 7CXJ2. Therefore, an odd integer x is a sungularity. 

(c) The function value overflows. 

Example : 810 
, 

This function is for modified Bessel function lo(x), and for big x, eX is calculated 

referring to standard function EXP. Therefore, overflow limit 252Z0ge2:!:r174.673 of EXP 

is the upper bound of the argument of this function. 

(d) The function value becomes meaningless. 

Example : BJO 

This function is for Bessel function Jo(x), and standard f~nctions SIN and COS are referred 

to for big x. Therefore, the argument limit I X I :ii2187CiT8.23-10S of SIN· and COS is the 

limit of the argument of this function. 

There are many such examples. Note that the value 2 187C is not a sharp limit and that the 

number of significant digits for the function decreases gradually as approaching this limit even 

if within this limit. 

When the function value underflows, it is set to 0 without special processing. 

(4) Error processing 

When the argument exceeds the limit, an message for the error is printed and the calculation is 

continued with the all function values set as O. The message consists' of the function name, the 

argument value, the function value (0) and the reason for the error. 

Example: ALOGl ERROR ARG=-0.2000000E+Ol VAL=O~O ARG.LT.-l 

The error processing program counts the frequency of the errors and stops the calculation if 

the frequency exceeds a certain limit, considering the case that the calculation becomes 

meaningless when the error occurs one after another. Because all users do not want this, you can 

adopt or reject this processing including the print of the message, Subroutine FNERST is 
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provided for this purpose and you can use it in the following way. 

CALL FNERST(IABORT,MSGPRT,LIMERR) 

Argument Type and Attrib Content 
kind ute 

I ABORT Integer Input IABORT=O The calculation is not stopped. 
type I ABORT =1=0 The calculation is stopped. 

MSGPRT Integer Input MSGPRT=O The message is not printed. 
type . MSGPRT=I=O The message is prInted . 

LIMERR Integer Input Upper bound of frequency of errors. 
type 

If this subroutioe is not called, following values are set as a standard value. 

IABORT=l,MSGPRT=l,LIMERR=10 

(11) Subroutine subprogram 

(1) Subroutine name and type 

There is no meaning of the type in the head character of the subroutine name. Subroutines with 

the same purpose and the oifferent type are distinguished by the ending character of the name. 

The principle is as follows. 

Single precision : S Complex number : C Vector computer single precision' 
Double precision : D Double precision : V 
Quadruple precision complex number : B Vector computer double precision 
: Q Quadruple precisiun : W 

complex number : Z Vecto~ computer complex number : X 
Vector computer double precision 
complex number : Y 

However, there are some except~ons. 

Example Example of exception 

LEQLUS/D/Q/C/B FFTR/FPTRD 
RK4S/D/Q/C/B MINVSP/NINVDP 
GJMNKS/D/Q 

(2) Argument ••• The following four kinds are distinguished as an attribute of the argument. 

Input Users should set this data before calling the subroutine. As long as it is not 
especially noticed, the data is preserved as it is at the subroutine exit. This 
includes the case when the function name and the subroutine name are used as 
arguments. Note that those names should be declared with EXTERNAL. 
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Output This data is created in the subroutine and is significant for the user. 

Input/Du Data is output in the same place as the input to save area. When input/output 
tput argument is a single variable, you should not specify a constant as a real 

argument. For instance, if LBQLUS is called with ronstant 1 specified in 
input/output argument and is ended normally, IND=O is output, but all constants 1 
are changed to l 

Work It is an area necessary for calculation in a subroutine, and the content of the 
area subroutine at exit is meaningless for users. 

The type and attribute of the argument are explained for each subroutine group. The explanation 

is for single precision.- For others, please read it with exchanging the type for the suitable 

one. 

When a subroutine is called with an argument, but the argument is not used, the area for the 

argument need not be prepared, and anything can be written in that place. The same area can be 

allocated for the different arguments, only if it is pointed as it like SVDS. There is an 

example (FT235R) that special demand is requested for the argument. 

It is requested for users to provide the function routine and the subroutine for the numerical 

integration routine and the routine for solving differential equations. In this case, -the 

number, the type, and the order of the argument should be as specified. If parameters except a 

regulated argument are necessary, they are allocated in COMMON area to communicate with the main 

program. Refer to the explanation of an individual routine for the example. 

1) Ichizo Ninomiya; ·Current state, issues of mathematical software", information processing, 

Vol. 23 and PP. 109-117(1982). 
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[ Opening source program to the public] 

The foll~wing source programs are published for users requesting them. Calculation can be 

requested directly, and the source I ist c.~n be output or can be copied in the shared fi le. The 

copied program cannot be given to the third party without the permission of this center. 

If you need to copy the source list in the card or the data set, please execute following 

procedures. 

(1) Input the following command for TSS. 

NLIBRARY BLM (library name) ~OS (data set name)~ ~SLAVE(ON)· 

When you need only the source list, you can omit OS anft SLAVE. When SLAVE(ON) is specified, 

all slave routines of the program will be output. 

(2) Execute the following job for BATCH. 

//EXBC NLIBRARY, BLM=program names[. OS=' data set names'] [. SLAVE=ON] 

You can have examples of the program usage with the following procedures. 

(1) For TSS 

EXAMPLE NAME (library name) [OS (data set name)] 

(2) For BATCH 

//EXEC EXAMPLE,NAMB=program names[, DS=' data set names'] 

Four kinds of manual listed below are prepared concerning library program. 

Numb Manual title Content 
er 

1 Library program and data list All library programs and data which can be 
used in this center are listed. 
Additionally, ~description format of the 
NUMPAC routine and notes on useD, DHow to 
choose the NUMPAC routineD

, and usage of 
error processing subroutine ~FNERSTD are 

~ described in this list. 

2 Guidance to use library program This volume describes the general use of 
programs except NUMPAC, which can be used in 

(General volume: GBNERAL VOL. 1) this center. 

5



3 Guidance to use library program This volume describes how to use the 
following five kinds of programs. 

(Numerical calculation : NUMPAC VOL.!) 1. Basic matrix operations 
~ System of linear equations 
3. Matrix inversion 
( Eigenvalue analysis 
5. Polynomial equation and nonlinear 

equation 

4 Guidance to use library program This volume describes how to use the 
following five kinds'of programs. 

(Numerical calculation: NUMPAC VOL. 2) l Interpolation. smoothing, and numerical 
differentiation and integration 

7. Fourier analysis 
8. Numerical quadrature 
9. Ordinary differential equation 

10. Elementary function 

5 Guidance to use library program This volume describes how to use the 
followlng nine kinds of programs. 

(Numerical calculation: NUMPAC VOL. 3) 11. Table functions 
12. Orthogonal polynomial 
13. Special functions 
I( Bessel fu~ction and related function 
Ii Acceleration of convergence of sequences 
II Linear programming 
It Special data processing 
It Figure display application. program 
It Others 

All these manuals can be output by D~tANUAL commandD. DPICKOUT commandD is available if you 

need part of the usage of individual program. 
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For NUHPAC users 

Please note the following and use NUMPAC effectively. 

(1) The user has the responsib~~ity for the result obtained by NUMPA~ 

(2) When the trouble is found, please report it to the center program 

consultation corner (Extension 6530). 

(3) Do not use NUMPAC in computer systems other than this center without 

permissio~ 

(4) To publish the result obtained NUMPAC, the used program names (for 

instance, *** of NUMPAC) should be referred to~ 

This manual was translated using Fujitsu's machine translation system ATLAS. 
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6. Interpolation. smoothing. and numerical 

differentiation and integration 

[Method of choice of interpolation and smoothing routines] 

NUMPAC offers a choice of routines depending on the way the data is given and whether the data 

contains error. When data is given in a form of a function and can be calculated with a function 

value at any point, the way of giving such data is called a function input. Chebyshev 

interpolation routines are suitable for such calculation. On the other hand. when discrete 

points are given as data without error or with a slight error. spline interpolation routines are 

recommended. If data contains error, the least square approximation routines can be used. 

Function input ---- Chebyshev interpolation FCHBIS. FCHB2S. and FCHB3S 

Discrete point input Interpolation (Given points are passed through.) 

When derivative values in high precision are required: 

Spline interpolation DSCI3A and DSCI3D 

When precision for graphics display is enough: 

Ouasi~Hermitian interpolation HBRM31 and flBRM32 

Smoothing (when data includes an error) 

l Linear model: Polynomial approximation LSAICS 

l Non-linear model: NOLLSl and SALS 
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AGFBS/D and AGFB2S/D (Automatic Grid-Fitting of Irregularly-Spaced Data by BRIGGS' 

Method) 

Automatic Grid-Fitting of Irregularly-Spaced Data by BRIGGS' method 

Programm Akihiko Yamamoto in September 1980 and revised in October 1984 

ed by 

Format Subroutine language: FORTRAN; size: 475, 476, 532. and 533 lines respectively 

(1) Outl ine 

AGFBS/D and AGFB2S/D obtain a function value at the mesh point in the rectangular region 

S(XO:5X:iiXt ,YO:aY:iYt) using Briggs' method (I) when the irregularly-spaced function data 

Zi(Xi,Yi) , (i=t",N) is given. The region S can come off the region where the function 

value Zi is distributed. That is, the function values at mesh points that are off the data 

definition area are also extrapolated, but it is desirable that the region of the function values 

is as large as the one where Zi(Xi, Yi) is distributed, to keep the reliability of the 

interpolated (extrapolated) values. If Zi( Xi, Yi) is the function value (i=t NN) at the 

point (Xi, Yi). and the rectangular region S is composed of IX meshes in the X direction and 

JY meshes in the Y direction. the coordinate (Xk.YL) at each mesh is as follows: 

xr-hx (K - t ) +XO t 

YL=hy(L-t )+YO, (L=1 NJY) 

where 

hx_Xt - XO hy- YI-YO 
- IX-t t - JY-t 

Then. the function' value at the mesh point (Kk, YL) is obtained wi th this subrout ine. and 

entered in the array U(K ,L). 

The calculation method is to solve the difference formula which is congerted from a partial 
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differential equation with such conditions that the total curvature is minimized with the 

function value Zi(Xi,Yi) as a boundary"value, using the iteration method (see bibliography 

(1) for deta i Is) • 

In the iteration matrix lJ(J(,~), the function value after (P-1) iterations is defined as 

wr1 (J( ,~), the function value after P iterations is defined "as lJP(J( t~), and the total of 

absolute correction values ~ is defined as 
IX JY 

~=E E IlJP(i ,j)-Ir1 (i ,j) I 
i g l j ... l 

If 

is met for the given £ (=E>O) , the iteration terminates. 

If e takes a very small value, the calculation is terminated at the iteration count (=IT). 

uO(J(,L). that is, the initial state of the iteration matrix U(J(,L) can be selected from the 

following five: 

(1) Quadratic surface obtained like least squares method 

(2) Pirst plane obtained like least squares method 

(3) Average value of Zi(Xi, Yi) 

(4) All 0.0 

(5) U(J(,~) of the previous result of call 

If the routine is iterated with the quadratic surface as the initial value from N to several 

tens, convergence often" becomes fast. However, if N > several hundreds, it does not change 

considerably. However, this is not always true because convergence depends on the number of data 

and its distribution state. 

In this method, however. the allowable number of data items Zi which depend essentially on each 

mesh is only one. Thus. the data Zi used to decide the function value of meshes is selected as 

I I 
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follows:Assume that more than one data item (Zi; i=l "'m) are distributed in a mesh. At this 

time. 

(i) The data (Zl) that is nearest to U(i, j) in AGPBS/D is assumed to be the typical value in 

the mesh. 

(ii) In AGPB2S/D. it is assumed that the average value of Zi ( i=l "'m) exists in the their 

center of gravity and be the typical value in the mesh. However. m~~ must be met. 

Therefore. the following differences are found between AGPBS/D and AGPB2S/D when two or more data 

exist in each mesh. 

(a) In AGPBS/D. all unnecessary data is rejected even if it exists in~. Thus. CPO time 

decreases a little as compared with AGPB2S/D. If the existing data containing an abnormal 

function value is accidentally rejected. grid fitting is normally done. Thus. this method is 

inadequate for grid fitting including abnormal data detection. 

(b) Because in AGPB2S/D. all the data existing in ~ (more correctly. specified as iLl;=~) is 

used. CPo time increases a little as compared with AGPBS/D. If the data containing an abnormal 

function value exists contrary to AGPBS/D. grid fitting is done with the abnormal state kept. 

Therefore. it is better to use AGPB2S/D for grid fitting such as checking all the data for 

abnormal function values. Generally. the rectangular region S is subdivided to an extent where 

up to two data items exist in a mesh. If no data contains an abnormal function value. the result 

is almost the same even if either of AGPBS/D and AGPB2S/D is uEed. 

(2) Directions 

Argument 

0 

CALL AGPBS/D (0. KO. NN. IX. JY. X. Y. Z. N. C. W. OM. B. JS. IT. ILL) 

CALL AGPB2S/D (0. Ko;NN. IX. JY. X. Y. Z. N. C. W. OM. B. JS. IT. ILL) 

Type and Attribut Content 

kind (*l) e 

Real type Input/ou I t era t ion ma t r i x U(K,~) where 

Two-dimens tput meshed function values are entered. It is useful as an input 

ional at JS=4 only. and starts the iteration with the result of the 

array previous call as the initial value. The size is IX -JY. 

12



Argument Type "and Attribut Content 

kind (*1) e 

KU Integer Input/ou Work area. Iteration-related information is entered. It is 

type tput useful as an input at JS=4 only. and can continue the 

Two-dimens iteration with the result of the previous call as an input as 

ional is. The size is IX .JY. 

array 

NN Integer Input The first subscript in the array declaration of U ,J(U. 

type 

IX Integer Input Number of mesh points in X 

~. 
type direction. XO is counted as 1 • and XI is counted as IX 

JY Integer Input Number of mesh points in Y direction. (YO is counted as I 

type • and Yl is counted as JY.) 

x Real type Input Value of irregularly-distributed discrete point input data 

One-dimens Xi. The size is N. 

ional 

array 

Y Real type Input Value of irregularly-distributed discrete point input dat~ 

One-dimens Yi. The size is N. 

ional 

array 

z Real type Input function value ~i in irregularly-distributed discrete point 

One-dimens input data (Xi, Yi). The size is N. 

ional 

array 

N Integer Input Number of discrete point input 

type data items Xi, Yi ,~i. N~4 

13



It 
Argument 

C 

W 

OM 

B 

Type and Attribut 

kind (*1) e 

Real type Input 

one-dimens 

ional 

array 

Real type Input/ou 

One-dimens tput 

ional 

array 

Real type Input 

Real type Input 

Content 

Rectangular region S where grid-fitting is done is specified. 

The size is four. 

C(t)=XO,C(2)=YO,C(3)=Xl,C(4)=Yl should 

be input. (XO<Xl , YO< Yl ) 

Work area. Iteration-related information is entered. It is 

useful as an input at J~ only, and can continue the 

iteration with the result of the previous call as an input as 

is. The size is 8N or larger. 

Convergence acceleration coefficient. The value to be input 

is 1 or ~ The appropriate value is about 1. 7. Divergence 

may occur if the value is too close to ~ 

If ()~/=1, no acceleration is made (that is, convergence is 

slow), but no divergence may occur. The output ILL must be 

checked~ 

(1 ~()M:i2) 

Convergence criterion~. If the total of absolute 

correction values for U(K ,LJ at each iteration becomes 

smaller than ~ times the first total, the iteration 

terminates. 

£=10-3",10-4 is appropriate even though it depends on the 

case. The output ILL must be checked.· "(E>O) 
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Argument Type and Attribut Content 

JS 

IT 

kind (*1) e 

Integer 

type 

Integer 

type 

I nput/ou The i nit i a 1st ate 0 f U i s 

tput specified as an input. (O~JS~4) 

JS=O···The average value of Zi (Xi, Yi) is assumed to be 

an initial value. 

=1··· The first plane obtained by least squares method is 

assumed to be an initial value. 

=2··· The quadratic surface obtained by least squares 

method is assumed to be an initial value. 

=3···The value 0.0 is assumed to be an initial value. 

=4··· U of the result of the 

previous call is assumed to be an initial value. At this 

time, the iteration is 

executed reusing U,KU, It'. Thus, U,KU, It' must be 

retained just as it was called. This input is useful 

when the intermediate iteration process is checked. 

The total number of data items Zi that did not exist in 

the rectangular region S or were not used for 

grid-fitting even though they existed there is entered as 

an output. 

Input/ou This argument has the following meanings as an input. ( 

tput IT~-l ) 

IT=-l···Only the initialization of U is executed, and 

iteration is not executed. JS=Of'W3 must be specified. 

IT=O··· U is init.ialized, and 

iteration-related information is calculated, but iteration is 

not executed. Not only U but also KU,Jt' is output. 

JS=Of'W3 must be specified. 

IS 
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Argument Type and Attribut Content 

ILL Integer 

type 

IT>O··· Iteration count. At least 200 iterations are 

required for the calculation to settle even though the count 

depends on OM. 

M at E'f/EI~£(=E) is entered as an output. ~ If E is a 

very small value. it takes the value when it was input. 

Input/ou This argument has the following meaning as an input for 
AGPBS/D. 

tput When the discrete point input data Zi (Xi, Yi) is near the 
edge of the region S (that is, 
XO~Xi ~XO+2hx ,Xl-2hx~Xi ~Xl ,YO~Yi ~YO+2hy, 
or Yl-2hy~Yi:5Yt is met). whether to use Zi for 
fitting is specified as the one on the mesh point. 
ILL:;!··· The above Zi is not used as all. 
ILL~2··· If Zi is within hx/ILL in the X direction and 
within hy/ILL in the y direction from one of the four corners 
(mesh points) of the meshes where Zi exists. it is used as 
one on the mesh point. That is. all of the above Zi is 
used at ILL=2. but it is rarely used at ILL~3 depending on 
the distance. 
Generally. if the region S is subdivided enough by IX and JY. 
the data can be input with ILL=2. 
Represents the following termination statuses as an output. 
0······· Normal termination. 
10000··· Normal termination. Because an error occurred in 
the initialization specified with JS. the routine was 
executed as JS=O. 
20000··· Normal termination. According to the determination 
by B. the iteration terminated at the count that is less than 
specified with IT. 
30000··· Abnormal termination. Limits on the argument was 
exceeded. 
40000··· Abnormal termination. E!'~ tOE1 is met. and 

divergence is judged to occur. The routine must be 

reexecuted with OM reduced a little. 

50000· •• Abnorma I term i na t ion. E20 ~ O. 5E lis met. and 

divergence is judged to occur. The routine must be 

reexecuted with OM reduced a little. 

*1 Por double precision subroutines, all real types should be double precision real types. 

(Note 1) All the Zi (Xi, Yi) need not exist in the rectangular region S. 
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(1) Data reduction and sorting times are shortened. 

(2) To reduce the size of the work area, only the data in the S should be input as much 

as possible. 

(Note 2) If Zi (Xi, Yi) is on the mesh point from the beginning, the value (function value) 

remains constant and does not change in the iteration process. 

(Note 3) CPU time at IX=JY"'tOO,IT",tOO,N"'24(5000) is about 1. 68 (2.00) seconds. 

Generally, CPU time increases (decreases) in proportion to the second power with respect to 

IX, JY and the first power with respect to IT. The CPU time of Zi (Xi, Yi) for sorting 

and reduction at N to 2000 is about 0.1 second, and increases (decreases) in proportion to the 

first power with respect to N. 

(Note 4) If the number of data items in a mesh exceeds 999 in AGPB2S, the data item of later than 

the 1000-th is automatically rejected. 

(Note 5) Iteration is forcedly terminated in either of the following cases: 

(i) E20 
-I i:O.5 
E 

(IU=50000) 

(ii) (IU=40000) 

• If iLL~40000, it is better.to reduce and reissue ()}1. 

Bibliography 

1) Briggs, I. C. (l974), , Machine Contouring using Minimum Curvature', Geophysics, 39, 39-48. 

(1987. 08. 10) (1988. 06. 01) 
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CFS1A and SFC1A (Curve Fitting by Splines) 

Curve Fitting by Splines 

Programm- Kazuo Batano, January 1982 
ed by 

Pormat Subroutine language: FORTRAN; size: 593 lines 

(l) Out} ine 

SFS1A and SFC1A apply I r: 1 :ar:aN to least squares approximation using the order k (degree 

k-l) polynomial spl ine that has 

Q= X l=XO<Xl <. • • <Xn= X tFb 

as nodes when the observation v!lue Ir and observation error Or are given at N discrete 

points. 

Let's define the normalized 8-splines as follows: 

(t • )=(t- )k_t={(t-X)k-t: t~x 
9k ~x X + O:t<x 

The coefficients cj:-k+l ~j~n-l of the linear combination 
n-t 

S(x)= L cjNj(x) 
jra-k+t 

of the normalized 8-spline Nj(x) is determined so that the square sum of residuals 
N n-t 

J=L J {lr- L CjNj(Xr)}2 
T=l 0 r2 je-k+t 

be minimized. (CFS1A) 

Also, expression (3) is calculated for the given variable x. (SFCIA) 

(2) 0 i rect ions 

ot '. 

(1 ) 

(2) 

(3) 

(4) 
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CALL CPS lA (XR. PR. SI GMAR. X I. CJ. DRBSP. STAT I. I H I ST. PERCT. WORKC. I WORKC. N. K. KOSU. I WR. I CON) 

Argument Type and Attribut Content 

kind e 

XR Real type Input Discrete point x r: 1 :ir:aN. Size N. 

One-dimens 

ional 

array 

PR Real type Input Observation value 1 r: 1 :ir~N. Size N •. 

One-dimens 

ional 

array 

SIGMAR Real type Input Measurement error or: 1 :ar:aN. Size N or 1. 

One-dimens If Or differs with r t IWR=l is assumed. 

ional I f a.r i S con Std n t i r res p e c t i v e 

array of r t it should be entered in SIGMAR(l)t and IWR=O is 

assumed. At this time; the size of the array SIGMAR can be 1 

(array declaration is not required). 

XI Real type Input Node Xi :O~i~n. Size n+1. 

One-dimens Xi should be entered in XI(i+l). 

ional 

array 

CJ Real type Output Coefficient assigned to B-spline 

One-dimens 

ional 

arra~ 

Cj:-k+l~j~n-1. Size n+k-t. 

Cj is entered in CJ (j+k). 

DRBSP Real type Output Decrement by coefficient Cj in square sum of residuals. 

One-dimens dj=CjL~=11/o~ 1 rN j (x r). Size n+k-l. 

ional dj is entered in DRBSP (j+k). 

array 
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Argument Type and Attribut Content 

kind e 

STATI Real type Output Array of size 3. 

One-dimens STATI(I): Square sum of residuals J (expression (4) ) is 

ional entered. Generally, the relationship 

array ~ ~ 2 E;-J .. J= rail I rlr- i=-k+ldJ eXIsts. 

STATI (2): 0 =J I (N- (n+k-l )) is entered. 

If this value is approximately I, the result is assumed 

to be appropriate. 

STATI (3) : The amount 

AIC=NeflJ+2(n+k-l) is entered. 

IHIST Integer Output The residual histogram is entered. Size IHIST(2,25). 

type 

Two-dimens 

ional 

array 

The number of r's that meets 

-O.2iil!; {I r-E;~k+ICjNj(xr) } /0 r>-O.2(i+t) is 

entered in I H I ST (1, i +1>' 

The number of r's that meets 

O.2i < {I r-E;~k+ICjNj(x r) } /0 r:iO.2( i+1) is 

entered in IHIST(2. i +1). 

PERCT Real type Output The cumulative frequency distribution of residuals is 

One-dimens entered. Size PERCT(lO). 

ional If the number of r's that meets 

array i-I:; 11r-E;~k+tCjNj(ir) Ilor<i is K(i), 

PERCT(i)=E~=IK(j) IN 
: i=l ,2, • • • ,10 
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Argument Type and Attribut Content 

kind e 

WORKC Real type Work Size WORKC ( (n+k+N- t ) (k+ t ) - t ) . 

One-dimens area 

ional 

array 

IWORKC Integer Work Size IWORKC(N+n+k-t). 

type area 

One-dimens 

ional 

array 

N Integer Input n. Number of ncdes - 1 

type 

K Integer Input k. Order of spline~ 

type 

KOSU Integer Input N. The number of data items N. 

type 

-IWR Integer Input o or 1 Determines whether the measurement error Or is 

type constant irrespective of the data. 

If Or is differs with r~ IWR=l is assumed. 

If Or is constant irrespective of r. IWR=O is assumed. 

ICON Integer Output ICON=O: Normal termination. ICON<O: Abnormal termination. 

type 

CALL SPCIA(XP. I. L. PP. N. K. XI. CJ, WORKF. ICON) 

Argument Type and Attribut Content 

kind e 

XP Real type Input Point X where S(x) is to be calculatei XO:ix=axn must be 

met. 
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Argument Type and Attribut Content 

kind e 

Integer I nput/ou i that meets Xi:an <Xi+ 1. XI (1+ t ) :aXP<Xl (1+2). 

L 

type tput 

Integer 

type 

Input This subroutine can calculate the l-th order derivative of 

S(x). 1 i n S(l) (x) to be 

evaluated. 0:; 1 :ak-t must be met. 

FP Real type Output Calculated value of S(l) (x). 

N Integer Input Same as CPSIA. 

type 

K 

Xl 

CJ 

WORKF 

ICON 

Integer 

type 

Input 

Real type Input 

One-dimens. 

ional 

array 

Real type Input 

One-dimens 

ional 

arr~y 

Real type Work 

One-dimens area 

ional 

array 

Integer 

type 

Output 

Same as CFSIA. 

Same as. CFSIA. 

Coefficient assigned to 8-spline. cj:-k+t:aj~n-1. 

Size n+k- t . Output of CFSIA. 

Size k. 

ICON=O: Normal termination. ICON<O: Abnormal termination. 

(1987. 05. 20) (1987. 05. 20) (1988. 04. 22) 
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CFS2A and SFS1A (Surface Pitting by Splines) 

Surface Pitting by Splines 

Programm Kazuo Hatano, January 1982 
ed by 

Pormat Subroutine language: PORTRAN 

(1) Out line 

CPS2A and SPSIA apply fT,S : 1 :ar~M, 1 ~s~N to least squares approximation using the 

k-th (Di k-I-st) degree polynomial spl ine that has 

Q= x 1 =XO<Xl < - - -<xv= X l1=b 

as the X direction node and 

(1) 

(2) 

as the y direction node when the observation value fT,S, and the observation error IlT-;ls are 

give at M and N mesh points (x T , !is) : 1 ~r:aM, 1 :a.,ssN. That is, the coefficient 

Ca ,p:-k+1 :sa:; m-I ,-k+l :;p:;n-1 of the normalized D-spline bilinear combination 
.-1 n-l 

S(x,y)= E E Ca.pNa(x)Np(y) (3) 
a;;;z-k+ 1 P",,-k+ 1 

is determined so that the square sum of residuals 
If N .-1 n-l } 

. J=E E AT/ 2{fT.S- E E Ca,pNa(xT)Np'(ys) 2 
Ta 1 S"" 1 - Il s aD~k+ 1 P=-k+ 1 

(4) 

be minimized. (CPS2A) 

Expression (3) is calculated for given variables x, y. (SPSIA) 

(2) Direct ions 

CALL CPS2A(XR. YS. PRS. SIGMXR. SIGMYS. XI. YJ. CAB. DRESP. STATI. IIIIST. PERCT. WORKC. IWORKC. KOSUX. KOSUY. NX. 

NY. K. I WR. KOSXD. NXKID. I CON) 
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Argument Type and Attribut 

XR 

YS 

FRS 

SIGMXR 

SIGMYS 

XI 

kind e 

Real type Input 

One-dimens 

ional 

array 

Real type Input 

One-dimens 

ional 

array 

Real type Input 

Two-dimens 

ional 

array 

Real type Input 

One-dimens 

ional 

array 

Real type Input 

One-dimens 

ional 

array 

Real type Input 

One-dimens 

ional 

array 

Content 

Coordinates IT: 1 ~r~M at mesh points in X direction. 

One-dimensional array of size R 

Coordinates y s: 1 ~s~N at mesh points in y direct ion. 

One-dimensional array of size N. 

Observation value fT,S: 1 ~r~M, 1 ~s:aN. Two-dimensional 

array of size NX*NY. 

The measurement error of fT,S is given by the two-number 

product X T' ;:is. 

X T: 1 :ir:iM should be entered in SIGMXR, Size M or 1. 

If X Tt;:iS differ with r ,S, WR=l must be as~umed. 

If X Tt;:iS are constant irrespective of r ,s, they should be 

entered in SIGMXR(l} and SIGMYS(l} respectively, and IWR=O is 

assumed. At this time, the size of the arrays SIGMXR and 

SIGMYS can be 1 (array declaration is not required). 

;:is: 1 :fi.s:aN in X Tt ;:is, the measurement errors of f T .s, 

should be entered. 

Size N or 1. 

Node xi:O~i~m of X direction. Size m+l. 

Xi should be entered in XI(i+r). 
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Argument I Type and I Attribut Content 

kind e 

YJ Real type I Input Node Yj:O~j~n of Y direction. Size n+t. 

One-dimens Yj should be entered in Y J( j+t). 

ional 

···W~>.~ array 
-., '.1 

CAB Rea I type I Output Coefficients assigned to 

Two-dimens B-spline: ca,p: -k+l :5asm-l, and -k+l :iJJ~n-l . Size 

ional (m+k-l) (n+k-l). 

array Ca,p is entered in CAB(a+k,fj+k). 

~:: DRBSP Rea I type I Output De c rea s e by c 0 e f f i c i e n t ca,p i n 

Two-dimens the square sum of residuals. 

ional da,p=ca,pr:!=tr::=t1 / Irii~l r,sxNa(Xr)Np(ys) . 

array The size (m+k-l) - (n+k-l )aa,p is entered in DRBSP 

(a+k,/3+k) . 

STATI I Real type I Output I Array of size 3 

One-dimens STATI (1): Squares sum of residuals, J (e~pression (4», is 

ional entered. Generally, the relationship 

array 
~.-t ~n-t 

J= L."a=-k+tL."P=-k+tda,P exists. 

~, STATI(2): The amount o=J/(MN-(m+k-l) (n+k-t)) is 

entered. 

If this value is approximately 1, the result is assumed to 

be. appropr i ate. 

STATI(3): The amount AIC=M -NlnJ+2(m+k-l) x (n+k-l) 

is entered. 

25



26 

Argument Type and Attribut Content 

kind e 

IHIST Integer Output A residual histogram is entered. Size IHIST(~25). 

type The number of values (r ,s) that meets 

Two-dimens {
_ ~JD-l ~n-l _ _} 

-O.2i ii= f T ,s-L..Ja=-k+tl..J/J=-k+1Ca,pNa( I T )Np( Ys) 

iona1 / IT- ils>-D.2(s+1) 

array is entered in IHIST(l, i+l). 

The number of values (r ,s) that meets 

{
- ~it-l ~n-l _ _} 

-O.2i < f T,s-l..Ja=-k+ll..J/Ja-k+tCa.pNa( IT )Np( Ys) 

/ IT- ils :i0.2(i+1) 

is entered in IHIST(~ it!). 

PBRCT Real type Output The cumulative frequency distribution of residuals is 

One-dimens entered. Size PBRCT(lO). 

ional If the number of values (r,s) that meets 

array 1
- ~m-l ~n-l - - 1 T 

i -1 :i fT, s-l..Ja=-k+ tl..JP:::-k+ t Ca, /J -N a ( IT) N P ( Y s) I A T -Il 

is K(i). PERCT(i)=r:,~=lK(j)/(MN): i=l ,2, - - -,10. 

WORKC Real type Work Size kx { m+n+min(M ,N) } . • 

One-dimens area 

ional 

array 

IWORKC Integer Work Size M+N+m+n+2. 

type area 

One-dimens 

ional 

array 
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Argument Type and Attribut 

KOSUX 

KOSUY 

NX 

NY 

K 

IWR 

KOSXO 

NXKID 

ICON 

kind e 

Integer 

type 

Integer 

type 

Integer 

type 

Integer 

type 

Integer 

type 

Integer 

type 

Integer 

type 

Integer 

type 

Integer 

type 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

Input 

Output 

Content 

M in the number of data items 

M·N (number of remainders in x direction). 

N in the number of data items 

N·N (number of remainders in y direction). 

m. Number of nodes - 1 in x direction. 

n. Number of nodes - 1 in y direction. 

k. Order of splines. 

o or I. Whether the measurement error IfT-jis is constant 

irrespective of data is specified. 

If 1fT - ~s differs with r ,S, IWR=I is assumed. 

If 1fT - ~s is constant irrespective of r,s, IWR=O is 

assumed. 

The first subscript of adjustable array FRS. 

must be met. 

KOSXD~KOSUX 

The first subscript of adjustdble arrays CAB and DRESP. 

NXKID~NX+K-l 

ICON=O: Normal termination. ICON<O: Abnormal termination. 

CALL SFSIA(XP, yp, IX, IY, LX, LY. FP. NX. NY. K. XI. YJ. CAB, WORKF. NXKID. ICON) 

Argument Type and Attribut Content 

kind e 

XP. YP Real type Input Point ~,y} where ~,y} is to be calculated. 

XO:iX:ix., YO:iy:iYn. x should be entered in XP. and y 

should be entered in YP. 

2'7 
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Argument Type and Attribut 

kind e 

IX.IY Integer Input 

type 

LX. LY Integer Input 

type 

Content 

i that meets XO:5x<xo+t. and j that meets YjSY<Yp+t. 

i should be entered in IX. and j should be entered in IY. 

XI (lX+1) ~XP<XI (lX+2). YJ (IYt 1> ~YP<YJ (lY+2) 

This subroutine can calculate the partial differential of 

S(X,y). a}.+IlS(x,y)/ax}.aJf. it,pOsit,IlSk-t in 

Se}. ,11) (x, y) to be evaluated. 

FP Real type Output Calculated value of seA ,11) (X, y) . 

NX, NY lnteger Input Same as CFS2A. 

type 

K 

XI. YJ 

CAB 

WORKF 

NXKID 

ICON 

Integer 

type 

Input 

Real type Input 

One-dimens 

ional 

array 

Real type Input 

Two-dimens 

ional 

array 

Real type Work 

One-dimens area 

ional 

array 

Integer 

type 

Integer 

type 

Input 

Input 

Same as CFS2A. 

Same as CFS2A. 

Coefficient assigned to 

B-spline. Ca,p:-k+l SQ:im-t, -k+l :ap:in-t . Size 

(m+k-l ) ,(n+k-l ) . Output of CFS2A. 

Size m+5k-t . 

The first subscript of adjustable array CAB. 

NXKID~NX+K-1. 

ICON=O: Normal termination. ICON<O: Abnormal termination. 

(1987. 05. 28) 
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DCOMD1 and DCPFR1 (Curve Fitting by Composite Polynomials) 

Curve Fitting by Composite Polynomials 

Programm Kazuo Hatano. January 1982 
eil by 

Format Subroutine language: FORTRAN; size: 1491 lines 

(1) Outl ine 

"DCOMDl and DCPFRl apply f(x) :O;;iX:327r to least squares approximation using the composite 

polynomial 
n-I _ 

h(x)=~co+~(CjCosjx+bjsinjX)+~Ciqi(X;n) 
j=1 i=1 

when the function values f(jCT) are given at equally spaced N+l discrete points 

Assume 

-x _27rr . r-O 1 N T-~. -, , ••• , 

ID ( ) i-I 

{

q2i (x;n)= E +.2i cosjx 
1""n J 

m ( ) i-I 
q2i+t (x;n)=~ ~2' t sinjx 

j:cn J 1+ 

(2) 

(1) 

(3) 

21 

The coeff icients GO, Gj, bj: j=l ,2, ... , n-l, Ci: i=l ,2, · • · ,m of hex) are determined 

so that the constant multiple of square sum of residuals 
N 

J= ~ ~ {f(xT)-h(xT) } 2 
T::r{) 

be minimized. (DCOMD1). 

(4) 

Expression (2). h( is). at given equally spaced discrete points i s=2rrs/K:s=O,l,···,K is 

calculated. Suppose that K is a multiple of N. 
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(2) Direct ions 

CALL DCOMD! (FR, NL. ABJ. CJ. NS. UDHG. WORK. ICON) 

Argument Type and Attribut. Content 
kind e 

FR Double Input Function value f(Xr) a t 
precision equally spaced discrete points. O:ir:5N. size N+I 
real type 
One-dimensio 
nal array 

NL Integer type Input N. Number of data items - 1. N must be an even number. 

ABJ Double Output oo,aj,bj: 1 :ij:in-l i s en t ere d. S i z e 
precision N (part ly used as a work area). 
real type 
One-dimensio 
nal array 

CJ Double Output Ci: 1 :i i:iim is entered. Size m. m must be an even 
precision number of up to It 
real type 
One-dimensio 
nal array 

NS Integer type Input n is given. 

MDHG Integer type Input m is given. m must be an even number of up to 12. 

WORK Double Work The size depends on N. If v is an integer. and N=2tJ. 
precision area the size is 1. If v is not an integer. and N is an even 
real type number. the size is N. 
One-dimensio 
nal array 

ICON Integer type Output ICON=O: Normal termination. ICON<O: Abnormal 
termination. 

CALL DCPFRl (ABJ. CJ. NS. NCUT. MDHG. FRo HL. WORK, ICON) 

I 

Argument Type and Attribut Content 
kind e 

ABJ Double Input oo,aj,bj: 1 ~j:in-l. Output of DCOMD1. Size N 
precision 
real type 
One-dimensio 
nal array 

CJ Double Input Ci: 1 :iii:im. Output of nCOMDI. size m 
precision 
real type 
One-dimensio 
nal array 
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Argument Type and Attribut Content 
kind e 

NS Integer type Input n is given. 

NCUT Integer type Input n is given. (Same value as NS is assigned.) 

MDBG Integer type Input m. Bven number of up to fa 

PR Double Output Approximate value f(i s ) :O:is:aK at equaIIy spaced 
precision discrete points. Size Ktl 
real type 
One-dimensio 
nal array 

NL Integer type Input K is given. Number of approximate values to be obtained -
1. 

WORK Double Work The size depends on K Ifv is an integer, and K=2u
, 

precision area the s i z e i s 1. I f v i s not 
real type an integer, and K is an even, the size is K 

ICON Integer type Output ICON=O: Normal termination. ICON<O: Abnormal 
termination. 

(1987.05.15) (1987.08.08) (1987.08. 10) 
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DSC11A,DSC12A,DSC13A,DSC14A,DSF11A,DSF12A,DSF13A,DSF14A 

(Spline Interpolation (One Dimensional» 

Spline Interpolation (One Dimensional) 

Programm Kazuo Hatano, June 1978 
ed by 

Format Subroutine language: FORTRAN;·size; 298, 141, 263, 141, 280, 150, 
389, and 176 lines respectively 

(1) Out} ine 

If function values are given at each discrete points, and in some cases, end conditions are 

given at both ends 

(1) Subroutines whose third character is C constitute the foIIowing 2m-1 (me=2) -th order 

polynomial splines that pass through given points and meet the end conditions. 

(2) Subroutines whose third character is F obtain the function value (interpolated value) of 

the constituted 2m-I-th order polYnomial spIine and l(1:il:i2m-I)-th order derivative, 

and calculate the integral from the left end to a given point. 

The following four types are available depending on the conditions given at the end points . 

. (1) Type-I spline interpolation (2) Type-II spline interpoiation 

(3) Type-Ill spline interpolation (4) Periodic spline interpolation 

1 Type-I spline interpolation 

If the differential coefficients f(l)(xo), f(l)(xn),(1:il:im-l) of up to the m-I-st 

order are given at both ends XO,Xn of the function value f(Xi) of n+l points 

xo<Xt<- - -<In (nE1; 1), f(x) is interpolated with the 2m-I-th order (m~2) 

~n-l 
polynomial spIine S(x)= L."j=-2ra+1CjNj(x) that assigns XO,Xn as the 2m ,node and 

; 

Xit (I:ai~n-I) as a single node. Nj(x) , (-2m+I:iij~n-l) are normalized B-spIines 

which are defined as follows: 

{e t X)2a-l (tE1;X) 
~.(t ;X)=(t-X)~--t= 0 -

(t<x) 
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Nj (x) = (tj+2.-tj)92a [ tj, tj+I, - - -, tj+2.;X] 

( -2m+ 1 ~ j ~ -1 ) 
(O:aj:sn) 
(n+ 1 :i j :an+2m-l ) 

The interpolation coefficients Cj, (-2m+l:sj:an-l) are found out with the subroutine 

DSCIlA. and Sex) ,s(l) (x) ,l:tS (X)dx to Xo:iX:1iXn are found out with DSFIlA. If the :to . 

differential coefficients of up to the In-I -st order can be given at both ends. it is desirable 

to use these routines. The hightest precision may be expected by this subroutine among four 

types. 

2. Type-II spline interpolation 

If the differential coefficients f(l} (xo), f(l} (xn ) , (1n:1i 1 ~2m-2) from In -th to 2m-2 

-nd orders are given at both ends xo,xn of the function value f(Xi) of n+t points 

XO<XI< - - - <Xn (nil: m-I ). f(x) is interpolated with the 2m-l-th order ( (lnr:2» 

~n-I 
polynomial spline S(x)= L.Jja-2.+JCjNj(x) that assigns XO,Xn as the 2m node and 

xi(l:si~n-t) as a single node. Nj(x) is the same as with TYPE-I. 

The interpolation coefficient Cj, (-2m+l:5j:in-t) are found out with the subroutine 

DSCI2A. and S(x), S(l) (x), l:tS (X)dx :to xo:ix:axn are found out with DSFI2A; 
xO 

The usefulness of this program may be the lowest of the f~ur types. However. the 2m-l-st 

order interpolation spline that can be obtained by assigning 0 to the differential coefficient 

from the In-th to 2m-2-th orders at both ends is called DNatural splineD and most famous in 

spline applications. A natural spline can be constituted by using this routine. In most cases. 

however. it is large in error as compared with the following type-Ill spline interpolation: 

3. Type-Ill spline interpolation 

If the function values f(xi) are given at n+t points XO<XJ<- - -<Xn (nil:2m). the 

equation f(x) is interpolated with the 2m- t -st order ( (1n~2» polynomial spline 

~~J • 
S(x)= L.Jja-2a+JCjNj(x) that assigns XO'Xn as 2lR nodes and Xi, (inS t sn-In) as a single 

node. Nj(x) , (-2m+l~j:in-2m+t) are the normalized B-splines which are defined as follows: 
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{
et x)2a-1 (t~x) 

g2a(t ;x)=(t-x)~l= 0 -
(t<x) 

to (-2m+l ~j:sO) 
tj= Xnj+a-I (1 :iiij~n-2m+t) 

(n-2m+2:a j :iin+ 1 ) 

The Interpolation coefficients Cjt (-2m+l:ij:5n-2m+l) are found out with the subroutine 

DSCI3A, and S(x), S(l) (x) , 1:t S(x)dx to XO:5X~Xn are found out with DSFI3A. Because 
:to 

. this type enables interpolation using only the funct ion value, it is most useful if I(x) is a 

non-periodic function. 

( Periodic spline interpolation 

It is assumed that the interpolated function lex) is a periodic function of period xn-XO, 

and the function values !(Xi) are given at n+l points XO<.:tI<- - -<Xn (n~2m). At 

this time. I(x) is interpolated with the function Sex) defined as follows: 

(t . )=(t- )2a-l={(t-X)2m-1' (t ~x) 
g2. ,x X + 0 (t<x) 

Nj (x)=(t j+2i.-tj)92. [ tj' tj+I, - - - , tj+2a;x] 

n-I 

S(x)= E CjNj(x) 
j=-28+1 

( -2m+ 1 ~ j :5 - t ) 
(O~j~n) 
(n+t ~j:5n+2m-l) 

. (-2m+l :5j~-m) 
(n-m+ 1:5 j ::in-I) 

The 2m-l, (m~2) -st order polynomial spline Sex) defined wi th the above expressions can 

be assumed to be a periodic function in the meaning that S(l) (Xo)=S(l) (xn) (0:; 1 ::i2m-2) is 
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satisfied. 

The interpolation coefficients Cj, (-2m+l:aj:5n-l) are found out with the subroutine 

DSCI4A. and S(x), S{l) (x), l%S(X)dx to XO:ix:Sxn is found out with DSFI4A. It is 
%0 

recommended to use these routines if f(x) is a periodic function. 

(2) Direct ions 

CALL DSCIIA{XI. F. DBR. CJ. N. M. WORKC) 

CALL DSFIlA{XP. I. L. FP. N. M. XI. CJ. WORKP) 

Argument Type and Attrib Content 

kind ute 

XI Double Input D i s ere t e po i n t Xi. Array of 

precision size n+ 1 . Xi, (O:s i ~n) should be entered in 

real type XI(i+l). 

One-dimensio 

nal array 

P Double Input Function value f(xi) , (O~i:sn) at discrete point Xi. 

precision A r ray 0 f s i z e n+l . 

real type should be entered in F(i+l). 

One-dimensio 

nal array 

DBR Double Input The I-th order differential coefficient (1:s1:sm-l) at 

precision the end point XO,Xn. Two-dimensional array of size 

real type (2,m-l) . fl (xn) shou'ld be entered in DER(2, l) in 

Two':dimensio f{l) (xo)DER(1 t 1). 

nal array 

CJ Double Input/ Output in DSCIlA. Input in DSCPIA. Interpolation 

precision output coefficient Cj, (-2m+l=aj:sn-l). Array of size 

real type n+2m-l. Cj is entered in CJ (j+2m). 

One-dimensio 

nal array 
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Argument Type and Attrib Content 

N 

kind ute 

I ntege{ type Input Num b e r 0 f d i s c r e t e p 0 i n t s. 

in n+l should be entered. 

n 

M Integer type Input m in the order 2m-1 of splines should be entered. 

WORKC Double Input/ Work area. Array of size (n-l) (2m-1)+2m2+2m. 

XP 

precision 

real type 

One-dimensio 

nal array 

Double 

precision 

real type 

output 

Input Point X where interpolated values are to be evaluated. 

XI(l)~XP~XI(N+l) must be met. If XP in the outside of this 

range is given, error messages are printed, and FP=O.O is 

assigned. 

I Integer type Input The integer I that meets XI(I+l)~XP<XI(I+2) should be 

entered. Bven if I does not meet the above condition, the 

computation is normally executed. However, the calculation 

time is required a little more for search. 

L Integer type Input Integer that complies with -1~L~2*M-l A calculation type 

is given. 

L=-l: Indefinite integral fro~ MI(l) to XP is calculated and 

output to FP. 

L=O: Interpolation value at XP is calculated and output to 

FP. 

1~L~2*M-l: L-th order differential coefficient at XP is 

calculated and output to FP. 

L<-l and L>2*M-l: Error messages are printed, and FP=O.O is 

assigned. 
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Argument 

pp 

WORKP 

Argument 

DER 

WORKC 

Type and Attrib Content 

kind ute 

Double Output Calculation results such as interpolation values are entered. 

precision 

real type 

Double Input/ Work area. Array of size ~. 

precision output 

real type 

One-dimensio 

nal array 

CALL DSCI2A(XI. P. DER. CJ. N. Mo WORKC) 

CALL DSP I2A (XP. I. L. PP. N. M. X I. CJ. WORKP) 

Type and 

kind 

Double 

precision 

real type 

Two-dimensio 

nal array 

Double 

precision 

real type 

One-dimensio 

nal array 

Attrib 

ute 

Input 

Input/ 

output 

Content 

Two-dimensional array at the point XO,xn of I-th order 

d i f fer e n t i a 1 c 0 e f f i c i e n t 

(m:a 1 :a2m-2) and size XO,Xn • f(l) (XO) should be 

entered in DER(l, l-m+l). and f(l) (xn) should be 

entered in DER(2, l-m+l). 

Work area. Array of size (n+2m-3) (2m-l)+4m. 

Por other arguments. see the Type-I spline. However. CJ is an output in DSCI2A and an input 

in DSPI2A. 

CALL DSCI3A(XI.P.CJ.X30.N.M.WORKC) 

CALL DSPI3A (XP. I. L. PP. N. M. XI. CJ. X30. WORKP) 

sJ 
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Argument Type and Attrib Content 
kind ute 

CJ Double Input/ Output in DSCI3~ Input in CSFI3~ Interpolation 
precision output coefficient Cj, (-2m+l :aj=an-2m+t). Array of size 
real type n+t. Cj is entered in CJ(j+2m). 
One-dimensio 
nal array 

X30 Double lnput/ Output in DSCI3~ Input in DSFI3~ Nodes 
precision output XO,x.,xa+J, • • • ,xn-.,xn of splines are entered. Array 
real t},pe of size n-2m+3. 
One-dimensio 
nal array 

WORKC Double Input/ Work area. Array.of size (n-t) (2m-t)+4m. 
precision output 
real type 
First 
column array 

Other arguments are the same as with the Type-I spline. 

CALL DSCI4A{XI. F. CJ. N. M. WORKC) 

CALL DSFI4A{XP. I, L. FP, N, M, XI. CJ. WORKF) 

Argument Type and Attrib Content 
kind ute 

WORKC Double Input/ Work area. Array of size n(2m-l)+2n(m-l)+2m. 
precision output 
real type 
One-dimensio 
nal array 

Por other arguments. see the type I sp I i ne. (cj is an output in DSCI4~ and an input in 
DSPI4~ ) 

(3) Note 

It is recommended to use the four subroutines properly as described below depending on the 

characteristics of the function !(x). 

1 If !(x) is a periodic function. DSCI4A and DSCI4F are used. 

2. If the differential coefficients !<O (xo), !<O (xn) , (1:i 1 :im-t) of !(x) can be 

given at both ends. DSCIIA and DSFIIA are used. For instance. the first order differential 

coefficient at both ends is given for the cubic spl ine (m=2) interpolation. 

3. If only the function values are given. DSCI3A and DSFI3A are used. 

( Por interpolation with the so-called ~Natural spline. ~ DSCl2A and DSFI2A are used. 

(1987. 05. 15) 
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r. 
~, 

DSCI1D, DSCI2D, DSCI3D, DSCI4D, DSCISD, DSCI6D, DSCI7D, 

D S F I 1 D , D SF I 2 D, D S F I 3 D , D S F I 4 D , D S F I 5 D , D S F 16 D, and D S F I 7 D 

(Spline interpolation (two-dimensional» 

Spline Interpolation (Two Dimensional) 

Programm Kazuo Hatano; June 1978 
ed by 

format Subroutine language; fORTRAN. Size; About 300 lines each 

(1) Outline 

When function values are given in grid points in a rectangular region and required boundary 

conditions are given at the boundary. the subroutine (with the third character of its name being 

C) makes polynomial spline S(x,y) at dualllegree 2JJ-t (vt:2) which passes the given points 

and satisfies the boundary conditions. 

The subroutine (with the third character of its name beiong f) evaluates the function values 

(interpolation values). partial derivatives al+IJS(x,y) / alxalJy(O~A~2v-l ,O:=iiIJ:=ii2v-l) 

• and indefinite integral 1111% S(x, y)dxdy of the polynomial spline S(x, y) ,of bi- 2JJ-l 
,~~ -

degree 

The fol,lowing seven types of interpolations are available depending on the conditions given at 

the boundary: 

(l) (Type- I) X (Type- I) spline interpolation (5) (Type- I) x (periodic) spline interpolation 

(2) (Type- n) x (Type- n) spline interpolation (6) (Type- n) x (periodic) spline interpolation 

(3) (Type-m) x (Type-m) spl ine interpolation (7) (Type-m) x (periodic) spl ine interpolation 

{4} (periodic) x (periodic) spline interpolation 

, 1. (Type-I) X (Type-I) spline interpolat ion 
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{
a=xo<Xt<· .• <X.=b 
c=yo<Yt<· • • <yn=d 

(1) 

is given. When the following is given for two-dimensional function I(x,y): 

(1) fi.j=f(xitYj) (o:s i :am) , (O:s j =an) 

(2) f{).,O)-f(l.O) (x· y.) 
I.J - l' J (i=O, m) , (O:i j :in) 

(3) f(O,IJ)-/(o.lJ) (x' y.) I,J - It J (j=O,n), (O:si=am) (2) 

(4) f(l,IJ)-I(}.·IJ) (x· Y·) I,J - l' J (i=O,m), (j=O,n) 

(1 :sit:iv-l) , (1 :i1l:iv-1) 

That is, the following conditions are met: 

(1) Function values are given for all grid points. 

(2) Normal derivative a 1f/ax1(1:ait:sv-l) to the degree of v-1 in the x direction is 

given for the grid point on x=xo=a,x=x.=b. 

(3) Normal derivative a lJ//ayll(1:aIl:sv-l) to the degree v-I in the y direction is 

given for the grid point on y=Yo=c,Y=Yn=d. 

(4) Partial derivative a 1+1J / a xl a if Cl :sit ,Il:av-l) is given for four· corners 

Then, I(x, y) is interpolated by the polynomial spl ine 
n-l 11-1 

S(x,y)= E E ca,pNa(x; ~%)Np(y; ~y) 
P=-2v+ 1 a=-2v+ 1 

(3) 

at dual degree 2v-1. ca ,p(-2v+ 1 :aa:am-l) , (-2JJ+ 1 :sp:in-l) is an interpolation 

coefficient Als~ 

. {(S x)2v-t 
92v(S;X)=(s-x):v- t

=z 0 -

and 

( ~2v+ 1 :a a:a -1 ) 
(O:aa:am) 
(m+ 1 :aa=am+2v-: 1) 

(S5:x) 
(s<X) 

(4) 
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~. 

92v(t;Y)=(t_y)~l 

{
YO 

tll= YIl 
Yn 

(-2lJ+l ~fj~-l) 
(O~fj:sn) 
(n+l :5fj:sn+2lJ-l) 

(5) 

When interpolation condition (2) is applied to expression (3). th~ linear equations of order 

(m+2lJ-l) • (n+2lJ-l) which use interpolation coefficients ca ,ll as unknown are obtained. By 

assigning the interpolation coefficients obtained by solving the equations to expression (3). 

interpolation values for arbitrary a:3x~b,c:iy:5d can be calculated. 

Interpolation coefficients Ca,ll( -2lJ+1 :ia:im-l) , (-2lJ+1 :sfj:an-t) are calculated by 

subrout ine DSCIlD and S(l,,,) (x, y) (-1 ~A, 1l:i2lJ-l) is used by subrout ine DSPIlD so as to 

evaluate interpolation values. Here. 

S (-I,,,) ( )-1% a "Sex, y) dx 
x,Y - a a" y (O:SIl:i2v-l) 

S(l,-1) (X,y)=l!1 alsex,y) dy 
c axl 

(0~A~2v-1 ) (6) 

2. (Type- n) x (Type- n) spline interpolation 

(7) 

is given. When the following is given for two-dimensional function !(x,y): 

(1) !i.j=!(Xi,Yj) 

(2) !I~10)=!(l,O) (Xi, Yj) 

(O:si:im), (O~j~n) 

(i=O, m) , (0:5 j :in) 

><J 
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(3) fI~jlJ)=f(O,IJ) (Xi, Yj ~ 

(4) fI~jlJ)=I(}.,IJ)(Xi,Yj) 

(j=O,n) , (O:iii:sm) 

(i=O,m), (j-O,n) 

(v:s;t:a2JJ-2) , (v:SIl~2JJ-2) 

That is. the following conditions are met: 

(l) Punction values are given for all grid point~ 

(8) 

(2) Normal derivative all/axl(lJ~;t:s2JJ-2) from degree lJ to degree 2v-2 in the X 

direction is given on the grid points of x=xo=a,x=x.=o. 

(3) Normal derivative a 1J1/ a if(lJ~Il:s2JJ-2) from degrep. lJ to degree 2v-2 in the Y 

direction is given on the grid points of y=YO=c,y=yn=d. 

{4} Partial derivative al+lJ/ axlaif(lJ~A,Il~2v-2) is given at four corners 

Then. I(x, y) is interpolated by polynomial spl ine 
n-I. m-I 

S (X, y) = E E Ca, {IN a (X; 11 z) N {J (y; 11 y) 
p=-2v+ I aa-2v+ 1 

(9) 

of bi-2v-l degree. Ca,p( -2v+ 1 :sa:sm-l) , (-2v+ 1 :;~~n-l) are interpolation 

coefficients. Na(x; I1 z ) ,N{J(Y; l1y) are functions given by expressions (4) and (5L When 

interpolation conditions (8) are applied to expression (9). the linear equations of order 

(m+2v-l)· (n+2v-l) which use interpolation coefficients Ca,{J. as unknown are obtained. By 

assigning the interpolation coefficients obtained by solving the equations to expression (9). 

interpolation values for arbitrary a:iix:;o,c~y:;d can be calculated. 

Interpolation coefficients ca,p( -2v+l :aa:iim-l), (-2v+l :a~:sn-l) are calculated by 

subroutine DSCI2D and S(l,lJ) (x, y) (-l:;A ,1l~2v-l) is used by subroutine DSPI2D so as to 

determine interpolation values. S(}.,IJ) (x,y) is given by expression· (6)' 

3. (Type-m) x (Type-ill) spl ine interpolation 

{
a=xO<XI < ••. <xm=o 
C=YO<YI<· •• <yn=d 

(11) 

is given. When values li,j=l(xi ,Yj) (O:ai:am), (O~j~n) on grid points of two-dimensional 

function l(x, y) are given. I(x. y) is interpolated by polynomial spline 

r 
\ 
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n-2v+1 .-211+1 

S (X, y) =:E :E Ca, pN a (X; od ~) N p (y; od ~) (12) 
pa-2v+ 1 a .. -2v+ 1 

of bi-2v-l degree. Ca,p( -2v+ 1 :iia:iim-2v+ 1) , (-2v+ 1 =aJJ=sn-2v+ 1) are interpolation 

coefficients. Also. 

and 

Na(x; od;) = (Sa+2v-Sa)92v [Sa,Sa+I,·· ~ ,sa+2»;x) 

92v(S;X)=(S-X)~1 . 

(-2v+l :iia:iO) 
(1 :a a:ii m-2v+ 1) 
(m-2v+2:iia:iim+ 1 ) 

92v(t; y)=(t_y)~1 

{
YO 

t P= YP+v-1 
Yn 

(-2v+ 1 :iiJJ~O) 
(1 :ii l1:iin-2v+ 1 ) 
(rt-2v~2:iiI1~n+ 1) 

(13) 

(14) 

When the interpolation conditions are applied to expression (12). linear equations 
n-21)+ 1 .-2v+ 1 

E E ca,pNa(Xi; od~)Np(Yj; od~)=fi.j . 
P=-2v+ J a .. -2v+ J 

(i=O,l,···,m),(j=O,l,···,n) (15) 

of order (m+t)· (n+ t) which use interpolation coeff icients ca,p as unknown are obtained. By 

assigning the interpolation coefficients obtained by solving the equations to expression (12). 

interpolat ion values for arbi trary a:iix~b ,c:ii y~d can be calculated. 

Interpolation coefficients ca.p( -2v+t ~a~m-2v+t) • (-2v+t ~/3:sn-2v+t) are calculated 

by subroutine DSCI3D and S(). .Il) (x, Y) (- t :aA, 1l:ii2v-l) is calculated by subroutine DSFI3D so 

as to determine interpolation values. S(l,ll) (x,y) is given by expression (6)' 

4. (periodic) x (periodic) spline interpolation 
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(16) 

is given. Two-dimensional function i(x,y) is supposed to be a periodic function with period 

b-<l for variable X and also a periodic function with period d-iC for variable y. When values 

ii,j=i(XitYj) (O:;i:am), (O~j:in) on the grid point of i(x,y) are given. i(x,y) is 

interpolated by the following polynomial splines at dual degree ~-1 : 
n-I .-1 

S(x,y)= E E ca,pNa(X; A:I:)Np(y; Ay) (17) 
po-2v+l. ac-2v+1 

{
Ca,P=Ca+.,P 
Ca, p=Ca-., p 

(-~+ 1 :ia:i -v) 
(m-v+l :ia:im-l) 

(-2v+ 1 :aa:im-l) 

( -~+ 1 :a13:in-l ) 

{
Ca, p=Ca ,p+n 
Ca, p=Ca ,p-n 

(-2v+ 1 :i13:i -v) 
(n-v+"1 :i13:in-l) 

Na (X; A:I:) = (Sa+2v-Sa)92v ( Sa, Sa+ I, ••• , Sa+2v; X) 

{

XII+<I- (X.-XO) 
Sa .... Xa 

Xa-.+(X.-XO) 

92v(t;y)=(t_y)~1 

(-2v+l :ia~-l) 
(O:ia:im) 
(m+ 1 :ia~m+~-l) 

(-2v+ 1 :i13~-1) 
(O~I3:in) 
(n+l ~13~n+~-l) 

(18) 

(19) 

(20) 

(21) 

ca ,p(-2v+l:ia:im-l),(-2v+l:il3:in-l) are interpolation coefficients. S(x,y) given by 

expressions (17) to (21) can be considered as a periodic function in a sense that it satisfies 
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(22) 

When interpolation conditions are applied to expression (17), linear equations at degree lR·n 

which use interpolation coefficients Ca.P( -v+l =ia=ilR-v) , (-v+l :i(j~n-v) as unknown are 

obtained. By assigning the interpolation coefficients obtained by solving the equations to 

expression (17), interpolation values for arbitrary a:ix=ib,c=iy=id can be calculated. 

Interpolation coefficients Ca.P( -2v+l ~a~m-l) , (-2v+l ~/3:in-l) are calculated by 

subroutine ·DSCI4D and S(l.,,) (x,y) (-I:;;t ,J.l=i2v-l) is calculated by' subroutine DSFI4D so as 

to determine interpolation values. SO,,,) (x,y) is given by expression (6). 

5. (Type- I) x (periodic) spline interpolation 

(23) 

is given. Two-dimensional function I(x,y) is supposed to be a periodic function with period 

d-c concerning variable y. For I(x,y); 

(1) 

(2) 

Ii. j=/(Xh Yi) 

10.0)-10 .0) (x- y-) '.) - " ) 

are given. That is, when; 

. (0:; i ~m) , (0:; j :;n) 

(1:1i;t:;v-l), (i=O,lR), (O=ij:;n) 

(1) Function values are given on all grid points; 

(2A) 

(2) Normal derivative a11/ax1(1:a;t:;v-l) up to degree v-I in the x direction is given on 

the grid point on x=xo=a,x~xlI=b; 

I(x, y) is interpolated by the following polynomial spl ines of bi-2v-l degree: 
n-I .-1 

S(x,y)= E E ca.pNa(x; I1x)Np(y; l1y) (25) 
P=-2»+ 1 a=-2v+ 1 

{
Ca. p=Ca. p+n 

Ca, P=Ca• p-n 

(-2v+ 1 =ia:ilR-l ) 

(-2v+ 1 :i(j:i -v) 
(n-v+ 1 :;(j:;n-l) (26) 

Ca.p( -2v+ 1 :ia~m-l ) , (-2v+t :a/3:;n-t) are interpolation coefficients. Na(x; 11 x) is 

given by expression (4) and Np(y; l1y) is given by expression (21). When interpolation 

condition (24) is applied to expression (25), linear equations of order (lR+2v-l) -n which use 
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interpolation coefficients Ca,P( -~+l :5a:im-l), (-v+l :i11~n-v) as unknown are obtained. 

By assigning the interpolation coefficients obtained by solving the equations to expression (2S) , 

interpolation values for arbitrary a:ix:ib,c:3y:id can be calculated. Interpolation 

coefficients Ca,p(-2v+l:sa:sm-l), (-2v+l:il1:sn-l) are calculated by subroutine DSCISD and 

S(A,Il)(x,y)(-l:aA,Il:a2v-l) is calculated by subroutine DSFISD so as to determine 

interpolation values. S(l,v) (x,y) is given by expression (6L 

6. (Type-n)x{periodic) spIine interpolation 

(27) 

is given. Two-dimensional function I(x,y) is supposed to be a periodic function with period 

d-c concerning variable y. For I(x,y); 

(l) li ,j=/(xit Yi) (0:3 i :am) , (O~ j ~n) (28) 

(2) II~'l)=/(l,O) (Xi, Yj) (1 ~A:iv-l), (i=O,m) , (O:ij:in) 

are given. That is, when; 

(1) Function values are given on all grid points; 

(2) Normal derivative OAI/oxA(V:iA:i2v-l) from degree V to degree 2v-2 in the X 

direction is given on the grid point on x=xO=Q,x=xa=b; 

I(x, y) is interpolated by the following polynomial spl ines of bi-2u-l degree: 
n-I a-I 

S(x,y)= E E Ca,pNa(x; Ar;)Np(y; Ay) (29) 
P~2.v+ J a=-2v+ J 

{
Ca ,p=Ca, p+n 
Ca, p=Ca, p-n 

(-2v+l :ia:im-l) 

(-2v+ 1 ~i3:i ~v) 
(n-v+ 1 :ii3:in-l) 

(30) 

Ca,p( -2v+ 1 :ia:im-l) , (-2v+ 1 :ii3:in-l) are interpolation coefficients. Na (x; Az ) is 

given by expression (4) and Np(y; A y) is given by expression (21). When interpolation 

cond i t ion (28) is app Ii ed to express ion (29), I i near equa t ions of order (m+2v-l)· n wh i ch use 

interpolation coefficients Ca,p( -2v+ 1 :ia~m-l) , (-v+l :ii3:in-v) as unknown are obtained. 

By assigning the interpolation coefficients obtained by solving the equations to expression (29) , 

interpolation values for arbitrary a~x~b,c~y~d can be calculated. 

Interpolation coefficients ca,p( -2v+l :ia:l!m-l), (-2v+l :ii3:in-l) are calculated by 

46



subroutine DSCI6D and S(}. ,,,,) (x, y) (-I:SA , Jl:ii2v-l ) is calculated by subroutine DSPI6D so as 

to determine interpolat ion values, S(l,,,,) (x, Y) is given by expression (6)' 

7 (Type-ill) x (periodic) spline interpolation 

(31) 

is given. Two-dimensional function I(x,y) is supposed to be a periodic function with period 

d-c concerning variable y. When values li,j=/(xi ,Yj) (Osi:5m) t (O:5j:iin) on the grid 

point of I(x, y) are given. I(x, y) is interpolated by the following polynomial spl ines of bi-

2v-l degree: 
n-I .-2N+1 

Sex, y)= E E Ca,{JNa(X; 11~)Np(y; 11 u) 
P.:-2v+1 a=-2v+1 

{
Ca ,p=Ca ,p+n 
Ca, p=ca, p-n 

(-2v+t ~13~-v) 
(n-v+ 1 :i13:in-t) ( -2v+ 1 =a a:im-2v+ t ) 

(32) 

(33) 

Ca,p( -2v+l :5a=am-2v+t) , (-2v+l :i13:in-l) are interpolation coefficients. Na(x; 11~) is 

given by expression (13) and Np(y; l1u) is given by expression (21)' When interpolation 

conditions are applied to expression (32). linear equations of order (m+l) -n which use 

interpolation coefficients ca,p( -2v+l :ia:im-2v+l) t (-v+l :s13:in-v) as unknown are 

. obtained. By assigning the interpolation coefficients obtained by solving the equations to 

expression (32). interpolation values for arbitrary a:ix:sb,c:5y:id can be calculated. 

Interpolation coefficients ca,p( -2v+l :ia~m-2v+l) t (-2v+l :i13:in-l) are calculated by 

subroutine DSCI7D andS(J.'''')(x,Y)(-l~it,Il:;i2v-l) is calculated by subroutine DSPI7D so as 

to determine interpolation values. S(l.",) (x,y) is given by expression (6). 

(2) Directions 

CALL DSCI1D(XI. YJ. P.CAB. NX.NY.M.WORKC. NXM2D) 

CALL DSPIlD (XP. YP. IX. IY. LX. LV. FP. NX. NY. M. XI. YJ. CAB. WORKF. NXM2D) 
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Argument Type and Attrib Content 

kind ute 

XI Double Input Grid point Xi in the x direction. Array of size m+l. 

precision xi(O:ii:sm) is put i~ XI(i+l). 

real type 

One-dimensio 

nal array 

YJ Double Input Grid point Yi in the Y direction. Array of size n+l 

precision Yi(O:ij:sm) is put in YJ(j+l). 

real type 

One-dimensio 

nal array 

F Double Input· li.i like function values in grid point. Two-dimensional 

precision array of size (m+2v-l) x (n+2v-l) 

real type li,j(1~i:im+2v-l), (1:aj:sn+2v-l) are pu t 

Two-dimensio in F(i,j) 

nal array 

CAB Double Input/ Output for DSCIID. Input for DSFIIQ Interpolation 

precision output coefficients ca.p( -2v+l ~a:sm-l), (-2v+l ~fj:sn-l) 

real type Two-dimensional array of size (m+2v-l) x (n+2v-l) . 

Two-dimeosio Ca.P is put in CAB(a+2v,fj+2v). 

nal array 

NX Integer type Input The number of grid squares m in the X direction is put. 

NY Integer type Input The number of grid squares n in the Y direction is put. 

M Integer type Input v in order 2v-l of spline is put. 

WORKC Double Input/ Work area. The size is (k-l) (2v-l )+2if+6v+2k-2 as 

precision output k=1IICJ% (m, n). 

real type 

One-dimensio 

nal array 
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Argument Type arid Attrib Content 

kind ute 

NXM2D Integer type Input Size of adjustable array. Size of the first subscript of P 

XP, YP 

IX.IY 

Double 

precision 

real type 

and CAB. NXM2Dii:m+2v-l must be satisfied. 

Input Point (x. y) at which we want to evaluate interpolation 

values or other values. x is put in XP and y is put in YP. 

XI (l) ~XP~XI (NX+!) and YJ{!) ~YP~YJ{NY+l) must be 

satisfied. If XP and YP outside this range are given, an 

error message is printed and PP is set to 0.0. 

Integer type Input Integers IX and IY which respectively satisfy XI (IX+l) 

~XP~XI{IX+2) and YJ{IY+l) ~YP~YJ{IY+2) are put. Bven if 

IX and IY do not satisfy the above requirements. calculation 

is performed normally but it takes a little more time than 

usual because of the need for search. 

LX. LY Integer type Input Integer which satisfies -l~LX and LY~2v-1. A kind of 

PP 

WORKP 

Double 

precision 

real type 

Double 

precision 

real type 

One-dimensio 

nal array 

calculation is given. That 

is. A in quantity S(X,I!) (x,y) to be evaluated is put in 

LX and 11 is put in LY. 

Output The calculation result of SO,I!) (x,y) such as for an 

interpolation value is gen.erated. 

Input/ Work area. The size is m+6v-t. 

output 

To simplify the explanation of the syntax. fi,j(1:Si:im+2v-l),(l=;j:sn+2v-l) are 

defined for interpolated funct ion i(x, y) as follows: 
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(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

I 
l 
i 

1i,j=f(JJ-i,JJ-j) (XO,YO) 

1 i ,j=f(O,JJ-j) (Xi-vt YO) 

1 i, j=f(i-a-V,JJ-j) (x., YO) 

f i, j=f(JJ-i ,0) (xo, Yj-v) 

1i,j=f(Xi-v,Yj-v) . 

1- __ f(i-a-v,O) (x y' ) 1,,- ., ,-v 

-I i ,j=f(JJ-i ,j-n-v) (XO, Yn) 

7· _-f(O,j-n-v) (X· y) 1,,- I-])t n 

f - ·-f(i-a-v, j-n-v) (x y) 
1,,- .t n 

(1) (4) 

(2) (5) 

(3) (6) 

(1 :a i , j :; v-I) 

(v:5i:;m+v) , (1 sj=ilJ-l) 

(m+v+l s i:am+2v-l) , (1 :5j:av-l) 

(1 :ai:iv-I), (V:iij:an+v) 

(v:ai:am+v) , (v:aj:5n+v) 

(m+v+ 1 :ii i :5m+2v-l ) , (v:a j :an+v) 

(1 :ai:av-l) , (n+v+l :;j:in+2v-I) 

(v:ai:im+v) , (n+v+l :aj:5n+2v-l) 

(m+v+l :ii:am+2v-l), (n+v+l ~j:an+2v-l) 

t 
(7) v-I 

! 

t 
I 

(8) m-I 
I 
! 

t 
(9) v-I 

! 

~ 1 v-I 14---- n-l ---+ 1 . v-I 1 +-

For instance. the list of f i ,j is as follows when v=2, m=2, n=3. 

fMf 1) fU'O) fol'O) fo~'O) folO) foll) 

fIRr t) foo fOI f02 103 fog,l) 

i=l to 5 ffS' t) flo fll fl2 fl3 fm,l) 

f~8,1) f20 f21 122 f23 I~·I) 

f~&,1) f~&'O) f~I'O) f~'O) fM'O) fM,1) 

CALL OSCI20(XI. YJ.F.CAB.NX. NY.M.WORKC. NXM20) 

~ 
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~/ 

CALL DSFI2D(XP. YP. IX. IV. LX. LY. FP. NX. NY. M. XI. YJ. CAB. WORKF. NXM2D) 

Argument Type and Attrib Content 

kind ute 

P Double Input Function values etc. a t g rid 

precision points /i ,j (quantity given by expression (10». 

real type Two-dimensional array of size (m+2v-l) x (n+2v-I). 

Two-dimensio 1 i ,j ( I :5 i :5 m+2v-1 ) , (I :i j :ii n+2v-1 ) are put 

nal array inF(i,j) 

WORKC Double Input/ Work are a. The s i z e i s 

precision output (k+2v-3) (2v-1 )+2if+6v+2k-2 as k=lIQ%(m,n) 

real type 

One-dimensio 

nal array 

The other arguments are the same as for the (Type- I ) x (Type- I) spline. (However. CAB is 

input for DSCI2D and output for DSPI2D.) 

To simplify the explanation of the syntax above. 1i.j(l~i:im+2v-I)(I:;j:in+2v-I) are 

def ineq for interpolated funct ion I(x, y) as follows: 

(l) / i ,j=/(2)>-I-i ,2»-I-j) (XO, YO) (1 :; i , j :; v-I ) 

'-'" (2) 1· ._/(O,2»-I-j) (X' YO) (V:i i :im+v) , (l:i j :iv-I) 1,1- 1-11' 

(3) 1 i ,j=/(i-_1 ,2»-I-j) (X., YO) (m+v+l ~i~m+2v-I), (1 ~j:;v-l) 

(4) 1· ._/(2)>-I-i.O) (xo y' ) 1,1- , J-l1 (1 ~ i ~v-l) , (V:ij :an+v) 

(S) / i ,j=/(Xi-l1' Yj-v) (V:ii:im+v) , (v:ij:in+v) 

(6) 1· ._/(i-.-I ,0) (X y' ) 1,1- .t J-l1 (m+v:ii:im+2v-l) , (V:ij:in+v) 

(7) 1 i ,j=/(2)>-I-i ,j-n-I) (XO, Yn) (1 ~ i :;v-l) , (n+V:i j :in+2v-I) 

(8) 1· ._/(O,j-n-I) (X' y) \ ,1- t-V, n (V:ii:5m+v) t (n+v;sj:in+2v-l) 

(9) 1· ._/(i-.-I.j-n-I) (X y) 
\,1- .t n (m+v:ii:im+2v-I), (n+v:ij:in+2v-I) 
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-.S'~ 

For instance, the list of I i,i is as follows when v=2,m=2,n=3. 

j =1 to 6 

16B,2) 16B'O) 161,0) 16~'0) 16~'0) 16~·2) 

168,2) loo 101 102 103 169.2) 

i=1 to 5 If8,2) 110 111 112 113 Im·2) 

1£8,2) 120 121 122 123 1£g·2) 

I£B,2) I£B'O) 1£1,0) 1£2.0) I~'O) 1~·2) 

~ 

~ 
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CALL DSCI3D(XI. YJ. F. CAB. XY30. NX. NY. M. WORKC, NXPID) 

CALL DSFI3D(XP. YP. IX. IV. LX. LV. FP. NX. NY. Mo XI. YJ. CAB. XY30. WORKF. NXPID) 

Argument Type and 

kind 

P 

CAB 

XY30 

WORKC 

Double 

precision 

real type 

Two-dimensio 

nal array 

Double 

precision 

real type 

Two-dimensio 

nal array 

Double 

precision 

real type 

One-dimensio 

nal array 

Double 

precision 

real type 

One-dimensio 

nal array 

AUrib 

ute 

Content 

Input Fun c t ion v a I u e ! i ,j i n g rid 

point. Two-dimensional array of size (~+l)x(n+l). 

!i,j(O:;i:am) , (O~j~n) are put in PCi+l ,j+l). 

Input/ Output for DSCI3D. Input for DSFI3D. Interpolation 

output coefficients 

ca,p( -2v+l :;a:im-2v+l), (-2v+l :;fj:;n-2v+l). 

Two-dimensional array of size Cm+l) x (n+l). ca,p is put 

in CAB(a+2v,fj+2v). 

Input/ Output for DSCI3D. Input for DSPI3D. Spline knots 

output IO t Iv t Iv+ t t ••• ,Im-v t X.; YO t Yv t Yv+ t , ••• t Yn are put. 

Array of size m+n-4v+6 

Input/ Work area. The size is (k-I) C2v-l)+4v+2Ck+l) as 

output k=DCU; Cm, n) is assumed. 

NXPID Integer type Input Size of adjustable array. Size of the first subscript of P 

and CAB. NXPID~m+l must be satisfied. 

The other arguments are the same as for the (Type- I ) x (Type- I) spI ine. 

CALL DSCI4D(XI. YJ.P.CAB.NX.NY.M.WORKC.NXPID.NXM2D) 

CALL DSPI4D(XP. YP. IX. IV. LX. LY. FP. NX. NY. M. XI. YJ. CAB. WORKF. NXM2D) 
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Argument Type and Attrib Content 

kind ute 

P Double Input Fun c t ion v a I u e J i , j in grid 

precision point. Two-dimensional array of size (m+l)x(n+l). 

real type Ji,j(O:si:sm) , (O:aj:sn) are put in F(i+l ,j+l). 

Two-dimensio 

nal array 

CAB Double Input/ Output for DSCI4D. Input for DSPI4D, Interpolation 

precision output coefficient ca,p( -2v+l :;a:sm-t) , (-2v+t =ap:sn-l). 

real type Two-dimensional array of size 

Two-dimensio (m+2v-l) x (n+2v-t). ca ,ll is put in (a+2v,p+2v). 

nal array 

WDRKC Double Input/ Work area. T~e size is k(4v-t)+4v as k=lIIQ%(m,n) is 

precision output assumed. 

real type 

One-dimensio 

nal array 

NXPID Integer type Input Size of adjustable array. Size of the first subscript of 

array P. NXPID~m+t must be satisfied. 

NXM2D Integer type Input Size of adjustable array. Size of the first subscript of 

array CAB. NXM2D~m+2v-t must be satisfied. 

The other arguments are the same as for the (Type- I ) x (Type- I) spl ine. 

CALL DSCI5D (XI. YJ. P. CAB. NX. NY. M. WORKC, NXM2D) 

CALL DSPI5D (XP. YP. IX, IY. LX. LY. FP. NX. NY. Mo XI, YJ. CAB. WORKP. NXM2D) 
,I 

.1 

.' 

I 

" 

I 
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Argument Type and Attrib Content 

kind ute 

F Double Input Function value etc. fi.j(l si=rim+2v-l), (1 :ij~n+l) in 

precision grid point. Two-dimensional 

real type array of size (m+2v-l)x(n+l). li.j are put in F(i,j) 

Two-dimensio 

nal array 

CAB Double Input/ Output for DSCI5D. Input for DSFI5D. Interpolation 

precision output coefficient ca.p( -2v+l ~a=rim-l), (-2v+l =ritJ=rin-l). 

real type Two-dimensional array of size 

Two-dimensio (m+2v-l) x (n+2v-l) . ca.p is put in 

nal array CAB(a+2v,~+2v) . 

WORKC Double • Input/ Work area. ·The size is a larger one of kl,k2 given by the 

precision output following expression: kt=(m-l) (2v-l)+2tJ+6v+2m-2, 

real type k2=n(4v-l )+4v. 

One-dimensio ' 

nal array 

The other arguments are the same as for the (Type- I ) x (Type- I) spl ine. 

To simplify the explanation o(the syntax above, li.j(1~i=rim+2v-l),(1=rij:in+l) are 

defined for. interpolated function I(x, y) as follllws: 

(1) li,j=j(v-i.O) (XOtYj-t) 

(2) 1 (Xi-v.Yj-l) 

(3) 1 i .j=f(i-a-v.O) (x., Yj-t) 

(1 ~i~v-l) 

(v:s i ~m+v) 

(m+v+ 1 =ri i :;m+2v-l ) 
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For instance. the I ist of li .. i is as follows when v=2t m=2t n=3. 

j =1 to 4 

IU·2) 161.0) I/J'O) 16!'0) 

loo 101 102 103 

i=1 to 5 110 111 112 J.13 

120 121 122 123 

1£&·0) 1£1.0) I~'O) fM'O) 

CALL DSCI6D (XI. YJ. F. CAB. NX. NY. Mo WORKC, NXM2D) 

CALL DSFI6D (XP. yp. IX. IY, LX, LY. FP. NX, NY. M. XI. YJ. CAB. WORKF. NXM2D) 

Argument Type and Attrib Content 

kind ute 

F 

CAB 

WORKC 

Double 

precision 

real type 

Two-dimensio 

nal .array 

Double 

precision 

real type 

Two-dimensio 

nal array 

Double 

precision 

real type 

One-dimensio 

nal array 

Input Function value etc. fi.i(1:ii:im+v-l) t (1:Sj:in+l) in 

grid point. Two-dimensional 

array of size (m+2v-t)x(n+l). Ii.l are put in F(itj) 

Input/ Output for DSCIED. Input for DSFI6D. Interpolation 

output coefficients ca.p( -2v+l ~a~m-l) (-2v+l :51l:sn-l). 

Two-dimensional array of size 

(m+2v-l) x (n+2v-l) . ca.P i s put i n 

CAB( a+2v t fj+2v) 

Input/ Work area. The size is a larger one of kl t k2 given by the 

output f 0 1 low i n g e x p res s ion: 

kl=(m+2v-3)(2v-l)+~~v+2m-2. 

k2=n(4v-l)+4v 
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Argument Type and Attrib Content 

kind ute 

The other arguments are the same as for the (Type- I ) x (Type- I) spl ine. 

To simplify the explanation of the syntax above. /(x,y) are defined for interpolated function 

li,j(l:ii:im+2v-l) , (l:ij:in+l) as follows: 

(1) 1 i ,j=/(2lrI-i ,0) (xo, Yj_l) 

(2) li,j=/(xi-l),Yj-l) 

(3) 1 i ,j=/(i-.-1.0) (x., Yj-I) 

(l:aj:in+l) 

(1 :i i :5 v-I ) 

(V:5 i :im+v) 

(m+v+ 1:5 i :5m+2v-1 ) 

For instance. the list of 1 i. j is as follows when v=2, m=2, n=3. 

j =1 to 4 

160,2) lot ,0) /o~'O) 16~'O) 

loo 101 102 103 

i=l to 5 110 111 112 113 

120 121 122 123 

I£~'O) l£t'O) I~'O) 1£3,0) 

CALL DSCI7D (XI. YJ. P. CAB. X30. NX. NY. U. WORKC, NXP1D) 

CALL DSFI7D (XP. YP. IX. IY. LX. LY. FP. NX. NY.lI, XI. YJ. CAB. X30. WORKP. NXPID) 
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Argument Type and 

kind 

p 

CAB 

X30 

WORKC 

NXPID 

Double 

precision 

real type 

Two-dimensio 

nal array 

Double 

precision 

real type 

Two-dimensio 

nal array 

Double 

precision 

real type 

One-dimensio 

nal array 

Double 

precision 

real type 

One-dimensio 

nal array 

Integer type 

Attrib 

ute 

Content 

Input Function value fi.; (O:i i ~m) , (0:; j :in) in grid point. 

Two-dimensional array of size (m+l)x(n+l). fi,; is put 

in F(i+l ,j+l). 

Input/ Output for DSCI7n. Input for DSPI7D. Interpolation 

output eoeff icient Ca.p( -2v+ I :i<x:im-2v+ t) , (2v+ I :i{j~n- t) . 

Two-dimensional array of size (m+ t) x (n+2v-I). ca.p is 

put in CAB(a+2v,{j+2v). 

Input/ Output for DSCI7D. Input for DSPI7D. Spline knots 

output xO,Xu,Xu+l,··· ,X.-u,X. are put. Array of size m-2v+3 

Input/ Work area. The size is either one of kl,k2, whichever is 

output greater, given by the following expression: 

kl=(m-,) (2v-t)+4v+2(m+I), k2=n(4v-I)+4v 

Size of adjustable array. Size of the first subscript of P 

and CAB. NXPID~m+1 must be satisfied. 

The other arguments are the same as for the (Type- I ) x (Type- I) spl ine. 

(3) Notes 

1 If part i alder i va t i ves up to degree v-I can be given at the boundary, it is better to use 

DSCIID or DSPIID. Of the seven types, these subroutines ean be expected to show the highest 

precision. 
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2. Prom the viewpoint that interpolation can be done by using only function values on grid 

points, DSCI3D and DSFI3D are the most effective. 

3. DSCI4D and DSFI4D are effective for interpolation of a function which has periodicity in 

both I and y directions. 

4. If the partial derivatives of f(I,Y) which should be given at the boundary are all set to 

O. they can be obtained by an interpolation formula for which a one-dimensional natural spline 

has been extended to a two-dimensional spline. 

5. DSCI5D and DSPI5D can be used when the function value of two-dimensional function 

z=f(r,fJ) (O:ia:ir:5b) t (O:ifJ~27r) defined by a cylindrical coordinates system is given on 

the grid point and the partial derivatives up to degree v-I in the r direction are given by 

r=a,r=b. 

6. DSCI6D and DSPI6D can be used when the function value of two-dimensional function 

z=f(r,fJ) (O:ia:ar:ab), (O:ifJ:i27t') defined by a cylindrical coordinate system is given on the 

grid point and the partial derivatives of degrees from v to 2lJ-2 in the r are given by 

r--a,r=b. 

7. DSCI7D and DSPI7D can be used when the function value of two-dimensional function 

z=/(r, fJ) (O~a:i r:ab) ,(O:ifJ:a27r) def ined by a cylindr ical coordinate system is given on the 

gr id point. 

(1987.06.15) 
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H ERM31 and H ERM51 (Curve Fitting by the Piecewise Hermite Interpolation Pormula (3, 

5-Degrees) 

Curve Pitting by the Piecewise Hermite Interpolation Pormula (~, 5-Degrees) 

Programm Yasuyo Hatano, June 1976 
ed by 

Pormat· . Subroutine language: PoRTRAN; size: 151 and 175 lines respectively 

(l) Out} ine 

HERM31 and HERJd51 obtain the function value y=1 ex) at an arbitrary point x and the 

differential coefficient using the function value !i=!eXi) ei=l ,n) given at the discrete 

point Xi • The interpolation is based on the piecewise Hermitian interpolation of degree 

3(HERM31) or 5{HERM51). 

(2) 0 i rect ions 

CAl.l. HERM31 (I, X, y, M. N, XI, YI, YO, NO. Il.l.) 

CALL HERM51 (I, X, Y. M. N. XI. YI, YD. NO, I l.l.) 

Argument Type and Attribut Content 
kind e 

'I Integer Input Value of the number i of mesh points in the range of 
type Xi:5X=;Xi+l. 1~I<N 

X Real type Input x 'coordinates of points where interpolation values are to 
be obta i ned. XI {l} ~XI (I) ~X~XI (I+1) ~XI (N) 

Y Real type Output Name of one-dimensional array containing {M+1} elements. 
one-dimens I n t e r p 0 1 a t ion va I u e y o f a 
ional function at x and differential coefficient in that point. 
array Real type variable name can be also used at M=O. 

M Integer Input The highest order of differential coefficients to be obtained 
type (function value only at 0). O~M~l for HERM3l, and 0~M~2 

for HERM5!. 

N Integer Input Total of input data Xi. 2~N. 
type 

XI Real type Input Name of one-dimensional array containing N elements. Value 
one-dimens of discrete point Xi. XI {l}<XI (2) <···<XI {N} 
ional 
array 
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Argument Type and Attribut 

YI 

YO 

NO 

ILL 

(3) Note 

kind e 

Real type Input 
One-dimens 
ional 
array 

Real type Input/ou 
One-dimens tput 
ional 
array 
(HBRM3D 

Or 

Real type 
Two-dimens 
ional 
array 
(HBRM5D 

Integer 
type 

Integer 
type 

Input 

Input/ou 
tput 

Content 

Name of one-dimensional array containing N elements. 
Function value fi (i=l,·· ·N) at Xi • 

(1) HBRM31: Name of one-dimensional array containing N 
elements. In an input meaning, the first order differential 
coefficient at the discrete points XI(I) and XI (1+1) should 
be input to YO(I) and YO(I+1) respectively. At this time, 
ILL=O must be specified. If differential coefficients at 
discrete points are unknown, the output becomes valid. If 
ILLiFO is specified, the approximate value of the first order 
differential coefficient at all the points (N points) is 
output. 

(2) HERM51: Name of two-dimensional array containing NO 
elements. As an input, the first and second order 
differential coefficients at discrete points are specified. 
The first order differential coefficient at XI(I) should be 
input to YO(I,I), and the second order differential 
coefficient at XI(I) should be input to YO(I,2). The first 
order differential coefficient at XI (1+1) should be input to 
YO(I+l,I), and the second order differential coefficient at 
XI (1+1) should be input to YO(l+1,2>' At this time, ILL=O 
must be specified. 

If the differential coefficient is unknown, the output 
becomes valid if ILLiFO is specified, and the approximate 
value of the first and second order differential coefficients 
at all the points (N points) is output. 

Value of the first subscript in the array declaration of YD. 
N~NO 

The input means as follows: If the differential coefficients 
at each point (the first order coefficient for HERM31, and 
the first and second order coefficients for HBRM51) are 
already known, those values should be input to YO with ILL=O. 
If the coefficients are unknown, the approximate values are 

obtained and output to YO using piecewise Lagrange 
interpolation in this routine, so the degree of interpolation 
formulas to be used must be specified. If ILL=1. the linear 
polynomial is used. If ILL=2, the quadratic polynomial is 
used. If ILL~3. the quartic polynomial is used. The output 
means as follows: If ILL=O. normal termination is assumed. 
If ILL=30000. no calculation was made at all because limits 
on the argument were exceeded. 

Bven if differential coefficients at discrete points are unknown when two or more interpolation 

values are to be repeatedly obtained. the calculation time is the same as with ILL=O because 

ILL=O is automatically assigned if ILLiFO is specified for the first time only. 
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H ERM32 and HE RMS 2 (Surface PiU ing by the Piecewise Hermite Interpolation Pormula (3. 

5-degrees» 

Surface Pitting by the Piecewise Hermite Interpolation Pormula (3. 5-Degrees) 

Programm Yasuyo Hatano. April 1977 
ed by 

Pormat Subroutine language: PORTRAN; size: 190 and 242 lin~s respectively 

(1) Out line 

HERM32 and HERM52 obtain the function value z=J (x, y) and different ial coeff icients at an 

arbitrary point (x, y) using the function value 

!ij=!(Xi,Yi) , (i=l,···,n,:r, j=l,···,11y) given at the rectangular mesh point (XitYi). 

The interpolation is based on the piecewise Hermitian interpolation of degree 3(HERM32) or 

5(HERM52) . 

(2) Directions 

CALL HERM32152 (IX. X. JY. Y. Z. M. XI. NX. YI. NY. P. NI. N2. ILL) 

Argument Type and Attribut Content 

kind e 

IX Integer Input Value of the number i of the Xi ~X:5Xi+1 mesh points in 

type reference to the x coordinates 

of points where interpolation values are to be obtained. 

l~IX<NX 

x Real type Input x coordinates of points where 

interpolation values are to be obtained. 

XI (1) ~XI (IX) ~X~XI (lX+1) ~XI (NX) 

JY Integer Input Value of the number j of the Yi :ay:a Yi+1 mesh points in 

type reference to the Y coordinates 

of points where interpolation values are to be obtained. 

I~JY<NY 
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Argument Type and Attribut 

Y 

z 

XI 

NX 

YI 

NY 

kind e 

Real type Input 

Real type Output 

One-dimens 

ional 

array 

Integer 

type 

Input 

Real type Input 

One-dimens 

ional 

array 

Integer 

type 

Input 

Real type Input 

One-dimens 

ional 

array 

Integer 

type 

Input 

Content 

y coor~inates of points ~here 

interpolation values are to be obtained. 

YI (1) ~YI (JY) ~Y~YI (JYt1) ~YI (NY) 

Name of one-dimensional array containing (}1+1)2 elements. 

Interpolation value and differential coefficient at the point 

(X. V). Por instance. if M=I. the values are output in the 

order that is shown in the expression (1). If M=O. even a 

real type variable name can be used. 

The maximum order of differential coefficients to be obtained 

(only function value at 0). 

O~M~l at HBRM32. 0~M~2 at HFRM52. 

Name of one-dimensional array containing NX elements. X 

coordinates at mesh point~. 

X I (1) <x I (2) < •• ·<X I (NX) 

Total number of mesh points in X direction. 2~NX 

Name of one-dimensional array contai'ning NY elements. y 

coordinates at mesh points. 

YI (1)<YI (2) <···<YI (NY) 

Total number of mesh points in y direct ion. 2~NY 
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Argument I Type and I Attribut Content 

kind I e 

P I Real type I Input/ou I (1) HBRM32: Name of three-dimensional array containing 

NI. N2 

Three-d ime I tput 

nsional 

array 

Integer 

type 

Input 

NlxN2x4 elements. As an input. the function value lij 

at mesh points is specified. The function value II,J at 

mesh points (X(I). Y(J» should be specified for P(I.J.l) 

(1=1 ••.•• NX. J=I ••••• NY). If ILL=O is specified. data should be 

input to P(I.J.K) (K=2.3.4> individually in the order shown 

in expression (2)' Retained. When the differential 

coefficients are unknown. if ILL:#=O is specified. P(I. J. K) 

(1=1 ••••• NX. J=I ••••• NY. K=2. 3. 4> has the meaning as an output 

variable. and the approximate value of the differential 

coefficient is output. 

(2) HBRM52: Name of three-dimensional array containing 

NlxN2x9 elements. As an input. the function value Jij 

at mesh points is specified. If ILL=O is specified. data 

should be input to P(I. J. K) (K=2 ••••• 9) individually in the 

order shown in expression (3). Retained. When the 

differential coefficients are unknown. if ILL:#=O is 

specified. P(I.J.K) (I=I.···.NX.J=I.···.NY.K=2.···.9) has the 

meaning as an output variable. and the approximate value of 

the differential coefficients is output. 

The first and second subscripts in the array declaration of 

P. NX;$;Nl. NY~N2 

6j 
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Argument Type and Attribut Content 

kind e 

ILL Integer Input/ou If ILL=O, differential coefficients at the corresponding 

type tput points should be input to P as an input. When these 

differential coefficients are unknown, the approximate values 

are obtained using piecewise L~grange interpolation in this 

routine, a~d output to p, so the degree of the interpolation 

formula to be used must be specified. If ILL=I, the linear 

polynomial is used. If ILL=2, the quadratic polynomial is 

used. If ILL~3, the quartic polynomial is used. 

ILL~NX, ILL~NY 

The meaning of output is as follows: If ILL=O, normal 

termination is assumed. If ILL=30000, no calculation was 

executed because limits on the argument were exceeded. 

_ - _[ 01] _[ 01] _[ 021 ] Z(t)-f, Z(2)- oX xaX.II"'Y. Z.(3)- ay :t=X.II"'Y' Z(4)- a:ta
ll 

:t==X.II"'Y (1) 

[
of of a

2
f] 

ox' ay t axay xaXl(I).II=Yl(J) (2) 

(3) 

(3) Note 

Bven if differential coefficients at mesh points are unknown, the calculation time is the same 

as with ILL=O because ILL=O is automatically assigned if ILL=O is specified for the first time 

only when interpolation values at two or more points are to be repeatedly obtained. A smooth, 

beautiful figure can be obtained by using this routine as the preprocessing of contour lines and 

three-dimensional display of bivariable functions. 

(1987. 05. 14> 
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HERM3S/D, HERP3S/D, HERD3S/D. and HERM3V/W (Data Fitting of Three-varia~le 

Function f(x.y.z) by the Piecewise Hermite Interpolation Formula) 

Data Fitting of Three-variable Function f(x.y.z) by the Piecewise Hermite Interpolation Formula 

Programm Yasuyo Hatano. March 1990 

ed by 

Format Subroutine Language: FORTRAN; Size: 1006. 1319. 1504. and 1293 lines 

respectively 

(1) outl ine 

This function obtains the approximate value of the function values and first order partial 

derivatives at an arbitrary point in the region using the function value 

fijk=f(Xi,Yj,Zk) , (i=l,··· ,nz, j=l,··· ,ny,k=l ••• ,nz ) given at the rectangular 

mesh point (Xi, Yj ,Zk) • The approximat ion method conforms to the piecewise Hermi te 

interpolation of degree three. 

HERM3S should be used when memory can be sufficiently used. HERP3S should be used when memory 

is insufficient. Generally. HERM3S is faster. If the total number of interpolation points is 

great. it is adequate to use HERD3S or HERM3V. If memory is sufficient. it is efficient to use 

HBRN3V. 

(2) D i reet ions 

CALL HERM3S/D (NP. CP. NC. Cl. MC1. V. fd. FD. NX. MY. MZ. I ND. I CON) 

CALL HBRP3S/D (NP. CP. NC. Cl. MCI. V. M. F. MFX. MFY. G. I NO. I CON) 

CALL HBRD3S/D(NA, PA, MPI. NC, Cl. MCI. FA, MAX. MAY. MAZ. Mo F. MFX. NFY. NW. IND. ICON) 

CALL HBRM3V/W(NA, PA, MPI. NC. Cl. MCI. FA. MAX. MAY. MAZ. M. FD. MX. MY. NX. NW. IND. ICON) 

- HERM3S/D 
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Argument I Type and I AUr i but 

kind (*1) I e 

Content 

NP Integer 

type 

Input/ou I Name of one-dimensional array containing, three elements. 

tput I As the input, NP(I) contains the value of mesh point number 

CP 

NC 

Cl 

MCl 

One-dimens 

ional 

array 

Real type I Input 

one-dimens 

ionaJ 

array 

Integer 

type 

one-dimens 

ional 

array 

Input 

Rea I type I Input 

two-dimens 

ional 

array 

Integer 

type 

Input 

(Xl~X~Xl+l) with respect to the x, y, and z coordinates at 

points where int~rpolation values are to be obtained, and 

NP(2) and NP(3) contain the value of j and k that meets the 

similar conditions with respect to y and z. If NP(I) is not 

equal to i that meets Xl~X~Xl+I' the value of i is output 

to NP(l). The value of j and k that meets the similar 

conditions with respect to y and z is output to NP(2) and 

NP (3). 

The value of coordinates (Xp, Yp,Zp) at points where 

interpolation values are to be obtained should be put in 

CP (1) , CP (2) , and CP (3) . 

Cl <1. K) ~CI (NP (K), K) ~CP (K) ~CI (NP (K) +1, K) ~CI (NC (K), K), K=l, 2, 

3. 

Name of one-dimensional array containing three elements. 

The total number of mesh points in the x, y, and z directions 

should be put in NC(l), NC(2), and NC(3) respectively. 2~NC 

at IND=1. 3~NC at 2~IND. 

Name of two-dimensional array containing MCl*3 elements. The 

x coordinates at a mesh point where function values are given 

should be put in CI(~l). The y coordinates should be put in 

Cl (*.2). and the z coordinates should be put in CI(~3). The 

order should be an ascending order of each coordinate. 

Cl (L K) ~CI (2, K)~ .•• ~CI (NC(K). K). K=I, 2. 3. 

The first subscript in the array declaration of Cl. 

~ 

~ 
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Argument Type and Attribut Content 

kind (*D e 

V Real type Output The number of elements is up to eight. If M=O. the number of 

M 

one-dimens 

ional 

array 

Integer Input 

elements is one or a single variable. If M=l. the number: of 

elements is ( The number of elements is eight at M~t 

Punctions and partial derivatives at the point (XP. YP.Zp) are 

output. Vel) is a function value. The value of V(2). V (3). 

and V(4) is output in the order of expression (1). the value 

of V(5). V(6). and V(7) is output in the-order of expression 

(2). and the value of V(S) is output in the order of 

expression (3)' 

Index with respect to the order of differential coefficients 

type to be obtained. O~N~2. 

PO Real type Input/ou Pour dimensional array containing (MX*MY*MZ*S) elements. 

MX 

MY 

NZ 

four-dimen ~put 

sional 

array 

Integer 

type 

Integer 

type 

Integer 

type 

Input 

Input 

Input 

As the input. the function values f •• J•k at mesh points 

shou Id be put in PO (I. J. K.D. If I NO=O. part ia I der i vat i ves 

at each mesh point (C,CJCk) should be further put in 

PO (I. J. K. L) (L=2. ---S) in the order of expression (4). Note 

that C,=CI(I.l). CJ=CI(J.2). and Ck=CI(K.3). The output i~ 

the approximate value of differential coefficients by the 

piecewise Lagrange interpolat ion of the degre"e that 

corresponds to the value specified with IND. It becomes 

valid when INO*O is spec if ied. 

The first subscript in the array declaration of PD. 

The second subscript in the array declaration of P~ 

The third subscript in the array declaration of PD. 
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Argument Type and Attribut 

INO 

kind (*1) e 

Integer 

type 

Input 

Content 

Index with respect to input/output to the array PD. 

If IND=O. function values and partial derivatives at mesh 

po i nts shou Id be put in PO (I, J. K. L) (L= 1. 2. ••• 8). 

If the value of partial derivatives' is unknown. INO:#O is 

specified. 

At this tim~ the approximate value of partial derivatives is 

calculated using piecewise Lagrange interpolation in this 

rout i ne before it is output to PO (I, J. K. L) (L=2. 3 ••••• 8). If 

I NO=!. the linear polynomial should be used.' If INO=2, the 

quadratic polynomial should be used. If INO~~ the quartic 

polynomial should be used. 

ICON Integer 

type 

Output Termination condition indication code. ICON=O: Normal 

termination. ICON=30000: Indicates that calculation is not 

executed at all because limits on the input argument are 

exceeded. l~ICON~lll: Indicat~s that the value of IP. JP. 

and KP is changed to meet the conditions of (XP. YP.ZP) before 

it is output. 

*1 Por double precision routines (those ending with 0 or W). all real types 'should be double 

precision real types. 

- HBRP3S/0 

Argument Type and AUribut Content 

kind (*1) e 

Same as HBRM3S with respect to NP, CP. NC, Cl. MC1. V. and M.. 
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Argument Type and Attribut Content 

kind (*1) e 

F Real type Input Three dimensional array containing (MPX*HPY*NZ) or more 

three-dime elements. 

nsional The function value fiJk at a mesh point should be put in 

array P (I. J. K). 

MPX Integer Input The first subscript in the array declaration of P. 

type 

MFY Integer Input The second subscript in the array declaration of F. 

type 

~ G Real type Input/ou Two-dimensional array containing (8*8) elements. 

two-dimens tput This argument becomes useful as an input when this routine is 

ional ca 11 ed for the same NP <1. 2. 3) for many times. At the second 

array or later call. IND=O is specified. and this routine is called 

without changing the contents of G after the last call. 

The output is the approximate value of differential 

coefficients by piecewise Lagrange interpolation. It becomes 

valid when IND#:O is specified. 

IND Integer Input Index with respect to input/output to the array G. 

type If IND=O. inter~olation calculation is executed using the 

value of G at the last call. Refer to the explanation of G. 

If the value of partial derivatives is unknow~ IND=O is 

specified. 

At this time. the approximate value of partial derivatives is 

calculated using piecewise Lagrange interpolation in this 

routine before it is output to G. If IND=1. the linear 

polynomial should be used. If IND=2. the quadratic 

polynomial should be used. If IND~3. the quartic polynomial 

shou I d be used. 
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Argument Type and Attribut Content 

kind (*1) e 

ICON Integer Output Termination condition indication code. ICON=O: Normal 

type terminat ion. ICON=30000: Indicates that calculation is not 

executed at all because limits on the input argument are 

exceeded. 

*1 For double precisio~routines (those ending with 0 or W), all real types should be double 

precision real types. 

- HBRD3S/D 

~ 
Argument Type and Attribut Content 

kind (*1) 
. e 

NA Integer Input Name of one-dimensional array containing three elements. The 

type total number of the x, y, and z coordinates at points where 

One-dimens interpolation values are to be obtained should be put in 

ional NA(I), NA(2), and NA(3) respectively. 

array 

PA Integer Input Name of two-dimensional array containing MPl~ elements. The 

type x coordin~tes at mesh points where interpolation values are 

one-d ime,ns to be obtained should be put in PA(*,l), the y coordinates in ~ 
ional PA(*,2). and the z coordinates in PA(*,3). The order should 

array be an ascending order with respect to each coordinate. 

Cl (1, K) ~PA(1, K) ~PA(NP(K), K) ~CI (NC(K), K). 

MP! Integer Input The first subscript in the array declaration of PA. 

type 

Same as HBRM3S and IIBRP3S with respect to NC, Cl. and MC!. 

~ . 
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Argument Type and Attribut 

FA 

MAX 

MAY 

kind (*1) e 

Real type Output 

four-dimen 

sional 

array 

Integer 

type 

Integer 

type 

Intege~ 

type 

Input 

Input 

Input 

Content 

Four dimensional array containing (MAX*MAY*MAZlS) or more 

elements. 

Function values and partial derivatives at the mesh point (X" 

Y J, Zk) are output. Note that Xl =PA 0, 1>, Y J=PA (J, 2), and Zk=P 

A(K. 3). Function values in FAO, J, 1<.1>. If H~l, the values 

are output in the order of expression (5). If M~~ the 

values are further output in the order of expression (6). 

The first subscript in the array declaration of Fk 

The second subscript in the array declaration of Fk 

The third subscript in the array declaration of Fk 

Same as HBRM3S and HBRD3S with respect to M. F. MFX, and MFY. 

NW 

IND 

ICON 

Integer Work 

type array area 

Integer Input 

type 

Two-dimensional array containing (MCl*6) elements. 

Index with respect to the order used when the approximate 

value of partial derivatives is calculated using piecewise 

Lagrange interpolation in this routine. If IND=l, the linear 

polynomial should be used. If IND=2. the quadratic 

polynomial should be used. If IND~3. the quartic polynomial 

shou I d be used. 

Integer 

type 

Output Termination condition indication code. ICON=O: Normal 

termination. ICON=30000: Indicates that calculation is not 

executed at all because limits on the input argument are 

exceeded. l~ICON~lll: Indicates that the value of NP(l), 

NP(2). and NP(3) is changed to meet the conditions of 

(XP. yp. ZP) before it is output. 
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*1 Por double precision routines (those ending with 0 or W), all real types should be double 

precision real types. 

- HBRM3V/W 

Argument Type and Attribut Content 

kind (*1) e 

Same as HBRo3 with respect to NA, PA, MPl, NC, Cl, MCl, PA, MAX, MAY, MAl, and M. 

PO Real type Input/ou Pour dimensional array containing (UX*MY*MZ*8) elements. 

MX 

. MY 

NZ 

NW 

four-dimen tput 

sional 

array 

Integer 

type 

Integer 

type 

Integer 

type 

Integer 

Input 

Input 

. Input 

Work 

type array area 

As the input, the function value flJk at mesh points should 

be put in PoO, J, K, 1). If I No=O, partial derivatives at each 

mesh point (Cl, C~, C~) should be further put in 

PO (I, J, K, L) (L=2, ••• 8) in the order of express i on (4) • Note 

that Cl=CI (I, 1), C~=CI (J, 2), 

and C~ =CI(K,3). The output is the approximate value of 

differential coefficients by the piecewise Lagrange 

interpolation of the degree that corresponds to the value 

specified with I NO. It becomes valid when INo~O is 

specified. 

The first subscript in the array declaration of PD. 

The second subscript in the array declaration of PD. 

The third subscript in the array declaration of PD . 

Two-dimensional array containing (MCl*6) elements. 
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Argument Type and Attribut Content 

INO Integer Input Index with respect to input/output to the array FQ 

type If I NO=O. function values and partial derivatives at mesh 

points should be put in FO{I. J. le, L) (L=I. 2 •••. 8>. 

If the value of partial derivatives is unknown. INO+O should 

be specified. .At this tim~ the approximate value of partial 

derivatives is calculated using piecewise Lagrange 

interpolation in this routine before it is output to 

PO (I. J. le, L) (L=2. 3 ••••• 8>. . If I NO=!. the linear polynomial 

should be used. If INO=~ the quadratic polynomial should be 

used. If NO~3. the quart ic polynomial should be used. 

ICON Integer· Output Termination condition indication code. ICON=O: Normal 

type termination. ICON=30000: Indicates that calculation is not 

executed at all because limits on the input argument are 

exceeded. 

*1 For double precision routines (those ending with 0 or W). all real types should be double 

. precision real types. 

--' [01] Vet )=/ , . V(2)= OX :r=Xp,y=Yp,r-Zp, 

V(3)=[ ~~ l ... x".II"YP.zulp, V(4)=[ ~~ ] ... x".u.YP .... lp (t) 

(2) 

[ 021 ] 
V(7)= oxoz :r=Xp,y=Yp,z=aZp (2) 
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96 
[ 

a3f ] 
V(8)= axa yaz %'='xP.Y=Y~.z=Zp, (3) 

- 1 ~ n3 FD(I ,J ,K, 1 )=f (Cl ,CJ ,\"k), 

FD(I.J.K .2)=[ ~~ ]zoCl,yc(j,z4' 

FD(I.J .K.3)=[ ~~ ]zoCl,v4z4. 

FD(I.J .K.4)=[ ~r ]zcC!,yc(j,z4' ...) 

[ 
a2f ] FD(I,J,K,5)= axay r-=eLy4.z4, 

. . [a 21 ] FD(I,J,K,6)= ayaz %~LY4:z4' 

[ 
a21 ] FD(I,J,K,7)= axaz r-=eLy4.z4, 

[ 
a31 ] FD(I.,J,K ,8)= axa yaz r-=eLy4.z4, (4) 

~ 

FA(I,J ,K, 1 )=1 (Xi, Yj ~Zk) 

FA (I • J.K .2)=[ ~ r ],'Xi,V'Yi ,zcZk. 

[ al·] FA(I,J,K ,3)= -ay r-Xi,y=Yj.z=ZJet 

FA (I .J.K .4)=[ ~r ],'Xi,V-Yi,ZCZk. 
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[ 
021 ] FA(I,J,K,5)= oxay %""Xi'!laYj,za~, 

[ 
021 ] FA(I,J,K ,6)= 0 yaz :r=Xi,!I=Yj,zaZI" 

[ 
021 ] FA(I,J,K,7)= axoz :r=Xi,!lcYj,zaZ,,, . (5) 

, [3- ] FA(I,J,K ,8)= oxOa taz xoXi,u=Yj.z=ZIo (6) 

~ 

(3) Note 

When partial derivatives at mesh points are unknown with respect to HBRM3S/D, HBRP3S/D, and 

HBRM3VIW, if interpolation values at two or more points are to be repeatedly obtaine~ the 

calculation time can be shortened IND=O if IND~O is specified for the first time only, and IND=O 

~ 
is specified thereafter. By using this routine as the pre-processing for displaying the 

three-dimensional figures of 3-variable functions, a smooth, beautiful figure can be drawn. 
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HERP2S/D, HERD2S/D, HERM2S/D, and HERM2V/W (Data Fitting of Two-variable 

Function f (x,y) by the Piecewise Hermite Interpoldtion Formula) 

Data Fitting of Two-variable Function f(x.y) by the Piecewise Hermite Interpolation Formula 

Programm Yasuyo Hatano, March 1990 

ed by 

Format Subroutine Language: FORTRAN; Size: 809, 866, 635. and 287 lines 

respectively , 

(1) Out} ine 

This function obtains a function value at a certain point (XtY) in the region and the 

approximate value of the first order partial derivative using the function values 

fij=f(xi tYi), (i=l,··· ,n:Ct j=l,··· ,nu) given at the rectangular mesh point (XitYi). 

The approximation.method conforms to the piecewise Hermite interpolation of degree three. 

HERM2S/D should be used when memory can be sufficiently used. HERM2S/D should be used when 

memory is insufficient. 

If the total number of interpolation points is great, it is adequate to use HERD2S/D or 

HERM2V/W. If memory is sufficient. it is most effective to use HAHERM2V/W. 

(2) Directions 

CALL HERP2S/D(NP, CP, NC, Cl, MCl, V, M. F. MFX, G, IND, ICON) 

CALL HERD2S/D(N~PA,MPl,NC.CI,MCl,FA.MAX,MAY,M,F,MPX.NW, IND, ICON) 

CALL HERM2S/D (NP , CP. NC. Cl, MCl, V, M. PD, MX, MY, I ND, I CON) 

CALL HEIU12VIW(N~ P~ MPl, NC, Cl, MCl, F~ MAX, MAY. It FD. MX. MY. NW. IND. ICON) 

- HERP2S/D 
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Argument Type arid Attribut Content 

kind (*1) e 

NP Integer Input/ou Name of one-dimensional array containing two elements. 

type tput As the input. NP(l) contains the value of mesh point numb~r i 

One-dimens (Xl~X~Xl+l) with respect to the x and y coordinates at 
, 

ional points where interpolation values are to be obtained. and 

array NP(2) contains the value of J that satisfies the similar 

conditions with respect to y. As the output. the value of i 

is output if NP(l) does not equal i that meets XI~X~XI+I. 

The value of j that meets the similar conditions with respect 

~ to y is output to NP(2). 

CP Real type Input The value of coordinates (XP. Yp) at points where 

one-dimens interpolation values are to be obtained should be put to 

ional CP (1) and CP (2) • 

array Cl (1. K) ~CI (NP(K). K) ~CP(K) ~CI (NP(K)+l. K) ~CI (NC(K). K). K=l. 2. 

NC Integer Input Name of on~dimensional array containing two elements. 

type The total number of mesh points in the x and y directions 

one-dimens should be put in NC(l) and NC(2L 2:$;NC at IND=l 3~NC a~ 

ional 2~IND. 

array 

Cl Real type Input Name of two-dimensional array containing MCl*2 elements. The 

two-dimens x coordinates at a mesh point where function values are given 

ional should be put in CI(~l). and the y coordinate should be put 

array in CI(~2). The order should be an ascending order with 

respect to each coordinate. 

Cl (1. K) ~CI (2. K)~ •.. ~CI (NC(K). K). K=l. 2. 

MCl Integer Input The first subscript in the array declaration of Cl. 

type 
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Argument Type and Attribut Content 

V Real type Output The number of elements is up to four. If M=O. the number of 

one-dimens elements is one or a single variable. If M=I. the number of 

ional elements is thre~ If M~~ the number of elements is four. 
. 

array The functions and partial derivatives at the point (Xp, Yp) 

are output. V (1) is a function value. V (2). V (3), and V (4) 

are output in the order showp in expression (1). 

M Integer Input Index with respect to the order· of differential coefficients 

type to be obtained. O~M:;;2. 

P Real type Input Two-dimensional array containing (MPX*NY) or more elements. 

two-dimens The value of functions f lJ at a mesh point should be put in 

ional P (I. J). 

array 

lfPX Integer Input The first subscript in the array declaration of P. 

type 

G Real type Input/ou Two-dimensional array containing (8*8) elements. 

two-dimens tput This argument is useful as an input when this routine is 

ional called many times for the same NP(I) and NP(2). If IND=O is 

array specified, and this routine is called without changing the 

contents of G after the last call, the calculation is prompt. 

This argument is useful as an output when IND~O is 

specified. and the approximate value of differential 

coefficients by the piecewise Lagrange interpolation of the 

degree that corresponds to the value specified with IND is 

output. 
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Argument Type and Attribut 

IND 

kind (*1) e 

Integer 

type 

Input 

Content 

Index with respect to input/output to the approximation of 

differential coefficients and array G. 

If IND=O. interpolation calculation is executed by using the 

value of G at the last call. Refer to the explanation of G • 

If the value of differential coefficients is unknown. INDiFO 

is specified. 

At this time. the approximate value of partial derivatives is 

calculated by using piecewise Lagrange interpolation in this 

routine before it is output to G. If IND=1. the linear 

polynomial should be used. If IND=2, the quadratic 

polynomial should be used. If IND~3. the quartic polynomial 

should be used. 

ICON Integer 

type 

Output Termination condition indication code. ICON=O: Normal 

termination. ICON=30000: Indicates that calculation is not 

executed at all because limits on the input argument are 

exceeded. 1~ICON~111: Indicates that the value of NP(l) 

and NP(2) is changed to meet the conditions of (XP. YP) before 

it is outpul 

*1 For double precision subroutines (those ending with D or W). all real types should be double 

precision real types. 
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- HBRD2S/D 

Argument Type and Attribut Content 

NA Name of one-dimension~l array containing two elements. The Integer Input 

type total number of the x and y coordinates at mesh points where 

One-dimens interpolation values are to be obtained should be put to 

ional NA (1) and NA (2) • 

array 

PA Integer Input Name of two-dimensional array containing MPI*2 elements. The 

type x and y coordinates at a mesh point where interpolation 

one-dimens values are to be obtained should be put in PA(~I) and 

ional PA(*,2). The order should be an ascending order for each 

array . axis. Cl (I. K) :;;PA (I. "K) ~PA (HP (K), K) ~CI (Ne (K). K). K=l. 2. 

MPI .. Integer Input The first subscript in the array declaration of P~ 

type 

Same as HBRP2S with respect to NC, Cl, and MCI. 

FA Real type Output Three dimensional array containing (MAX*MAY*4) or more 

three-dime elements. 

nsional Functions and partial derivatives at the mesh point (Xt, YJ) 

array are output. Function values-are output to FA(I,J,1). If 

M~l, the values are output in the order of expression (2). 

If M~~ the values are additionally output in the order of 

expression (3)' Note that Xt =PA(I,1) and YJ=PA(J,2>. 

MAX Integer Input The first subscript in the array declaration of FA. 

type 

MAY Integer Input The second subscript in the array declaration of F~ 

type 

Same as HBRP2S with respect to M, F, and MPX. 

D Real type Work Three-dimensional array containing (6*6*4) elements. 

array area 
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Argument Type· and Attribut Content 

kind (*1) e 

NW Positive Work Two-dimensional array containing (MC1*4) elements. 

type array area 

IND Integer Input Index with respect to the order used when the approximate 

type value of partial derivatives is calculated using piecewise 

Lagrange interpolation in this routine. If IND=I. the linear 

polynomial should be used. If IND=2. the quadratic 

polynomial should be used. If IND~3. the quartic polynomial 

shou 1 d be used. 

ICON Integer Output Termination condition indication code. ICON=O: Normal 

type termination. ICON=30000: Indicates that calculation is not 
-

executed at all because limits on the input argument are 

exceeded. 

*1 For double precision subroutines (those ending with 0 or W). ~ll real types should be double 

precision real types. 

- HBRM2S/D 

Argument Type and Attribut Content 

kind (*1) e 

Same as HBRP2S with respect to NP. CP. NC. Cl. MC1. V. and M. 
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Argument Type and Attribut Content 

kind (*1) e 

FO Real type Input/ou Three dimensional array containing (MX*MY*4) elements. As 

three-dime tput the input. the function values f,.J at a mesh point should be 

nsional put in FO(I.J.1>. If IND=O. partial derivativ.es at each mesh 

array point (Cl. CJ) should be further put in FO(I. J. L) (L=2. 3. 4) in 

the order of expression (4). Note that C,=CI(I.1) and CJ=CI 

(J.2). The output is the approximate value of differential 

coefficients by the piecewise Lagrange interpolation of the 

degree that corresponds to the value specified with INO. It 

becomes valid when INO~O is specified. 

NX Integer Input The first subscript in the array declaration of FO. 

type 

MY Integer Input The second subscript in the arra) declaration of FO. 

type 
.. 

INO Integer Input Index with respect to input/output to the array FQ If 

type I NO=O. function values and partial derivatives at a mesh 

point should be put in FOO. J. L) (L=1. 2. .•. 4). If the value 

of partial derivatives are unknown. INO~O should be 

specified. At this time. the approx'imate"value of partial 

derivatives is calculated using piecewise Lagrange 

interpolation in this routine before it is output to 

FOO. J. L) (L=2. 3. 4>. If I NO=l. the linear polynomial should 

be used. If INO~2. the quadratic polynomial should be used. 

If INO~3. the quartic polynomial should be used. 
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Argument Type and Attribut Content 

kind (*1> e 

ICON Integer Output Termination condition indication code. ICON=O: Normal 

type term inat ion. ICON=30000: Indicates that calculation is not 

executed at all because limits on the input argument are 

exceeded. 1~ICON~l1: Indicates that the value of IP and 

JP is changed to meet the condition of (XP. YP) before it is 

output. 

*1 Por double precision routines (those ending with 0 or W). all real types should be double 

precision real types. 

- HERM2V/W 

Argument Type and Attribut Content 

Same as HBR02S wit~ respect to NA. PAt MP1. NC. Cl. MCl. P~ MAX. MAY. and R 

PO Real type Input/ou Three-dimensional array containing (MX*MY*4) elements. As 

three-dime tput the input. the function value flJ at a mesh point should be 

nsional put in PO(I.J.1>. If I NO=O. partial derivatives at the mesh 

array point (C·,I. CJ
2) ghould be put in POO. J. L) (L=2. 3. 4) in. the 

~ ... order of expression (4) . Note that C,I=CI (1.1) and CJ2=CI (J. 

2>- The value to be output in the order of expression (4) is 

the approximate value of differential coefficients by the 

piecewise Lagrange interpolation of the degree that 

corresponds to the value specified with INO. The output 

becomes valid when INO=#O is specified. 

MX Integer Input The first subscript in the array declaration of PD. 

type 

MY Integer Input The second subscript in the array declaration of PD.' 

type 
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Argument Type and Attribut Content 

kind (*l) e 

NW Integer Work Two-dimensional array containing (MC1*4) elements. 

type array area 

INo Integer Input Index with respect to input/output to the array Fo. If 

type I NO=O. function values and partial derivatives at mesh points 

should be put in FOO. J. L) (L=1. 2. ••• 4). If the value of 

partial derivatives is unknown. INO~O should be specified. 

At this time. the approximate value of partial derivatives is 

calculated using piecewise Lagrange interpolation in this 

routine before it is output to FOO. J. L) (L=2. 3. 4). If 

I NO=1. the linear polynomial should be used. If IND=2. the 

quadratic polynomial should be used. If INO~3. the quartic 

polynomial should be used. 

ICON Integer Output Termination condition indication cod~ ICON=O: Normal 

type termination. ICON=30000: Indicates that calculation is not 

executed as all because limits on the input argument are 

exceeded. 

*1 For double precision subroutines (those ending with 0 or W). all real types should be double 

precision real types. 

V(1 )=1. V(2)=[ ~I ]z-Xp,UOYP' V(3)=[ ~ ~ ]z-xP,UOYP' (1) 

[ 
a21 ] 

V(4)= axa y Z=XP.y",Yp (1) 

FA(I ,J, 1 )=1 (Xi, Yj) 

FA(I.J .2)=[ ~~ ]zcXi.IFYj. FA (I .J .3)=[ ~ ~ }=Xi,IFYj (2) 
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(3) 

- 1 2 FD(I,J, 1 )=/ (C. ,CJ ) , 

FD(I.J .3)=[ ~ ~ ]z=CL~' 

[ 
a27 ] FD(I,J ,4)= axa y r-=eLv=C1 (4) 

(3) Note 

When partial derivatives at mesh points are unknown with respect to HBRP2S/D. HBRD2S/D. and 

HBRM2V/W. if interpolation values at two or more points are to be repeatedly obtained. the 

calculation time can be shortened if IND~O is specified for the first time only. and IND=O is 

specified thereafter. If this routine is used as the pre-processing for displaying figures such 

as the contour lines of double-variable functions. a smooth, beautiful figure can be drawn. 

HBRM2S has the function that is equivalent to the library HBRM32. It is added to standardize 

the arguments. 
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LSAICS/D (Least Square Approximation by Orthogonal Polynomials) 

Least Square Approximation by Orthogonal Polynomials 

Programm Yasuyo Hatano. February 1976 , 

ed by 

Pormat Subroutine language: FORTRAN; size: 51 and 53 lines respectively 

(1) Outline 

LSAICS/D obtains a least squares solution 1) from the observed values 11,12,···, 1N at 

the discrete points XbX2, • • • ,XN using the m-th order orthogonal polynomial of an unknown 

function I(x). It determines the optimum degree m automatically using Minimum AIC Estimation 

method 2}. This routine consists of the following four entry names: 

LSAICS/D Obtains the optimal order m of approximation poly"nomials. 

LSFUNS/D Obtains the value of the approximation polynomial Y.(~). 

LSCOFS/D Obta i ns c ~.} in y. (x) = E;=oc /.} xi to be wr i tten. 

LSDEGS/D Changes the degree of the approximation polynomial. 

(2) Directions 

Argument 

CALL LSAICS/D(X.F.W.N.MIN.MAX.MOPT.P.Pl.P2.AIC. ILL) 

CALL LSFUNS/D (D. Y. K) 

CALL LSCOFS/D(COF) 

CALL LSDEGS/D(MD) 

Type and Attribut Content 

kind (*1) e 

X Real type Input Name of array containing N elements. Discrete points 

One-dimens XI tX2, • • • ,XN • These points need 

ional not always be put in the order of magnitude. 

array 
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Argument Type and Attribut Content 

P Real type Input Name of array containing N elements. The observation value 

One-dimens at X(I) should be entered in P(I). 

ional 

array 

W Real type Input/ou Name of array containing N elements. As an input, the weight 

One-dimens tput should be entered. If ILL=O is specified, the output becomes 

ional valid, and 1 is set in all Ws. 

array 

N Integer Input Total number of discrete points Xi • 

type 

MIN Integer Input Lower limit of degree of approximation polynomial. 0~MIN~20 

. type 

MAX Integer Input Upper limit of degree of approximation polynomial. 

type MIN~MAX~min(N-l, 20) 

MOPT Integer Output Optimum degree of approximation polynomial. 

type 

P,Pl,P2 Real type Input/ou Work area. Name of one-dimensional array containing N 

One-dimens tput elements. 

ional 

array 

AIC Real type Output Name of array containing (MAX+!) elements. The value of AIC 

One-dimens in polinomial of degree J is entered in AIC(J+l). 

ional 

array 

ILL Integer Input/ou Por the meaning as an input, see the item of W. The meaning 

type tput as the output is as follows: If ILL=O, normal termination is 

assumed. If ILL=30000, no calculation was executed at all 

because limits on the argument were exceeded. 
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go 

Argument I Type and I Attribut 

kind (*J.) I e 

o 

Y 

K 

COP 

MD 

Real type I Input 

Real type I Output 

One-dimens 

iona}" 

array 

Integer 

type 

Input 

Real type I Output 

One-dimens 

ional 

array 

Integer 

type 

Input 

Content 

Value of x coordinates to be obtained. 

Name of array containing K+l element~ Value of 

approximation polynomial in D. (J-l)-th order differential 

coefficient is entered in Y(J). If "K=O, even the real type 

variable name can be used. 

Highest'order of differential coefficients to be obtained. 

Name of array containing MOPT+l elements. If an 

approximation polynomial is 

written as y.(x)=E;=oc/·>x j 
, the values of the 

coefficient Cj'·> are entered sequentially from the lower 

order. Por instanc~ 

Y2(x)=COF(t )+COF(2) xx+COF(3) x:x.Z is entered at 

MOPT=2. However, it is better to use LSPUNS/D to obtain the 

value of y.(x). 

The degree to be changed should be entered. If LSDBGS/D is 

called, Y and OP in LSPUNS/D and LSCOPS/D become the value 

based on the polynomial of degree MD. ,MD~MAX 

*1 Por all double precision subroutines, all real types should be double precision real types. 

(3) Note 

A numerically steady orthogonal polynomial is taken as the base, and the scale of the 

observation points Xi and the observation values Jfi is provided so that the digits are not 

missed. If the degree of polynomials to be applied is unknown, the function that determines the 

degree automatically by AIC is useful. 

(4) Calculation method 

Refer to -Research and Development Division Research Report No. ~- Nagoya University Computer 

...) 

~ 
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Center. 1976. p.5. 

Bibliography 

. ,0' : 1) A.Ralston; "A First Course in'Numerical Analysis". McGraw-Hill. p.232 (1965) . 
:. ~ 

2) Kunio Tanabe; "Error in Numerical Calculation", Bit special issue, PP.113-125 (1975). 

(1987. 05. 07) 
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LSANLS/D (Curve Pitting by Least Square Approximation with Nonlinear Parameters) 

Curve Pitting by L~ast Square Approximation with Nonlinear Parameters 

Programm. Yasuyo Hatano. October 1982 

ed by 

Pormat Subroutine language: PORTRAN; size: 510 and 511 lines respectively 

(1) Outline 

LSANLS/D obtains the parameter Co,c., ... c. from the initial estimate c£ using the 

derivative correction method based on least squares method if n points XltX2· •• Xn, and the 

observation value YltY2· .• ,Yn in these points are given. and the form of the function 

y=!(x,CO,Clt ... c.) (n>m) 

is already known. 

(2) 0 i rect ions 

CALL LSANLS/D (X. Y. N. C. M. BPS. W. KW. PUN. ITBR. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

X Real type Input Value of independent variable Xi, i=l ,2, . .. ,no Size 

One-dimens N. 

ional 

array 

Y Real type Input Value o f dependent v a r i a b I e 

one-dimens Yi,i=l,2,· .. ,n . Size N. 

ional y for x=X(I) should be entered in Y(I). 

array 

N Integer Input Number of variables Xi . 

type 
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Argument Type and Attribut 

kind (*1) e 

Content 

C Real type Input/ou The initial estimate of the non-linear parameter 

M 

BPS 

KW 

FUN 

one-dimens tput 

ional 

array 

Integer 

type 

Input 

Real type Input 

Real type Work 

two-dimens area 

ional 

array 

Integer Input 

type 

Real type Input 

COtC. t ... C. should be entered as an input. 

The value estimated by least squares method is entered as 

an output. Size R 

Number of non-linear parameters Ck. 1~M~10, M<N 

Convergence criterion. If Ck"'O, this argument is used in 

the meaning of the absolute value. If Ck"'O. it is used 

in the meaning of the absolute value. 

Size (KWXN). 

Adjustable dimensions of W. KW~N+l 

Subroutine for calculating 

the function value and Of / OCk for the function 

f (x t C. t C2 t • • • c.) . The subroutine for that 

subroutine as a real argument must be prepared by the user, 

and defined by BXTBRNAL declaration. 

FUN (XX, YY. G. C. M) 

XX (input): Independent variable x. 

YY (output): Value of function f. 

G (output): One-dimensional array of size R G(K) 

contains the first order derivative of f at x=XX with 

respect to the parameter C{K). 

C (input): Parameter Ck t k=l t2t ... t/t!. 

M (input): Number of parameters. 
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Argument Type and Attribut Content 

kind (*1) e 

ITBR Integer Input/ou The upper limit on iteration count should be entered as an 

type tput input. 

An actual iteration count is entered as an output. I~ITBR 

ILL=O: Normal termination. 

1~ILL~M: No solution was obtained because the regular 

ILL Integer Output equation was under ill conditions. 

type 20000<ILL~20000+M: The solution did not settle. 

ILL=30000: No calculation was ~ade because of limits on the 

input argument. 

*1 For double precision subroutines, all real types should be double precision real types. 

(3) Bxample of use 

c .... EXAMPLE FOR LSANLS •••• 
FCX,A,B)=A*EXPCB*X) 
DIMENSION XCS),YCS),WC6,S),CC2),EXACTC2) 
EXTERNAL FUN 
N=S 
M=2 
DO 1000 I=1,N 

1000 XCI)=FLOATCI)/10. 
Y(1)=1.228 
Y(2)=1.00S 
Y(3)=0.823 
Y(4)=0.674 
YCS)=0.SS2 
C(1)=1.4 . 
C(2)=-1.0 
EXACT(1)=1.S 
EXACT(2)=-2.0 
EPS=1.E-4 
ITER=20 
CALL LSANLSCX,Y,N,C,M,EPS,W,6,FUN,ITER,ILL) 
WRITE(6,6100) N,M,ITER,ILL 

6100 FORMATC1HO,' N,M,ITERATION, CONDITION =',416) 
WRITEC6,6200) (I,CCI),I=1,M) 
WRITE(6,6200) CI,EXACT(I),I=1,M) 

6200 FORMAT(2X,2(I3,F10.S» 
STOP 
END 
SUBROUTINE FUNCXX,YY,G,C,M) 
DIMENSION G(1),C(M) 
YY=C(1)*EXPCCC2)*XX) 
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. ' 

.. 

~ 

G (1) =.:EXP(C·(2') *X·)() 
G(2)=C(1)*XX*EXPCCC2)*XX) 
RETURN 
END 

Bi~liography 

1) Written by T. R. Mackerra and translated by Isao Miura and Yoichi Tao; "outI i'ne of Numerical 

Calculation for Computer." Science Library No 8. Science Company. p.225 (1972). 

<1987. 08. 11) 
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96 
TETPCK (Three Dimensional ~ Interpolation Scheme for Irregularly Spaced Data (O~k~l» 

Three Dimensional ~ Interpolation Scheme for Irregularly Spaced Data 

Programm Yoshio Sato, January 1979 
ed by 

Pormat Subroutine language: PORTRAN; size: 970 lines 

(1) Outline 

TBTPCK generates a tetrahedral mesh having the vertexes at each data point (Xit Yi ,Zi) for 

irregularly distributed three-variable function data 

Xit YitZit fi=f(Xi, Yi ,Zi), (i=t ,2, ... ,N), and obtains the value of partial der ivat ives 

of up to k class at that data point. Then, it assigns to each of the tetrahedral elements the 

interpolation function to be the ~ class over the entire domain (convex polyhedral area) to 

obtain the interpolation value at rectangular hexahedral lattice points in the domain. 

(2) Direct ions 

CALL TBTPCK(X, Y. z. P. N, P. MI, M2. MX. MY, MZ, XL, YL, ZL. XU. YU. ZU. K. ICON) 

Argument Type and Attribut Content 
kind e 

X, y, Z Real, type Input Name of array containing N elements. ~, y, and Z 

One-dimens coordinate at each data point. However, the number of points 
ional at the same coordinate must not be two or more. 
array 

P Real type Input . Name of array containing N elements. Punction value at each 
One-dimens data point. 
ional 
array 

N Integer Input Number of data points. The size of N must be 4 to 5000 at 
type K=O, and 10 to 5000 at K=I. 

P Real type Output Name of array containing MIXM2xNZ elements. The 
Three interpolation value at rectangular hexahedral lattice points 
dimensiona ·is entered. 
I array 

Ml,M2 Integer Input Value of the first and second subscript in the array 
type declaration of ~ MI~MX, M2~MY 

---

~ 

~ 
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~. 

Argument 

MX. MY. MZ 

XL. YL. ZL 

XU. YU. ZU 

K 

ICON 

ICON 

Type and 
kind 

Integer 
type 

Real type 

Real type 

Integer 
type 

Integer 
type 

Integer 
type 

(3) Bxample of use 

Attribut 
e 

Input 

Input 

Input 

Input 

Content 

The number of rectangular hexahedral lattice interpolation 
partition points in the x. Y. and z directions. 

Lower end position of rectangular hexahedral lattice 
interpolation points in the x. y. and z directions. 

Upper end position of rectangular hexahedral lattice 
interpolation points in the x. y. and z directions. 

Indicates that the interpolation function is the ~ class. 
(K=O. D. 
If K~O or 1. the interpolation part is skipped. 

Input/ou This argument has the following meaning as an input argument. 
tput 

Input/ou 
tput 

ICON>O: Generates a tetrahedral mesh (at ICON=l only). and 
calculates the value of first class partial derivatives at 
each data point (at K=I). 
ICON~O: The above part is skipped. 

This argument has the following meaning as an output 
argument. ICON=O: Normal. 
ICON<O: IICONI means the number of interpolation points 
outside the domain. If the ipterpolation point is outside 
the domain. an extrapolation value is obtained by the least 
squares method using the (k+l )-th order polynomial. and 
entered in P. 
ICON=30000: The limit on the input argument is broken. 
ICON=10000: Break Down by work area shortage. etc. (Rare. 
Brror messages are printed.) 

The principal part of the main program for using TETPCK is as follows: 

01 MBNS I ON X (350). Y (350), Z (350). F (350), P (20. 20, 20) 
: ······Calculations of X. Y. Z. and F 

ICON=1 
CALL TETPCK (X. y, Z. F. 125. P. 20. 20. 10. 10. 2, 1. O. 1. O. 4. O. 10. O. 10. O. 7. O. 1. I CON) 

BND 
The following program gives the same result. too. (See 3 in Note) 

01 MBNS ION X (350). Y (350). Z (350). F (350). P (20. 20. 20> 
: ······Calculations of X, Y. Z. and P 

ICON=l 
XP=1.0 
DO 1 1=1.10 
YP=1. 0 
DO 2 J=l. 10 
ZP=4. 0 
DO 3 K=I.2 
CALL TBTPCK(X, Y. Z. P.125. PO. J. K).l.l. 1. 1. 1. XP. YP. ZP. XP. yp, ZP. 1. ICON) 

3 ZP=ZP+3.0 
2 YP=YP+1. 0 
1 XP=XP+1. 0 
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BND 

(4) Note 

1. This routine should be called with ICON;1 only once at the first time for the same value of 

X, Y, Z, F, N, and ~ The generation of a tetrahedral mesh and the evaluation of partial 

. derivatives are completed at the first call, and ICON~O is made at the result. Because the 

above part should be skipped for the same data at the subsequent steps, this routine should be 

called with ICON~O hereafter. 

2. The number of four vertexes of each element of the generated tetrahedral mesh can be 

referred to with the named COMMON statement as shown below. 

COMMON/CL0123/LO(40000),L1(40000),L2(40000),L3(40000),L 

The number of four vertexes of L tetrahedral elements is stored in LO (I), L 1 (I) , 

L 2 ( I ), and L 3 ( I ) ( I = 1 , 2, • • • , L) so that the three vertexes L 1 ( I ) , 

L2 (I), and L3 (I) are ordered clockwise as viewed from the vertexes LO (I). 

3. When the interpolation value at a point (xpt YptZp) is to be obtained, 

Ml=M2=MX=MY=MZ=1 t XL=xpt and YL=Ypt ZL=zp should be assumed. In this case, the 

output argument P can be a real type variable. 

<1987. 05. 14) 

~. 
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?? 
TR I PCK (Two Dimensional cf Interpolation Scheme for Irregularly Spaced Data (0~k~3» 

Two Dimensional cf Interpolation Scheme for Irregularly Spaced Data 

Programm Yoshio Sato, January 1979 
ed by 

Format Subroutine language: FORTRAN; size: 549 lines 

(1) Outl ine 

TRIPCK assigns to each of triangular elements the interpolation function to be the cf class 

over the entire domain (convex polygonal area) and obtains the interpolation value at rectangular 

mesh points in the domain after generating a triangular mesh having the vertexes at each data 

point (Xi ,Yi) and obtaining the value of partial derivatives of up to the k class at each 

data point for irregularly spaced bivariable function data 

Xi, Yi,.!i=!(Xi,Yi), (i=l,2,···,N). 

(2) 0 i rect ions 

CALL TRIPCK(X, y, F, N, P, Ml, MX, MY, XL, YL, XU, YU, K, ICON) 

Argument Type and Attribut Content .' 
kind e 

X! Y Real type Input Name of one-dimensional a~ray containing N elements. X, Y 
One-dimens coordinate at each data point. Two or more points of the 
ional same coordinate must not exist. 
array 

F Real type Input Name of one-dimensional array containing N elements. 
One-dimens Function value at each data point. 
ional 
array 

N Integer Input Number of data points. The dze of N must be 3 to 5000 for 
,type K=O, 6 to 5000 for K=l, 10 to 5000 for K=~ and 15 to 5000 

for K=3. 

P Real type Output Name of two-dimensional array containing MlxMY elements. 
Two-dimens Interpolation values at rectangular mesh points are entered. 
ional 
array 

Ml Integer Input Value of the first subscript in the array declaration of ~ 
type fd1~MX 
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Argument Type and Attribut 

MX.MY 

XL. YL 

XU. YU 

K 

"kind e 

Integer 
type 

Input 

Real type Input 

Real type Input 

Integer 
type 

Input 

Content 

Number of partition points in the :r and y directions at 
rectangular mesh interpolation points. 

Lower end position in the :r and y directions at 
rectangular mesh interpolation points. 

Upper end position in the :r and y directions at 
rectangular mesh interpolat ion poinls. 

Indicates that the interpolation function is the ~ class. 
K=O. 1. 2. and 3. 
Interpolation part is skipped if K=t=O. 1. 2, and 3. 

ICON Integer 
type 

Input/ou This argument has the following meaning as an input argument. 
tput 

(3) Bxample of use 

ICON>O: Generates a triangular mesh (only at ICON=I). and 
calculates the partial derivatives of up to the k class 
(K=I, 2, and 3) at each data point. 
ICON~O: The above part is skipped. 

This argument has the following meaning as an output 
argument. 
I CON=O: Norma 1. 
ICON<O: IICONI represents the number of interpolation points 
outside the domain. If the interpolation poi.nt is outside 
the domain. an extrapolation value is obtained by the least 
squares method using the (k+l) -th order polynomial. and 
entered in P. 
ICON=30000: The limit on the input argument is not kept. 

The principal part of the main program for using TRIPCK is as follows: 

DIMENSION X(SOO),YCSOO),FCSOO),PC20,20) 
······Ca lcu lat ion of X. Y. and F 

ICON=1 
CALL TRIPCK(X,Y~F,400,P,20,10,10,1.0,1.0,10.0,10.0,1,ICON) 

END 

The following program also gives the same result. (See 3 in Note.> . 

DIMENSION X(SOO),YCSOO),FCSOO),PC20,20) 

ICON=1 
XP=1.0 
DO 1 1=1,10 
YP=1.0 
DO 2 J=1,10 

······Calculation of X. Y. and F 

CALL TRIPCK(X,Y,F,400,PCI,J),1,1,1,XP,YP,XP,YP,1,ICON) 
2 YP=YP+1.0 
1 XP=XP+1.0 

END 
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. ~ " 

(4) Note 

1 This routine should be called with ICON=l only once at the first time for the same value of 

X. Y. F. N. and l The generation of a triangular mesh and the evaluation of some partial 

derivatives are completed at the first call, and ICON~O is made at the result. Because the 

above part should be skipped for the same data at the subsequent steps. this routine should be 

·called with ICON~O hereafter. 

t The number of three vertexes of each element of the generated triangular mesh can be 

referred to with the named COMMON statement as shown below. 

COMMON/CL999S/L1C999S),L2C999S),L3C999S),L 

The number of three vertexes of L triangular elements is stored counterclockwise in 

Lt (i) ,12(i) ,L3(i); (i=t ,2,··· ,L). 

3. If the interpolation value at a point (xp, Yp) is to be obtained. 

Mt=MX=MY=t, XL=xp, YL=yp must be assumed. In this case. the output argument P can be a 

real type variable. 

( The program TRIMAP for generating a triangular mesh for irregularly distributed bivariable 

function data (of up to 5000 points) and displaying the contour line is prepared. Refer to p.110 

in ~Chart Output Guide~. 

Bibliography 

1) Yoshio Sato; ~Display of Contour Lines for Irregularly Distributed Data and ck Class 

Interpolation~. Nagoya University Computer Center News. Vol. 10. No. 2. p.161 (1979). 

2) Yoshio Sato and ,Ichizo Ninomiya; ~Two-Dimensional cf Interpolation for Irregularly Spaced 

Data". Transactions of Information Processing Soc. of Japan. Vol. 22. p.581. (1981>' 

(1987. 05. 08) 
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BITREV/BITRVD/BITRVC/BITRVB (Rearrangement of Data by Bit Reversal) 

Rearrangement of Data by Bit Reversal 

Programm Ichizo Ninomiya. April 1981 
ed by 

Format Subroutine Language: Assembler; Size: 108. 110. and 114 lines 
respectively 

(l) Out} ine 

BITRBV/BITRVD/BITRVC/BITRVB is a subroutine for rearrangement by bit reversal required for the 

fast Fourier transform. The bit reversal is to reverse the order of binary bits. If the 

reversal of M-digit binary number K is represented with j(. this routine stores A{K) in 

A(K=T +1) for integer K from 1 to 2" . 

(2) 0 i rect ions 

Argument 

CALL BITRBV(~M. ILL) 

CALL BITRVD.{~ Mo ILL) 

CALL BITRVC{~M. ILL) 

CALL BITRVB{A.M. ILL) 

Type and Attribut 

kind (*l) e 

Content 

A Real type Input/ou One-dimensional array with 2" elements. The elements ar.e 

One-dimens tput rearranged by bit reversal in this routine. 

ional 

array 

M Integer Input Indicates that the size of array A is 2". M~O 

type 

ILL Integer Output If M<O. ILL=30000. and calculation is not performed. In all 

type other cases. calculation is performed. and ILL=O. 

*1 For BITRVD(BIRVB). all real types should be changed to double precision real types. 

(3) Performance 
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Bffective algorithm and careful coding make this routine very fast. 

(4) Calculation method 

Refer to the bibliography 1) • 

Bibliography 

1) Ichizo Ninomiya; DMethod of Bi~ Reversal Scrambling,D Preprlnts of the 23th Symposium of 

Information Processing Soc. of Japan, pp.899-900 (1981). 

(1987. 08. 10) (1987. 08. 21) 
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DRCH1S/D,DRCH3S/D,IICH1S/D,IICH3S/D 

(Derivative of Pirst Kind Chebyshev Series) (Derivative of Shifted Chebyshev Series) 

(Indefinite Integral of Pirst Kind Chebyshev series) 

(Indefinite Integral of Shifted Chebyshev Series) 

Derivative of Pirst Kind Chebyshev Series (DRCHIS/D) 

Derivative of Shifted Chebyshev Series (DRCH3S/D) 

Indefinite Integral of Pirst Kind Chebyshev (IICHIS/D) 

Indefinite Integral of Shifted Chebyshev Series (IICH3S/D) 

Programm Tatsuo Torii. December 1978 
ed by 

Pormat Subroutine Language: PORTRAN; Size: 24. 24. 24, 24. 26. 26. 26, 
and 27 lines respectively 

(1) Out line 

The subroutines represent the termwise differentiation and integration of the first kind 

Chebyshev series E~Sk<N ClkTkCX) from given with Chebyshev s~ries. Similarly, the termwise 

differentiation and integral of the shifted Chebyshev series E~Sk<N ClkTk*CX) are obtained 

from series of {Tk *Cx)} . 

(2) Direct ions 

Argument 

A 

CALL DRCH1S/D(A,NA, B, NB, ICON) 

CALL IICH1S/D(A, NA, B, NB, ICON) 

CALL DRCH3S/D (A, NA, B. NB, I CON) 

CALL I I CH3S/D (A. NA. B, NB, I CON) 

Type and Attribut 
kind (*1) e 

Content 

Real type Input DRCHB1S/DRCHID and IICHB1S/IICHID: The coefficients of the 
One-dimens first kind Chebyshev series are stored in k Number of terms 
ional NA~l 
array 

NA Integer DRCHB3S/DRCH3D and IICHB3S/IICH3D: Series of the shifted 
type Chebyshev polynomial. 

(oS' 
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Argument Type and Attribut Content 
kind (*1) e 

B Real type Output The coefficients of series to which termwise integration or 
one-dimens differentiation is applied are stored in array B. 
ional NB~1 is the number of coefficients of an output. 
array 

NB Integer 
type 

ICON Integer Output I CON=O: Norma 1. ICON=30000: Parameter error. 
type 

*1 For double precision subroutines, all real types should be double precision real types. 

(3) Calculation method 

The Chehyshev series of N terms is integrated termwise to 

1% E ' OkTk(X)dx= E 'bkTk(X) 
-tOsk<N Osk<N 

, where 

and 
N+t 

bo=2E (-1 )k-tbk 
kat 

• However, CJN+ 1 =QN=O. 

In termwise differentiation, ~nversely the coefficient {Ok} is obtained by giving {bk} 

• When the series is to be expanded by shifted Chebyshev polynomials, the relations 

bk - (Clk-l-Clk+t)/4k,kii: 1 hold between the coefficients of both series 

J%E' OkTk * (x)dx= E' bkTk * (x) • 

(4) Bxample 

If a trigonometric function is expanded into Chebyshev series, a Bessel function is appeared. 
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·.·.t .. 

'-' 

CD 

cosax - Jo(a) +2L ( _1)k J2k(a)T2k(x) 
k=1 

CD 

sinax - 2L(-t)kJ2k+I(a)T2k+I(x) 
k=1 

The right hand side is integrated and differentiated termwise. The following program integrates 

and differentiates coS(tr and sinax termwise by expanding them by shifted Chebyshev 

polynomials. The integration constant is defined so that the sum of the series equals 0 at x=-1 

(or x=O when the shifted Chebyshev polynomial is u~ed). 

C TEST FOR SUBROUTINE IICH1S AND DRCH1S. 
DIMENSION AC25S),BC25S),CC25S) 
EXTERNAL F 
COMMON L,T 
DATA EPSA,EPSR,NMIN,NMAX/0.0,0.0,0,2571 
T=10.0 
DO 10 L=1,2 
CALL FCHB1SCF,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ILL1) 
CALL IICH1SCA,N,B,NB,ILL2) 
CALL DRCH1SCA,N,C,NC,ICON) 
ICON=ICON+ILL1+ILL2 
WRITEC6,601) L,T,ICON 

600 FORMATCIII17X,9HPROBLEM C,I2,1H),5X,1HT,F8.3,6X,4HICON, 
* IS) 

WRITE C6,600) CI,ACI),BCI),CCI),1=1,NB) 
600 FORMATC1HO/C1H ,I8,3F25.06» 

CALL VCHB1SCB,NB,-1.0,VB,ICON) 
WRITEC6.603) VB 

603 FORMATCII18X,26HCHECK OF INTEGRAL CONSTANT,E25.5) 
10 CONTINUE 

STOP 
END 

FUNCTION FCP) 
COMMON L,T 
GO TO·C1,2),L 

1 F=SINCT*P) 
RETURN 

2 F=COSCT*P) 
RETURN 
END 

(1987. 05. 29) (1987. 08. 08) (1987. 08. 10) 

10'1 
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FCHB1S/D,FCHB2S/D,FCHB3S/D,FCHBOS/D 

(Pourier Expansion of Punctions by Chebyshev Polynomials of Pirst Kind) (PCHB1S/D) 

(Pourier Expansion of Punctions by Chebyshev polynomials of Second Kind), (FCHB2S/D) 

(Pourier Expansion of Punctions by Shifted Chebyshev Polynomials) (PCHB3SID) 

(Pourier Expansion of Punctions on The Open Interval by Pirst Chebyshev Polynomials) (FCHBOS/D) 

Pourier Expansion of Punctions by Chebyshev Polynomials of Pirst Kind(FCHB1S/D) 

Pourier Expansion of Functions by Chebyshev Polynomials of Second Kind(FCHB2S/D) 

Pourier Expansion of Punctions by Shifted Chebyshev Polynomials(FCHB3S/D) 

Pourier Expansion of Punctions on The Open Interval by First Chebyshev Polynomials(FCHBOS/D) 

Programm Tatsuo Torii. July 1978 
ed by 

Pormat Subroutine Language: FORTRAN; Size: 98, 99, 78, 79, 91, 92, 101. 
and 103 lines respectively 

(1) Out line 

The function I(x) given in the finite interval (open or closed interval) is expanded in the 

Chebyshev series according to the required precision s. The basis of the calculation method is 

the same as the cosine series expansion of the periodic function (sine series). 

PCHBl expands a smooth function 1ft) on a closed interval [-1. 1] by the first kind Chebyshev 

po lynom ia Is. 

Ict) ~ E "CkTkCt)= E "CkcoskB 
OsksN OsKsN 

Where t=cosB. and the order number N=N (e) takes the value of power of 2. 

PCHB2 expands a smooth function 1ft) in an open interval (-1. 1) with the Chebyshev 

polynomials of the second kind. 

The smooth function is expanded over a closed interval [0. 1] with the shifted Chebyshev 

polynomials. 

ICt) ~ E "CkTkCt)= E . ·CkCoskB 
OsksN OsksN 
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Where t=cos2B;2. 

If the function Jf(t) that cannot take both ends of a given interval as sampling points is to 

be expanded with the Chebyshev polynomials of first kin~ FCHBO should be used. 

(2) 0 i rect ions 

CALL FCHBlS/D (F. BPSA. BPSR, NMI N. NMAX. A. N. ERR. I CON) 

CALL FCHB2S/D(P. BPSA. BPSR. NMIN. NMAX. A. N. BRR. ICON) 

CALL PCHB3S/D (P, BPSA. EPSR. NMI N. NMAX, A. N, ERR. I CON) 

CALL FCHBOS/D (F, BPSA. BPSR, NMI N. NMAX. A. N. ERR. I CON) 

Argument Type and Attribut 

EPSA 
EPSR 

NMIN 
NMAX 

A 

N 

ERR 

kind (*1) e 

Real type Input 
Punction 
subprogram 

Real type Input 

Integer Input 
type 

Real type Output· 
One-dimens 
ional 
array 

Integer 
type 

Real type Output 

Content 

The user should define the function of one variable as a 
function subprogram. 
The doma in of the f unct i on must be [-1. 1] for PCHBlS/D. (-1. 
1) for FCHB2S/D. [0. 1] for for PCHB3S/D. (-1. 1) for 
PCHBOS/D. 

Error bound of Chebyshev series to be obtained. EPSA~O is 
the precision required for absolute error. and BPSR~O is the 
precision required for relative error. 

Lower and upper limits of the number of samples. 
FCHBlS/D and FCHB3S/D: O~NMIN~NMAX~1025 
FCHB2S/D and FCHBOS/D: O~NMIN~NMAX~1023 

Size of array A~NMAX. An N number of Chebyshev polynomial 
coefficients are stored in the normal order. N takes a 
positive integer value of the form of zt+t for both 
FCHBlS/D and FCHB3S/D. and of the form of zt-t for both 
FCHB2S/D and FCHBOS/D. 

Upper bound of errors of obtained Chebyshev series (see the 
note below). 
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Argument Type and Attribut Content 
kind (*1) e 

ICON Integer Output If ICON=O, the argument is normal in the foll,owing sense: 
type ' Error :imax { EPSA ,EPSR* 11 Ill} 

ICON=10000: Because the required precision is too severe. the 
above condition is not satisfied. However, the truncation 
error is decreased to rounding error level (limit of 
calculation error). 
ICON=20000: Abnormal. Even if the number of samples reaches 
the upper limit NMAX, the truncation error does not decrease 
to the level of required or rounding error. 
ICON=30000: Parameter error. 

Note: The norm definition in FCHBlS/D, FCHB3S/D. and FCHBOS/D is 11/11 CD-max I/(Xi) I, where 
, J 

xi is a sampl ing point. In FCHB2S/D, 11 1 11 ..... E I Ck I ' where Ck is the Chebyshev expansion 

coefficient of second kind of I(t). Each truncation error based on these norm is estimated. 

*1 For double precision subroutines, all real types should be double precision real types. 

(3) Perf ormance 

If the time required for the sampling of I(t) is excluded, the time is almost same to that of 

fast cosine (sine) transformation based on the trapezoidal rule. 

(4) Calculation method 

Fast cosine transformation for the even function l(cosfJ) ,/(cos2fJ/2) given in a closed 

interval of [0, no] is simply FCHBlS or FCHB3S. The cosine trallsformation of l(cosfJ) that 

does not use both ends as the ,sample points corresponds to FCHB03. Fast sine transformation for 

the odd function l(cosfJ)sinefJ is FCHB2S. The error of obtained Chebyshev series is estimated 

by the sum of absolute values of the coefficients of the last two terms. 

Each subroutine has a one-dimensional array for trigonometric function tables (511 words for 

FCHBOS. FCHBlS, and and FCHB2S, and 1023 words for FCHB3S). This array is shared with cosine 

(sine) transformation and sampling points. These constant tables are used for calculation only 

when each subroutine is called for the first time. and retained thereafter. 

(5) Example 

The functions are expanded by the Chebyshev polynomials of first kind under a required 

precision. The generating function is used as test function of the Chebyshev polynomials of first 

kind 
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The following is an example of FCBBIS when lIt 2ft and 3/4 are assigned to the parameter t. 

The required precision for absolute error is 10-5. The lower and upper limits of the number of 

samples are described in the following programs: 

C TEST FOR SUBROUTINE FCHB1S. 
DIMENSION A(257) 
EXTERNAL F 
COMMON T 
AEPS=1.0E-05 
REPS=O.O 
NMIN=O 
NMAX=257 
T=0.25 
H=0.25 

1 CONTINUE 
CALL FCHB1S CF,AEPS,REPS,NMIN,NMAX,A,N,ERR,ICON) 
WRITEC6,600) N,EER,ICON,T,CACI),I=1,N) 
T=T+H 
IFCT.LT.1.0) GO TO 1 

600 FORMATC1HO,4X,2HN=,I3,5X,4HERR=,E10~3,5X,5HICON=, 
* I5/1HO,4X,*7HARRAY A,5X,2HT=,F5.2/C1H ,4F15.06») 

STOP 
END 

FUNCTION FCP) 
C GENERATING FUNCTION OF CHEBYSHEV POLYNOMIALS OF FIRST KIND. 

COMMON T 
F=C1.0-T*T)/C1.0-2.0*T*P+T*T) 
RETURN 
END 

Expansion of generating functions of the Chebyshev polynomials of f,irst kind 

k t=1/4 t=1/2 t=3/4 

0 2.000000 2.000000 2.000000 

1 0.500000 1. 000000 1. 500000 

: 

8 0.000031 0.007813 0.200226 

9 0.000008 0.003906 0.150169 

: : : 

16 0.000000 0.000031 0.020045 

1// 
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k t=1/4 . t=1I2 t=3/4 

17 0.000015 0.015034 

: 

32 0.000000 0.000201 

33 0.000000 0.000151 

: : 

64 0.000000 

65 0.000000 

Number 
of 17 33 65 

terms 

8stima 
ted va 0.3978-06 0.715B-06 0.1678-05 
lue of 
error 

Note: The number k shows the order of the output data, 

The subroutine PCHB2S is tested by using the generating function of the Chebyshev polynomials 

of second kind 

C TEST FOR SUBROUTINE FCHB2S 
DIMENSION A(255) 
EXTERNAL F 
COMMON T 
AEPS=1.0E-05 . 
REPS=O.O 
NMAX=255 
NMIN=O 
T=0.25 
H=0.25 

1 CONTINUE 
CALL FCHB2S(F,AEPS,REPS,NMIN,NMAX,A,N,ERR,ICON) 
WRITE(6,600) N,EER,ICON,T,(A(I),I=1,N) 
T=T+H 
IF(T.LT.1.0) GO TO 1 

600 FORMAT(1HO,4X,2HN=,I3,5X,4HERR=,E10.3,5X,SHICON=, 
* 15/1HO,4X,7HARRAY A,5X,2HT=,F5.2/(1H ,4F15.06» 

STOP 
END 

FUNCTION F(P) 
C GENERATING FUNCTION OF CHEBYSHEV POLYNOMIALS OF SECOND KIND. 
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COMMON T 
F=1.0/C1.0-2.0*T*P+T*T) 
RETURN 
END 

Expansion of generating functions of Chebyshev polynomial of the second kind 

k t=1I4 t=1I2 t=3/4 " 

0 lOOOOOO lOOOOOO 1: 000000 

1 0.250000 0.500000 O. 750000 

2 0.062500 0.250000 0.562500 

: : 

15 0.000031 0.013363 

16 0.000015 0.010023 

17 0.000008 0.007517 

: . 
31 0.000134 

32 0.000100 

33 0.000075 

62 0.000000 

Number 
of 15 31 63 

terms 

Bstima 
ted va 0.159B-06 0.238B-06 0.477E-06 
lue of 
error 

Note: The number k shows the order of the output data. 

The following two functions are expanded by using the shifted Chebyshev polynomials." 

fex) I-t2 ,O:aX:il 
1-2t(2x-t)+t2 

CD 

=-2L' t-kTKex) , t>t 
k=O 

I / j 
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g(x}= 1 __ 2' -t :sx:s t 
1+x-

Because the domain of the function g(x) is [-t. t]. and the function is an even function. the 

. variable transformation Y= (xlt)2 is adopted. 2. 4. and 8 are assigned to the parameter t. 

Required precision for absolute error is 10-5• 

C TEST PROBLEMS OF SUBROUTINE FCHB3S 
DIMENSION AC2S7) 
EXTERNAL F 
COMMON T,L 
AEPS=1.0E-OS 
REPS=O.O 
NMIN=O 
NMAX=2S7 
DO 10 L=1,2 
T=2.0 

1 CONTINUE 
CALL FCHB3SCF,AEPS,REPS,NMIN,NMAX,A,N,ERR,ICON) 
WRITEC6,601) L 

601 FORMATC1HO,4X,9HPROBLEM C,I1,1H),) 
WRITEC6,600) N,ERR,ICON,T,CACI),I=1,N) 

600 FORMATC1HO,4X,2HN=,I~,SX,4HERR=,E10.3,SX,SHICON=, 
* IS/1HO,4X,7HARRAY A,SX,2HT=,FS.2/C1H ,4F1S.06» 

T=T+T 
IFCT.LE.8.0)GO TO 1 

10 CONTINUE 
STOP 
END 

FUNCTION FCP) 
COMMON T,L 
GO TO C10,20),L 

C PROBLEM (1) 
10 CONTINUE 

C GENERATING FUNCTION OF SHIFTED CHEBYSHEV.POLYNOMIALS. 
Q=P+P-1.0 
F=C1.0-T*T)/C1.0-2.0*T*Q+T*T) 
RETURN 

C PROBLEM (2) 
20 CONTINUE 

C APPLY THE VARIABLE TRANSFORMATION. 
Q=T*SQRTCP) 
F=1.0/C1.0+Q*Q) 
RETURN 
END 

The following lists show the results of the function 1/(1 +x2) expanded with 
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k t=2 t=4 t=8 

0 0.894427 0.485071 0.248069 

1 -0.341641 -0.295705 -0. 193322 

2 0.130495 0.180265 0.150656 

: : : 

15 -0.000001 -0.000289 -0.005891 

16 0.000000 0.000176 0.004591 

17 0.000108 -0.003578 

: 

31 0.000000 -0.000109 

32 0.000000 0.000085 

33 0.000000 -0.000066 

63 0.000000 

64 0.000000 

Number 
of 17 33 65 

terms 

Estima 
ted va 0.905E-06 0.272E-06 0.238E-06 
lue of 
error 

~. 
Note: The number k means the order of the output data. 

When the function defined in an open interval is to be expanded into the Chehyshev series of 

first kind. 'PCHBOS should be used. Because FCHBOS does not use the end points as sampling 

points. its precision is generally inferior to the one that uses them as sampling points. Por 

comparison with PCHBIS. the generating function 

f(x) 1_t2 2 2L'tkTk(X) 
1-2xt+t . 

is expanded over an interval [-1. 1]. The function 

. ( ) (t - t 2
) (t +x) t, t'7 ( t -x ) 

9 X 2{ (1-t2)+(t+t)2X} .... K=O k l+x 

defined by (0. 00) is transformed to [-1. 1] by the variable transformation y=( I-x)/ (I+x). 
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and expanded in the Chebyshev ser~es. 

The following is an example of calculation when lIt 2ft and 3/4 are allocated to the 

parameter t. 

C TEST PROBLEMS OF SUBROUTINE FCHBOS 
DIMENSION A(255) 
COMMON T,L 
EXTERNAL F 
AEPS=1.0E-05 

·REPS=O.O 
NMIN=O 
NMAX=255 
DO 10 L=1,2 
T=0.25 
H=0.25 

1 CONTINUE 
CALL FCHBOSCF,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ICON) 
WRITEC6,601) L 
WRITEC6,600) N,EER,ICON,T,CACI),I=1,N) 

601 FORMATC1HO,4X,9HPROBLEM C,I1,1H),) 
600 FORMATC1HO,4X,2HN=,I3,5X,4HERR=,E10.3,5X,5HICON=,I5/1H0, 

* 4X,7HARRAY A,5X,2HT=,F5.2/C1H ,4F15.06» 
T=T+H 
IFCT.LT.1.0) GO TO 1 

10 CONTINUE 
STOP 
END 

FUNCTION FCP) 
COMMON T,L 
GO TO C10,20),L 

10 CONTINUE 
C PROBLEM (1) 
C GENERATING FUNCTION OF CHEBYSHEV POLYNOMIALS OF FIRST KIND. 

F=C1.0-T*T)/C1.0-2.0*T*P+T*T) 
RETU~N 

C· 'PROBLEM (2) 
20 CONTINUE 

C APPLY THE VARIABLE TRANSFORMATION 
Q=C1.0-P)/C1.0+P) 
F=C1.0-T*T)*C1.0+Q)*0.5/C(1.0-T)**2+C1.0+T)**2*Q) 
RETURN 
END 

" ; ',.' 
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This is an examp~e of the rational function g(x) expanded with {Tk«(l-x)!(l+x)}. 

k t=1/4 t=1/2 t=3/4 

0 lOOOOOO lOOOOOO 1. 000000 

1 0.250000 0.500000 O. 750000 

2 0.062500 0.250000 0.562500 

: : : 

15 0.000031 0.013363 

16 0.000015 0.010023 

17 0.000008 0.007517 

31 0.000134 

32 0.000100 

33 0.000075 

62 0.000000 

Number 
of 15 31 63· 

terms 

Bstima 
ted va 0.195B-06 0.351B-06 0.811B-06 
lue of 
error : 

Note: The number k means the order of the output data. 

(1987.06.03) (1987.08.07) (1987.08.08) 
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FCOSCS/D,FCOSOS/D,FSINOS/D 

(Cosine series expansion of an even function given in a closed interval (0. "» (PCOSCS/D) 

(Cosine series expansion of an even function given in an open interval (0. "» (PCOSOS/D) 

(Sine series expansion of an odd function given in an open interval (0. n» (PSI NOS/D) 

Pourier Cosine Series of Even Punction Defined on The Closed Interval (0. n) (PCOSCS/D) 

Fourier Cosine Series of Bven Function Defined on The Open Interval (0. n) (FCOSOS/D) 

Fourier Sine Series of Function Defined on The Open Interval (0. n) (FSINOS/D) 

Programm Tatsuo Tor i i. December 1978 
ed by 

Format Subroutine language: FORTRAN; size: 11~ 114. 115. 117. 91. and 93 
lines respectively 

(1) Out] ine 

If a function J(t) of period 2" is even or odd. J(t) is to bp. given only in a half period 

[0. n]. If the function J(t) is to be expanded to cosine series. th~ end point of the 

interval mayor may not be used as the sample point. The former method is FCOSC/D. and the 

latter one is PCOSO/D. For the expansion of sine series. the end point is not used as the sample 

point. 

If the function J(t) is input. the number of terms to be expanded is automatically decided by 

a required precision. and Fourier coefficients are output. This calculation method is efficient 

because it is based on· the high-speed cosine (sine) transformation using the mid-point formula. 

(2) Directions 

CALL FCOSCS/D (F. EPSA. BPSR. NMI N. N~fAX. A. N. ERR. I CON) 

CALL FCOSOS/D (Pt BPSA. EPSR. NMI N. NMAX. A. N. ERR. I CON) 

CALL FSINOS/D(F,BPSA.BPSR,NMIN.NMAX,A.N,ERR, ICON) 
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Argument Type and Attribut Content 

kind (*1) e 

P Real type Input The user should define the periodic function of one variable 

Punction (even or odd function) as a function subprogram. The domain 

subprogram of this function can be a closed in"tenal [0. n-] for 

PCOSC/D. and and an open interval (0. n-) for PCOSO/D and 

PSI NO/D. 

PPSA Real type Input Hrror bound of Pourier series to be found. HPSA~O is the 

EPSR required precision for an absolute error. and EPSR~O is the 

required precision for a relative error. 

~ NMIN Integer Input Lower and upper bounds on the number of terms to be expanded. 

NMAX type 

0~NMIN~NMAX~1025 for PCOSC/D. 

0~NMIN~NMAX~1023 for PCOSO/D and PSI NO/D. 

A Real type Output Size of array A ~ NMAX. N Pourier coefficients are stored 

One-dimens on A in the order of number. The number of samples used is 

ional also N. N is as follows: 

array 

N Integer 2"+1 for PCOSC/D 

~ type 2"-1 for PCOSO/D and PSI NO/D. 

Por the restriction on the number of samples. the pr i or ity of 

NMAX is higher than that of NMIN. 

ERR Real type Output Hstimated absolute error of obtained Fourier series. 
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Argument Type and Attribut Content 

kind (*1) e 

ICON Integer Output If ICON=O, the error is normal in the following sense: 

type If the Pourier series of degree N for the input function 

J(t) is PN(t) , 

I J(t)-PN(t) I :3max{EPSA,EPSR* IIJII } 

Where 11 J 11 - Om~N I J(7r/N j) I 
SIS 

ICON=10000: PN(t) does not satisfy the above conditions 

because the required precision is too severe. However, it is 

within the limit of a calculation error. The error can be 

assumed to be normal. 

ICON=20000: Abnormal. The required precision cannot be 

obtained at N~NMAX. 

ICON=30000: Parameter error. 

*1 For double precision subroutines, all real types should be double precision real types. 

(3) Perf ormance 

If the sampling time required for the input function J(t) is omitted, the computation time is 

the same as with fast cosine (sine) transformation. 

(4) Calculation method 

This is the fast cosine (sine) transformation based on the trapezoidal rules by the successive 

approximation. However, PCOSO is corrected so that it does not use the end point of an interval 

(0, n) as a sampl ing point. 

The error of the obtained Pourier series is estimated by the sum of absolute coefficient values 

of the last two terms. The bound of propagation error of round off error is evaluated with 

16u IIJII by assuming the minimum unit of mechanical computer precision as U. In the 

program, the PUNCTION subprogram AMACH is referred to as u. 

This subroutine contains an integer type one-dimensional array of size 256 for the bit reverse 

. of the samples of J(t) and a real type one-dimensional array of size 511 for the trigonometric 

function table. If this routine is called, these constant tables are calculated for the first 
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time only. If the size,of the constant table is doubled. the upper bound of number of samples 

can be increased twice. 

(5) Example of use 

1 Example of cosine series expansion of an even function on the closed interval of [0. n] 

Check by generating function of cosine function 

I-t2 

I(B) 1-2t cos B+t2 

ID 

=1+2Etn cos nB 
n-l 

The following shows the program when t =0.5 is specified. 

C EXAMPLE FOR SUBROUTINE FCOSCS 
DIMENSION A(257) 
EXTERNAL 'F 
COMMON T 
T=0.5 
EPSA=1.0E-5 
EPSR=EPSA 
NMAX=257 
NMIN=O 
CALL FCOSCSCF,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ICON) 
WRITEC6,600) N,ERR,ICON,CACI),I=1,N) 

600 FORMATC1HO,4x,2HN=,I3,5X,4HERR=,E10.3,5X, 
* 5HICON=,I5/1HO,4X,7HARRAY A/C1H ,4F15.06» 

STOP 
END 

FUNCTION FCP) 
COMMON T 
F=C1.0-T*T)/C1.0-2.0*T*COSCP)+T*T) 
RETURN 
END 

t Example of sine series expansion of an odd function given in an open interval of (O.") 

1</ 
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sin B _ Etk-tsinkB 
t-2tcosB+t2 ~I . 

C EXAMPLE FOR SUBROUTINE FSINOS 
DIMENSION A(257) 
EXTERNAL F 
COMMON T 
T=0.5 
EPSA=1.0E-S 
EPSR=EPSA 
NMAX=257 
NMIN=O 
CALL FSINOSCF,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ICON) 
WRITEC6,600) N,ERR,ICON,CACI),I=1,N) 

600 FORMATC1HO,4X,2HN=,I3,5X,4HERR=,E10.3,5X, 
* 5HICON=,I5/1HO,4X,7HARRAY A/C1H ,4F15.06» 

STOP 
END 

FUNCTION FCP) 
COMMON T 
F=SINCP)/C1.0-Z.0*T*COSCP)+T*T) 
RETURN 
END 

3. Example of cosine series expansion of an eve" function given in an open interval (0, n) 

If the end point of the interval cannot be used as the sample point, this routine can be 

used. If the even function 

is extended to cosine series, 

..... E' (t-a)kcoskB 
Ir-O t +a 

is obtained. The fol1o~ing shows the program for the expansion of f(B) on (0, n) setting 

a =1/3. 

C EXAMPLE FOR SUBROUTINE FCOSOS 
DIMENSION ACZ57) 
EXTERNAL F 
COMMON ALPHA 
ALPHA=1.0/3.0 
EPSA=1.0E-5 
EPSR=EPSA 
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NMAX=257 
NMIN=O 
CALL FCOSOSCF,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ICON) 
WRITEC6,600) N,ERR,ICON,CACI),I=1,N) 

600 FORMATC1HO,4X,2HN=,I3,5X,4HERR=,E10.3,5X, 
* 5HICON=,IS/1HO,4X,7HARRAY A/C1H ,4F15.06» 

STOP 
END 

FUNCTION FCP) 
COMMON. ALPHA 
Q=TANCP*O.S)**2 
F=ALPHA*O.S*C1.0+Q)/CALPHA**2+Q) 
RETURN 
END 

The results are shown as below. 

k Problem Problem Problem k Problp.m 
5.1 5.2 5.3 5.1 

0 2.000000 - 1. 000000 : : 

1 1. 000(100 1. 000000 0.500000 30 0.000000 

2 0.500000 0.500000 0.250000 31 0.000000 

: : : 32 0.000000 

14 0.000121 0.000122 0.000061 Estima 
ted 0.715 8-06 

15 0.000061 0.000061 0.000031 8rror 

16 0.000031 0.000031 0.000015 

Note: The number k represents the order of output data. 

Problem Problem 
5.2 5.3 

: 

0.000000 0.000000 

0.000000 -

- -

0.317 8-06 0.351 8-06 

(1987.05.20> (1987.08.08) 

/~J 
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FCOSMS/D,FSINMS/D 

(Past Pourier cosine transform based on the midpoint rule) (PCOSMS/D) 

(Past Pourier sine transform based on the midpoint rule) (PSINMS/D) 

Past Pourier Cosine Transform Based on The Midpoint Rule (PCOSMS/D) 

Past Pourier Sine Transform Based on The Midpoint Rule (PSINMS/D) 

Programm Tatsuo Tor ii ; December 1978 
ed by 

Format Subroutine language; FORTRAN Size; 165. 166. 165. and 166 
respectively 

(1) Outline 

A half period of function X(t) with the period 2n is equally divided into N parts as below: 

When X(t) is an even function: 

is calculated. When X(t} function is an odd function: 

is calculated. 

(2) 0 i rect ions 

Before these subroutines are called. it is needed to perform calculation of the trigonometric 

function table by TRIGQP or TRIGQD and to arrange input data in binary reverse order by BTRBV or 

BTRVD. More concrete. call such subroutines as in the table below: 
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.. _--_ .. _--_. --- --------------------

.~ 

For single precision 

CALL TRIGQP (W. MW. ICON) 
CALL BITRBV (X, MX, ICON) 

Then. call a target subroutine: 

CALL FCOSMS/D (X. lIX. LX. W. MW. I CON) 

CALL PSINMS/D (X. MX. LX. W.1Uq, ICON) 

For double precision 

CALL TRIGQO(W.MW. ICON) 
CALL BITRVO (X. MX. ICON) 
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Argument Type and Attribut Content 

kind (*1) e 

X Real type Input/ou Size of array X i:21X. Number of input samples =2«. LX 

NX 

One-dimens tput 

ional 

array 

Integer 

type 

LX Integer 

type 

Real type Input 

One-dimens 

ional 

array 

MW Integer 

ICON 

type 

Integer 

type 

Output 

specifies the beginning address of input data on array X. 

That is. 

X (LX+t ) ,X(LX+2) , ••• ,X(LX+2«) is input. And 

output is written over this. 

FCOSMS/D: Bk-I=X(LX+k) 

FSINMS/D: B2"z-k+I=X(LX+k) 

MX~1. LX~O 

Size of array W e:tw-t. MW~MXUW 

ICON = 0: Normal. ICON = 30000: Parameter error 

*1 For double precision subroutines. real types are all assumed as double precision real types. 

(3) Performance 

The number of real multiplications needed for N-term cosine (sine) transform is 

Nlo92N(N=~). Output data is written over the input data. The algorithm is stable. 

'(4) Calculation method 

The algorithm 3) of fast Fourier cosine.(sine) transform based on the midpoint rule has been 

arranged so that output data is written over input data. Because it uses not only reality but 

also symmetricity of input data, the number of operations and the work area reduced to the half 

of those fast Fourier transform of real data. 

126



: ....... : 

'-' 

~ 

(5) Example 

When the number of input data items is ~, a trigonometric function table (TRIGQP) of the 

size ~-1. at least, must have been calculated. If input data queues up in order of number, 

rearrange it in binary reverse order, and then call this subroutine. 

The beginning address of input data can be chosen by the parameter LX. The reason of this form 

is to use this subroutine for Chebyshev series expansion and fast Fourier cosine transform based 

on the trapezoidal rule by taking appropriate values Ll Only for cosine transform for the data 

x (t) ,X (2) , • • • ,X (~). it is enough to make LX=O. 

For a cosine transform test, we use the following two problems whose arialytical solutions are 

known: . 

Problem (1) 

E 'COSkB=Sin(N+~)B/ (2Sin ~) 
O:sk:sN 

Problem (2) 

O~N' (k+1)coskB~ {2(N+1) sin ~ sin (N+k)B+COSNB-t } I ( 4sin2~) 

If a right hand side function is sampled at sample point Bjc:l7r/N (j+t/2) and input them, 

each Fourier coefficient (N/2 times) is generated. That is, when the samples 

Xj+t=~ (-t)jcot~ (j+~), O:ij<N : 

are input, Fourier coefficients ar.e obtained as follows: 

~&=t, O:ak<N 

Simi larly, w.hen the samples 

Xi+!= I (-1)i(N+1)sinBi-t}I ( 4sin2~) 

are input; 

~&=k+l 

/~/ 
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• 0 LESS-EQUAL k<N are obtained. The program which verifies the above operation is shown as 

follows: 

C TEST PROBLEMS OF SUBROUTINE FCOSMS 
DIMENSION X(128),CC127) 
EXTERNAL F 
COMMON L,N,J 
M=7 
N=2**M 
CALL TRIGQSCC,M,ICON) 
DO 30 L=1,2 
DO 10 J=1,N 
P=CFLOATCJ)-0.5)/FLOATCN) 
XCJ)=FCP) 

10 CONTINUE 
CALL BITREVCX,M,ICON) 
LX=O 
CALL FCOSMSCX,M,LX,C,M,ICON) 
CT=2.0/FLOATCN) 
DO 20 I=1,N 
XCI)=XC!)*CT 

20 CONTINUE 
WRITE(6,600) L,N,(X(I),I=1,N) 

30 CONTINUE 
600 FORMATCIII18X,9HPROBLEM (,I1,1H),4X,2HN=,I3/1XI 

* (1H ,4F15.06» 
STOP 
END 

FUNCTioN F(P) 
COMMON L,N,J 
SGN=1.0 
IF(MOD(J,2).EQ.0) SGN=-SGN 
GO TO (10,20),L 

C PROBLEM (1) 
10 F=0.5*SGN*COTHP(P) 

RETURN 
C PROBLEM (2) _ 

20 F=0.25*CSGN*FLOATCN+1>*SINHPCP+P)-1.0)/SINHPCP)**2 
RETURN 
END 

The calculation results of cosine transform-based on the midpoint rule for the two problems 

described above are shown below. 
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k problem (1) problem (2) 

0 1. 000000 0.999998 

1 1. 000000 1. 999999 

2 1. 000000 2.999998 

3 lOOOOOO 3.999999 

: 

125 1. 000000 125.999998 

126 lOOOOOO 126.999999 

127 1. 000000 127.999999 

Note : k represents the output order of the data. 

Next. for a sine transform test. the following two problems are used: 

Problem (1) 

IfHsinkB~{ COS ~-cos( N+k)B } I( 2sin ~) 

Problem (2) 

IfHk sin kB= { sinNB-2N sin ~ cos (N+kB) } I ( 4sin2~) 

The right hand side function is sampled at the points 

. 7C ( 1) Br:- N j+2 

and samples 

Xj+!-H cot ~ +(-1)j} .O:;j<N 

are input. Then. Fourier coefficients 

~&=1, 1 :ak<N 

2 
NBN=2 

are obtained. When 

Xj+!=(-1) j{ 1+2NSin2~} I ( 4sin2~) 

are input. then 

/2 ~ 
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:?:..&=k, t :sk<N 
N 

2 
N&=2N 

are obta ined. 

C TEST PROBLEMS OF SUBROUTINE FSINMS 
DIMENSION X(12B),C(127) 
EXTERNAL F 
COMMON L,N,J 
M=7 
N=2**M 
CALL TRIGQSeC,M,ICON) 
DO 30 L=1,2 
DO 10 J=1,N 
P=(FLOATeJ)-O.S)/FLOATeN) 
XeJ)=F(p) 

10 CONTINUE 
CALL BITREV(X,M,ICON) 
LX=O 
CALL FSINMSCX,M,LX,C,M,ICON) 
CT=2.0/FLOAT(N) 
DO 20 I=1,N 
XeI)=XeI)*CT 

20 CONTINUE 

30 
600 

WRITEe6,600) L,N,eXeI),I=1,N) 
CONTINUE 
FORMATCIIIIBX,9HPROBLEM C,I1,1H),4X,2HN=,I3/1XI 

e1H,4F1S.06» * STOP 
END 

FUNCTION FCP) 
COMMON L,N,J 
SGN=1.0 
IFeMOD(J,2).EQ.0) SGN=-SGN 
GO TO (10,20),L 

C PROBLEM (1) 
10 F=O.S*(COTHP(P)+SGN) 

RETURN 
C PROBLEM (2) 

20 F=0.2S*e1.0/SINHP(P)**2+FLOAT(N+N»*SGN 
RETURN 
END 
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The calculation results of fast Pourier sine transform based on the midpoint rule are as 
follows: 

k problem 0) problem (2) 

1 2.000000 255.999999 

2 1. 000000 126.999999 

3 1. 000000 125.999999 

4 1. 000000 124. 999999 

126 1.000000 3.000000 

127 1. 000000 2. 000000 

128 1.000000 1. 000000 

Note : k represents the output order of the data. 
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FCOSTS/D,FSINTS/D 

(Fast Fourier Cosine Transform Based on The Trapezoidal Rule (FCoSTS/D» 

(Fast Fourier Sine Transform Based on The Trapezoida} Rule (FSINTS/D» 

Fast Fourier Cosine Transform Based on The Trapezoidal Rule(FCoSTS/D) 

Fast Pourier Sine Transform Based on The Trapezoidal Rule(PSINTS/D) 

Programm Tatsuo Torii. July 1978 
ed by 

Pormat Subroutine Language: PoRTRAN; Size: 64. 65. 33. and 34 li nes 
respectively 

(D Out} ine 

Assume that Nt! samples that can be obtained by dividing a half period of the function X(t) 

with the period 2" into N parts are represented by 

• If X(t) is an even function. discrete cosine coefficients are given by 

Ck= E "XjCOS ~kj to:ik:iN 
OsjsN 

Where ~w means the summation multiplying 1/2 to the first and last terms. 

If X(t) is a~ odd function. discrete sine coefficients 

Ck= E XjsinN'1C kj t O<k<N 
O<j<N 

are obtained using N-1 samples. Bven the inverse transformation can be executed with the same 

program. 

(2) Directions 

CALL FCoSTS/D(X.MX,W,MW, ICON) 

CALL PSINTS/D(X, MX,W,MW, ICON) 
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Argument Type and Attribut Content 

X Real type Input/ou FCOST/D: I f X(j+l)=Xj,o:aj~2fX are 

One-dimens tput 

ional 

array 

MX Integer Input 

type 

Real type Input 

One-dimens 

ional 

array 

MW Integer· 

type 

ICON Integer Output 

type 

input. X(t+t )=Cj are output. 

PSINT/D: If X(t)=Xo=O,X(j+t)=Xj,t:aj<ifX are input. 

X(t )=Co=O,X(j+t )=Cj are output. 

MX~1 

A trigonometric function table should be provided on W in 

advance by using TRIGQP/TRIGQD{W.MW. ICON). The number of 

data items ~-1 of the trigonometric function table should 

be specified by MW. 

Size of array W should be i=tw-t. MW~MX-1 

ICON=O: Normal. ICON=30000: Parameter error. 

*1 Por double precision subroutines. all real types should be double precision real types. 

(3) Perf ormance 

Performance is almost same to the fast cosine{sine) transformation based on the middle point 

formula. 

(4) Example 

If the even function sin(N+1;2)B /2sinB/2 is sampled at the point Bj=7Cj/N as 

{
N-l;2,j=O 

Xj= (-1)i;2, l:ij:iN 

• the solution is given by 

(33 
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If the even function 

{2(N+t )Sin~Sin(N+i )8+ cos N8-1 } /4sin2~ 

is sampled as 

[

(N2+3N+t)/2,j=O 

Xi = (N+t)/2,j is an even number. and O<j:iN. 

-(N+l+cosec28i/2)/2,j is an odd number. and t:ij<N. 

He get 

kk=Jk+l.0:;k<N ) 
N "\2(N+1) .k=N -' 

We can confirm this by the cosine transformation based on the trapezoidal rule. 

C TEST PROBLEMS OF SUBROUTINE FCOSTS 
DIMENSION X(129),WC63) 
EXTERNAL F 
COMMON L,AN,J 
M=7 
MW=6 
N=2**M+1 
AN=FLOATCN-1) 
CALL TRIGQSCW,MW,ICON) 
DO 30 L=1,2 
DO 10 J=1,N 
XCJ)=FCFLOATCJ-1)/AN) 

10 CONTINUE 
CALL FCOSTSCX,M,W,MW,ICON) 
CT=2.0/AN 
DO 20 I=1,N 
XCI)=XCI)*CT 

20 CONTINUE 
WRITEC6,600) L,N,CXCI),I=1,N) 

30 CONTINUE 
600 FORMATCIII18X,9HPROBLEM C,I1,1H),4X,2HN=,I3/1XI 

* C1H,4F15.06» 
STOP 
END 

FUNCTION FCP) 
COMMON L,AN,J 
SGN=1.0 

~ 
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IF(MOD(J,2).EQ.0) SGN=-SGN 
GO TO (10,20),L 

C PROBLEM (1) 
10 F=AN+O.S 

IF(J.EQ.1) RETURN 
F=SGN*O.S 
RETURN 

C PROBLEM (2) 
20 IF(J.EQ.1) GO TO 21 

IF(SGN.LT.O.O) GO TO 22 
F=(AN+1.0)*0.S 
RETURN 

21 F=(AN*AN+3.0*AN+1.0)*0.S 
RETURN 

22 F=-(AN+1.0)*0.S-0.S/SINHP(P)**2 
RETURN 
END 

Bxample of fast cosine transform values based on trapezoidal rule 

k Problem (1) Problem (2) 

0 L 000000 1. 000000 

1 1. 000000 2.000000 

2 1. 000000 3.000000 

3 1. 000000 4.000000 

: : 

125 1.000000 125.000000 

126 1. 000000 125.999999 

127 1. 000000 127.999999 

128 2.000000 257.999999 

Note: The number k shows the order of the output data. 

The next example is sine transformation. If the odd function 

{ cos B 12-cos(N+t/2)B} ;2sin6 12 is sampled at the point Bj=1C/Nj t 1 :aj<N. and N-l 

data items. 

Xj 0, for even number j 

Xj .... cot Bj/2,' j is an odd number. 

are input. all of these Fourier coefficients are 1. That is. 

. If N-l samples for {(N+l ) sinN6-Nsin (N+ 1 )6} /4sin2B/2 

\S5 
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are input. 

are obta i ned. 

C TEST PROBLEMS OF SUBROUTINE FSINTS 
DIMENSION X(128),WC63) 
EXTERNAL F 
COMMON L,AN,J 
M=7 
MW=6 
N=2**M-1 
AN=FLOATCN+1) 
CALL TRIGQSCW,MW,ICON) 
DO 30 L=1,2 
X(1)=0.0 
DO 10 J=1,N 
XCJ+1)=FCFLOATCJ)/AN) 

10 CONTINUE 
CALL FSINTSCX,M,W,MW,ICON) 
CT=2.0/AN 
DO 20 I=1,N 
XCI+1)=XCI+1)*CT 

20 CONTINUE 
WRITEC6,600) L,N,(X(I+1),I=1,N) 

30 CONTINUE 
600 FORMATCIII18X,9HPROBLEM C,I1,1H),4X,2HN=,I3/1XI 

* C1H,4F1S.06» 
STOP 
END 

FUNCTION FCP) 
COMMON L,AN,J 
SGN=1.0 
IFCMODCJ,2).NE.0) SGN=-SGN 
GO TO C10,20),L 

C PROBLEM (1) 
10 F=O.O 

IFCSGN.GT.O.O) RETURN 
F=COTHPCP) 
RETURN 

C PROBLEM (2) 
20 F=O.S*SGN*COTHP(P)*(-AN) 

RETURN 
END 
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Example of fast sine transform based on trapezoidal rule 

k Problem (1) Problem (2) 

1 1. 000000 1. 000000 

2 1. 000000 2.000000 

3 1. 000000 3.000000 

4 1. 000000 4. 000000 
: 

125 1. 000000 124. 999996 

126 1. 000000 125.999998 

127 1.000000 126.999998 
--~--

Note: The number k shows the order of the output data. 

~ <1987.05.28) <1987.08.08) 

~ 
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FFT2DC/B and FFT3DC/B (2- and 3-Dimensional Complex Fast Fourier Transform) 

2- and 3-Dimensional Complex Fast Fourier Transform 

Programm. Ichizo Ninomiy~ May 1982 
ed by 

Format Subroutine Language: FORTRAN77; Size: 21. 22. 30. and 31 lines 
respectively 

-

(l) Outl ine 

FFT2DC/B is a subroutine for 2-dimensional complex fast Fourier transform. FFT3DC/B is a 

subroutine for 3-dimensional complex fast Fourier transform. 

The outline of the algorithm is given only for two dimensions. If function values 

Xrs ; r=0,1,···, NI-I; s=0,1,···, N2-1 at the NI (=2"1) xN2( =2"2) equipartition 

mesh points of the fundamental rectangle of period of the two-dimensional periodic complex value 

function Qroo is a value at the origin) are given. the Fourier transform is given by 
NI-I N2-1 "-;kL- "-;l'- . 1 ~ ~ -~-~ 

Ckl= N N L..J L..JXrs e NI e N2 , k=O,l,··· ,NI-I; l=O,l,··· ,N2-1 
I 2 r =o s:::() 

This expression is called the forward transformation. Conversely. obtaining a function value 
NI-I Nrl 2 *k "-*l 
~ ~ Itt r att s . 

Xrs - L..J L..JCkl et/l et/2", r=O,l,··· ,NI-I; s=0,1,··· ,N2-1 
k:::() l=O 

at the power of 2 equipartition mesh points of the fundamental rectangle of period of a periodic 

function having Ckl as periodic components is called the inverse transformation. 

(2) Directions 

CALL FFT2DC/B (A. KA, M. I NV. W. ILL) 

CALL FFT3DC/B (A, KA, LA. M, I NV. W. ILL) 

..) 

~ 
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Argument I Type and kind I AUr ibut Content 

(*1) e 

A I Complex type I Input/ou I Forward transformation: If X is input, 

Two-dimensiona I tput N,N-£(N,N2NsC) is output. 

1 array Inverse transformation: If C is input. X is output. 

(Three-d imens i Size 2"(1) x2"(2) (2"(1) x2"(2) x21(3») 

onal array) 

KA -I nteger type Input Value of the first subscript in the array declaration of 

A. KA~2H(1) 

LA Integer type Input Value of the second subscript- in the array declaration of 

A. LA~2H(2) 

M Integer type I Input 2"(1), 2"(2), 2"(3) represent the number of 

One-dimensiona equipartitions in each direction of axis. 

I array M(n>1. N (2) >1, and M (3) >1 

INV Integer type I Input Forward transformation is executed at I NV=O. Inverse 

transformation is executed at INV=1. 

W Comp lex type I Work Size 2"(2) for two dimensions. 

One-dimensiona I area Size max(2"(2) ,2"(3») for three dimensions. 

I array 

ILL I nteger type I Output ILL=O: Normal termination. ILL=30000: Argument error. 

*1 For FFT2DB and FFT3DB. all complex types should be changed to double precision complex types. 

(3) Bxample 

Function values at 128x128 equipartition mesh points of fundamental square of period 

[O.n 2 of complex periodic function 

f(x,y)=(l + 2ie21ti% + 3e4JtiX)(_1_2ie2Itiy) 

are obtained by the inverse transformation. and tbe forward transformation is applied to them. 

COMPLEX*8 A,B,C,S 
DIMENSION A(128,128),B(128,128),C(128),S(2),M(2) 

{31 
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N=128 
C(1)=1.0 
C(2)=CO.,2.) 
C(3)=3. 
S(1)=-1. 
S(2)=CO.,-2.) 
DO 10 J=1,N 
DO 10 1=1,N 
AC1,J)=0. 

10 BC1,J)=0. 
DO 20 J=1,2 
DO 20 1=1,3 
AC1,J)=CC1)*SCJ) 

20 BC1,J)=AC1,J) 
KA=N 
M(1)=7 
M(2)=7 
1NV=1 
CALL FFT2DCCA,KA,M,lNV,C,lLL) 
1NV=0 
CALL CLOCKM(10) 
CALL FFT2DCCA,KA,M,lNV,C,lLL) 
CALL CLOCKM(11) 
1T=11-10 
D=1./FLOATCN)**2 
DO 30 J=1,N 
DO 30 1=1,N 

30 EM=AMAX1CCABSCAC1,J)*D-BC1,J»,EM) 
WR1TEC6,600) 1T,lLL,EM 

600 FORMATC10X,'T1ME =',17,'MS',2X,'lLL=',16,2X,'EM=',Ell.3) 
STOP 
END 

(4) Summary 

An output given by the forward transformation is not the Fourier transform itself but 

. NtN2(NtN2N3) times of it. Refer to the explanation and the example of use of the argument A 

and the explanation of the subroutine FFTC. 

<1987. 05. 11) (1987. 08. 08) 

~ 

~ 

140



'" 

FFT2DR/D and FFT.3DR/D (2- and 3-Dimensional Real Past Pourier Analysis and Synthesis) 

2- and 3-Dimensional Real Past Pourier Analysis and Synthesis 

Programm Ichizo Ninomiy~ May 1982 
ed by 

Format Subroutine Language: FORTRAN77; Size: 28. 29. 40. and 41 lines 
respectively 

(1) Outl ine 

FFT2DR/D is a subroutine for 2-dimensional real fast Fourier analysis and synthesis.FFT3DR/D 

is a subroutine for 3-dimensional real fast Pourier analysis and synthesis. 

The outline of the algorithm is explained only for the case of two dimensions. If function 

values Frs;r=O, 1,---, NI-I; s=O, 1,---, N2,-l Woo is·a value at the origin) at 

NI(=2"I)xN2(=2"2) equipartition mesh points of fundamental rectangle of period of 

two-dimensional real periodic function are given. the sine (C) and cosine (5) elements are given 

by 

NI-I Nrl {COS 27rkr {COS 27rls . 
~}~}kl- ~t~22 L LFrs . ~r} . i:rs} , k=O,l;· .• ,Nt/2; 

I r=O s=O Sln -- Sln -- . 
NI N2 

l=O,l, ... ,N212 

Where. 

£ 1_ {2, O<k<N t/2 
1,k=O,Nli2 

£2_{2,O<l<N212 
1, l=O,N212 

and 

l Lf- \ 
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\q.~ 

l=O,N212 
k=O,N.i2 ~

SkII!BO, 
SCkIEJO, 

Ski eO, k=O,N.i2 or 'l=O,N212 

The calculation described above is called Fourier analysis. Conversely. obtaining a function 

value 
H./2 H./2 

Frs= E { cos 2n:kr E (CCkl cos 2n:ls tCSkl sin 2n:ls ) 
. ka() NI 1ZS() . N2 N2 

HJl2 

+sin~~ ~ (SCkl cos ~~s +SSkI sin ~~s) } .r=0.1 •... • N\-I;s 

=0, t , . . . ,N2- t 

at the equipartition mesh points of fundamental rectangle of period from cosine and sine 

elements is called Fourier synthesis. 

(2) Directions 

CALL FFT2DR/D (A. KA. M. INV. w. ILL) 

CALL FFT3DR/D (A. KA. LA. lI. I NV. W. ILL) 

Argument I Type and I Attribut Content : 

kind (*1) I e 

A I Real type I Input/ou I Fourier analysis: If F is inpbt. cosine .and sine elements are 

Two-dimens I tput . output. The order of storing the outputs is the direct 

iona! product of the case of one dimension. Por instance. CS'J 

array is stored in A(I+l.2**(M(2)-1)+1+J) in the case of two 

(Three-d im .. d i mens ions. 

ensiona! Pourier synthesis: If cosine and sine elements are stored in 

array) the above order. a function value P is output in natural 

order. 

Size 2"(1) x2"(2) (2"CI) x2"(2) x2"(3») . 

~ 

~ 

142



Argument Type and Attribut Content 

KA Integer Input Value of the first subscript in the array declaration of ~ 

type 

LA Integer Input Value of the second subscript in the array declaration of ~ 

type 

M Integer Input 21(1) ,21(2) ,21(3) represents the number of equipartitions in 

type each direction of axis. 

One-dimens M (l) > 1. 1,«2) > 1. and M (3) > 1. 

ional 

array 

INV Integer Input Fourier analysis is done at I NV=O. 

type Fourier synthesis is done at I NV=I. 

Real type Work Size 2H(2) in the case of two dimensions. 

One-dimens area Size max(2"(2) ,21(3» in the case of three dimensions. 

ional 

array 

ILL Integer Output ILL=O: Normal termination. ILL=30000: Argument error. 

type 

*1 For FFT2DD and FFTDD. all real types should be changed to double precision real types. 

(3) Bxample 

A function value at 128x128 equipartition mesh points of fundamental square of period 

[0.1]2 of periodic function 

j(x,y)=(1+cos2xx+2cos4xx) (-sin2xx-2sin4xx) 

is obtained by Fourier synthesis and applied to Fourier analysis. 

DIMENSION A(128,128),B(128,128),C(128),S(2),M(2) 
N=128 
C(1)=1.0 

\l\3 
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C(2)=2. 
C(3)=3. 
S(1)=-1. 
S(2)=-2. 
DO 10 J=1,N 
DO 10 1=1,N 
A(1,J)=O. 

10 BC1,J)=O. 
NH1=N/2+1 
DO 20 J=1,2 
DO 20 1=1,3 
AC1,J+NH1)=CC1)*SCJ) 

20 B(1,J+NH1)=A(1,J+NH1) 
KA=N 
M(1)=7 
M(2)=7 
.1NV=1 
CALL FFT2DR(A,KA,M,1NV,C,1LL) 
1NV=O 
CALL CLOCKMC10) 
CALL FFT2DRCA,KA,M,1NV,C,1LL) 
CALL CLOCKM(11) 
1T=11-10 
DO 30 J=1,N 
DO 30 1=1,N 

30 EM=AMAX1(ABSCA(1,J)-BC1,J»,EM) 
WR1TE(6,600) IT,1LL,EM 

600 FORMATC10X,'T1ME=',17,'MS',2X,'1LL=',16,2X,'EM =',E11.3) 
STOP 
END 

(4) Summary 

The order of storing cosine and sine elements is the direct product of the case of 

one-dimensional real Pourier analysis. Refer to the explanation and the example of use of 

argument A and the explanation of subroutine PFTl 

(1987. 05. 19) (1987. 08. 08) 
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FFTC/B (Complex fast Pourier analysis) 

Complex Past Pourier Analysis 

Programm Ichizo Ninomiya; April 1981 
ed by 

Pormat Subroutine language: Assembler. Size: 267 lines each 

(1) outl ine 

When sample value Xj,j=O,l,··· ,N-l (XO is a value in the origin) in N equipartition 

point of a period of a periodic function is given. the periodic component Cj, j=O, 1 , ••• ,N-l 

is given by the following Pourier variable 
N-I 

Cj=EXkWjk,j=O,l, ••• ,N-l 
k=O 

where 

On the contrary. when periodic component Cj is given. Xj is given by the following inverse 

transformation: 
N-l 

Xj=ECkW- jk ,j=O, 1,··· ,N-l 
k .. O 

This routine is used to perform the above calculation using the complex fast Fourier conversion 

techn ique when N is of the form N='i' is given. 

(2) Directions 

CALL PFTC/B (A. Mo I NV. ILL) 

\~ 
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": Argument Type and Attribut Content 
kind (*1) e 

A Complex Input/ou Por forward transformatio~ Xk is input and Cj is 
type tput output. Por inverse transformation. Ck is input and Xj 
One-dimens is output. Cj-I (Xj-I) is output in A(j) . 

I 

ional 
I 

array 
I 

M Integer Input Used to indicate that the size of array A is ~. MEi:2 
I 

type' 

INV Integer Input INV = 0 indicates forward transformation and INV = 1 I 

I 

indicates' inverse transformation. 
I 

type 
I 

ILL Integer Output ILL = 0: Normal end. 
type ILL = 30000: M ~ 1 

-

*1 Por PPTB. the complex type should be changed to a double precision complex type. 

~ 

(3) Performance 

Because this routine uses the technique of the radix 4 complex fast Pourier transform and is 

written in assembly language. it is farst and accurate. 

(4) Note 

PPTS or PPTD is available for the same purpose as PPTC or PPTB. Note. however. that PPTS and 

PPTD are a little different·from PPTC and PPTB in the meaning of arguments and Pourier transform 

definitions. PPTS/D requires an work area B as large as input vector ~ but PPTC/B does not. 

Moreover. the latter is faster. So. it is more advantageous to use PPTC/B. 
~ 

(1987. 08. 10) 
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FFTR/FFTRD (Real Past Pourier Analysis) 

Real Past Pourier Analysis 

Programm Ichizo Ninomiy~ April 1981 
ed by 

Pormat Subroutine language: Assembler; size: 214 lines 

(1) Outline 

If the values Xj,;=O, 1,··· ,N-l at N='ii' equipartition points of a period of a real 

periodic function starting from the origin as the left end are input, PPTR/PPTRD calculates the 

cosine components Cj,;=O,l,··· ,N;2 and sine components Sj,;=1 ,2,··· ,N;2-1 using 

the technique of real fast Pourier analysis. Where, 
E. N- t 2 Oh ° 

Cj= N E XkCOS+, J=O,1,··· ,N/2 
k=O 

EO=EN/2=1 ; Ej=2, ;=2,··· ,Nj2-1 

N-t 

Sj- ~ ~Xk sin 2~/ar. j=1.2.··· .N/2-1 

(2) Direct ions 

CALL PPTR (A. M. ILL) 

CALL PPTRD(A,M, ILL) 

)17 
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Argument Type and Attribut Content 

A Real type Input/ou One-dimensional array containing ~ elements. If the 

one-dimens tput values at ~ equipartition points of a period of the 

ional periodic function are input sequentially starting from the 

array one at the origin. the sine and cosine components are entered 

in this order. where each components are entered in natural 

order. That is. the K-th order cosine components are entered 

in A(K+1). and the J-th order sine components are entered in 

A (N/2+J+ 1) • 

M Integer Input Indicates that one period is 

type equally divided into i'. M~O 

ILL Integer Output • If M<O. ILL=30000 is output. and calculation is not executed. 

type Otherwise. calculation is executed. and ILL=O is output. 

*1 Por PPTRD. real types should be changed to double precision raal types. 

(3) Per f ormance 

Because this routine is written in the assembly language. and an effort is made to reduce the 

number of calculations of trigonometric functions. its speed and precision are high. 

(4) Calculation method. 

Unlike Bergland's I) algorithm. bit reversal rearrangement is executed (calling the subroutine 

BITREV) in the beginning. 

(5) Note 

There are many methods for Pourier analysis. Without special conditions. however. real fast 

Pourier analysis should be used with the number of divisions put in the form of ~. 

Bibliography 
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F FTR I IF FTR I D (Real Past Pourier Synthesis) 

Real Past Fourier Synthesis 

Programm Ichizo Ninomiya, April 1981 
ed by 

Format Subroutine language; Assembler; size: 196 lines 

(1) OutI ine 

If the cosine components Cj, j=O,l,··· ,N/2 and the sine components 

Sj, j=l ,2,··· ,NI2-1 of a real periodic function are input, PPTRI/FFTRID calculates the 

values Xj, j=O,l,··· ,N-l at N equipartition points of a period of that function, 

starting from the origin as the left end, using the technique of real fast Fourier analysis. 

Where, 
NI2 27r Ok N12-t 27r ·k 

Xk= ECj cos ++ E Sjsin+, k=O,l,··· ,N-l 
j~ j=t 

, and N is an integer in the form of N=~. 

(2) Directions 

CALL FFTRI (A, Ut ILL) 

CALL FFTRI D (A, M, ILL) 

Argument Type and Attribut Content 

A Real type Input/ou 0 n e - dim ens ion a 1 a r ray 

One-dimens tput 

ional 

array 

M Integer Input 

type 

containing ~ elements. If the K-th order cosine 

components are entered in A(K+l), and the J-th order sine 

components are entered in A(N/2+J+l), the values at ~ 

equipartition points of a period are entered sequentially 

starting from the one at the origin. 

Indicates that a period is divided into ' ~ equal parts. 

M~O 
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Argument Type anod Attribut Content ° 

kind (*1) e 

ILL Integer Output If M<O. ILL=30000 is output, and calculation is not executed. 

type Otherwise. calculation is executed. and ILL=O is output. 

*1 For FFTRIO. all real types should be changed to double precision real types. 

(3) Performance 

Because this routine is written in the assembly languag~ and an effort is made to reduce the 

number of calculations of trigonometric functions. its speed and precision are high. 

(4) Calculation method 

The calculation is executed by reversing the algorithm of real fast Pourier analysis 

(PFTR. PFTRO). Refer to the bibliography 1) of PPTR. 

(1987. 08. 10) 

151



F FTS I D (Complex Past Pourier Transform) 

Complex Past Pourier Transform 

Programm. Ichizo Ninomiya. April 1977 
ed by 

Pormat Subroutine language: PORTRAN; size: 124 and 129 lines respectively 

(1) Out] ine 

If sample values Xj, j=O,l,··· ,N-t (Xo is the value at the origin) at the N 

equipartition points of a period of a periodic function is given. each of the periodic components 

,Cj, j=O, t,··· ,N-t is given as the Fourier transform 
N-I 

Cj - ,1- ~ Xk It'j~, j=O, t,··· ,N-t 

Where. W=exp( -27ri/N). Conversely. if the periodic components Ci are given. Xi is 

given by the inverse transform 
N-I 

Xj - ,1- ~ Ck W-ik , j=O,l,··· ,N-l 

This routine is used to perform the above calculation by fast Fourier transform when N is in the 

form of 2" . 

(2) Directions 

CALL FFTS/D{A.B.N. INV. ILL) 
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Argument Type and Attribut Content 

kind (*1) e 

A Complex Input/ou Por forward transformation, Xk are input to output <:j. 

type tput Por inverse transformation, <:k are input to output Xj. 

One-dimens <:i-I (Xi-I) i~ entered in A(j). 

ional 

array 

B -Complex Work Work area used in the subroutine. 

type area 

One-dimens 

ional 

array 

N Integer Input Represents the size of arrays A and B. It should be of the 

type form of 2". N~2 

INV Integer Input INV=O means forward transformation, and INV=l means 

type transformat ion. 

ILL Integer Output ILL=O: Normal termination. 

type ILL=30000: When N is not in the form of 2i(M>O) . 

*1 Por-PPTD, all complex types should be changed to double precision complex types. 

(3) Performance 

Because this routine uses the techniques of Pourier transform and has the following 

character ist ics, its speed and precision are high. 

inverse 

1. The value of sine and cosine is calculated only when the absolute value of arguments is 

within n/S. Once the value is obtained, it is usp.d eight times with a small correction added. 

2. The low-order approximation polynomials prepared in the routine are used instead of calling 

the elementary external sine and cosine functions. 

(4) Note 

L Usually, Pourier transformation is defined as 

15] 
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N-t 
1 '" "k Cj - N t::d Xk WJ , j=O, t,··· ,N-t 

Inverse transformation is also defined as 
N-t 

Xj - E Ck W- jk
, j=O, t , ••• ,N-t 

~ 

• However. it should be noted that this routine uses different definitions. 

~ The special-purpose routines FFTR and FFTRI should be used for real number input data. 

3. FFTC/O is available as the routine with the same function as this routine. Select and use 

them proper ly. 

(1987. 05. 08) (1987. 08. 10) 
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FT23SC/B and FT~3SR/D (Complex and Real Past PourierTransform for the Case of Sample 

Number of the Porm of ~3~H) 

Complex and Real Past Fourier Transform for the Case of Sample Number of the Porm of ~3~H 

Programm Ichizo Ninomiy~ April 1977 
ed by 

Format Subroutine language: PORTRAN; size: 178 and 42 lines respectively 

(1) Outl ine 

PT235C/B and PT235R1D are the subroutines for making complex fast Pourier analysis (PT235C/B) 

and real fast Pourier transform (PT235R1D) when the number of divisions of a period is of the 

form of N=2<3~H . 

Because various definitions in FT235C/B are the same as in PPTC/B, and those in PT235R1D are 

the same as in PFTRlD, refer to each explanation. 

(2) Direct ions 

CALL PT235C/B(~B,N, INV, ILL) 

CALL PT235R/D (~ B. N, ILL) 

Argument Type and kind (*1) Attribut 

e 

PT235C PT235R 

Content 

A CompI e.x Input/ou One-dimensional array containing N elements. In 

tput forward transformation, )(k are input to output 

One-dimens Cj: In inverse transformation. Ck are input 

ional to output )(j. Cj-t()(j-t) is entered in 

array A(j) . 
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Argument Type and kind (*D" Attribut Content 

e 

Real type Input/ou One-dimensional array containing N elements. If 

(*l) tput the values at N equipartition points of a period 

one-dimens of the periodic function is sequentially entered, 

ional the cosine and sine components are output in this 

array order. Bach components are output in natural 

order. Precisely, the K-th order cosine 

components are output to A{K+1), and the J-th 

order sine components are output to A{N/2+J+1). 

B Complex Real type Work Work area. It must be of the same type and size 

type (*l) (*l) area as the argument k 

one-dimens one-dimens 

ional ional 

array array 

N Integer Integer Input N must be the number of divisions in a period, 

type type and be in the form of ~=~:3~H • N>2. 

K~1 should hold for FT235R1D. 

INV Integer Input If I NV=O, forward transformation is executed. If 
: 

type, I NV=l. inverse transformat i,on is executed. 

ILL Integer Integer Output ILL=30000: When limits on the input are exceeded. 

type type Otherwise, 0 is output. 

*1 For PT235B, all complex types should be changed to double precision complex types~ 

Por FT235D, all real types should be changed to double precision real types. 

(3) Performance 

Because this routine is not the N=if type, its speed is slow as compared with other 

routines. Therefore, it is reasonable for the if type to use the special-purpose routine for 

that type. 
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(4) Bxample of use 

If ·CALL FT235R1D(~B,N,ILL)· is executed, ·CALL FT235C/B(~P.N/~O, ILL)· is executed in 

FT235R. 

Therefore, N should be an even number (N=2'sLsH tK~ 1) . Because A and B are handled as a 

complex type one-dimensional array (array of ·size tV2: (A(l )+iA(2) tA(3)+iA(4)··· » in 

this call, they should be prepared for such handling. One example is to use the BQUIVALBNCB 

statement described in the example below. (It is necessary and sufficient that the top el~ments 

of A and B are allocated to the even number address.) 

C MAIN PROGRAM 
DIMENSION A(720),B(720) 
COMPLEX CA(360),CB(360) 
EQUIVALENCE(A,CA),(B,CB) 
READ(S,SOO)(A(I),I=1,720) 

500 FORMAT(6F12.0) 

(5) Note 

CALL FT23SR(A,B,720,ILL) 

STOP 
END 

When FT235R1D is to be used, the number N of divisions must be in the form of N=~S~H and 

be an even number. Because the arrays A and B are real type one-dimensional arrays of size N, 

and handled as a complex type one-dimensional array of size N/2. they should be prepared for such 

handling. See the example. 

(1987. 05. 08) (1987. 08. 10) 
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T RIG Q PIT RIG Q D (Table of Tr igonometric Punct ion Arranged in Bi t Reverse Order) 

Table of Trigonometric Punction Arranged in Bit Reverse Order 

Programm Tatsuo Torii, December 1978 
ed by 

format Subroutine Language: PORTRAN; Size: 51 and 52 lines respectively 

(1) Outl ine 

TRIGOP/TRIGOD generates a trigonometric function table that is required for fast sine and 

cosine transf.orms and the Chebyshev series expansion of functions. 

It defines the n-bit decimal fraction j*=j 12-t+j22,-2+- - _+j,:zn less than 1 for the n-bit 

integer j=j t20+j22I+- - _+j,2-I, ji E {O, t }, and calculates the complex trigonometric 

function e tt
/
4i ;*, j=O, t ,2, - - -. 

(2) Directions 

CALL TRIGOP(C.M. ICON) 

CALL TR I GOD (c, M. I CON) 

Argument Type and Attribut 

kind (*t) e 

C Real type Output 

One-dimens 

ional 

array 

M Integer Input 

type 

ICON Integer Output 

type 

(3) Performance 

Content 

C(t )=cos(7r / 4) 

C(2j)=cos(7r / 4) j* t:ij~-1 

C(2j+l )=sin(7r / 4)j* l:aj~-l 

Size of array C i:2"-1 /tI~t 

ICON=O: Normal. ICON=30000: Parameter error. 

If the number of data items in the trigonometric function table is 2"-1 , the required 
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arithmetic operations ar~ M square roots, and t' multiplications. 

(4) Calculation. method 

Putting Wj=e1t
/
4ij* for simplicity. they obey the following recurrence formulas. 

Wo=e1t
/
4i ,Wl=e1t

/
8i Initial value 

W2'=(W2'-I) 1/2, The imaginary part of square roots is positivie. 

W2'+j=W2'-I+j-W2', 1 ~j<2l-1 

W2'+21-1+j=W21-1+r W2', O~j<2'-1 

1=1 ,2, · · · 

(1987. 05.12) {1987.08.10> 
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I/O 

VCHB1S/D,DCHB1S/D,ICHB1S/D,VCHB3S/D,DCHB3S/D,ICHB3S/D 

(Evaluation of Chebyshev Series) (VCHBIS/D) 

(Differential Coefficient of Chebyshev series) (DCHBIS/D) 

(Evaluation of Indefinite Integral) (ICHBIS/D) 

(Evaluation of Shifted Chebyshev Series) (VCHB3S/D) 

(Differential Coefficient) (DCHB3S/D) 

(Evaluation of Indefinite Integral) (ICHB3S/D) 

Evaluation of Chebyshev Series(VCHBIS/D) 

Differential Coefficient(DCHBlS/D) 

Evaluation of Indefinite Integral(ICHBlS/D) 

Evaluation of Shifted Chebyshev Series(VCHB3S/D) 

Different ial Coeff iciEmt (DCHB3S/D) . 

Evaluation of Indefinite Integral (ICHB3S/D) 

Programm Tatsuo Torii. December 1978 
ed by 

Format Subroutine Language: FORTRAN 
Size: 75. 76. 75. 76. 75. 76. 80. 81. 80. 81. 80, 

lines respectively 

(1)" Outl ine 

and 81 

The subroutines perform the following calculations for the series Losk<N'OkTk(X) of the 

Cbebyshev polynomials of first kind. 

1 Obtains the value of series (1) at arbitrary points XE [-1. 1]. 

a Calculates differential coefficients at the point x. 

3. Obtains the integral l:(r'~Sk<N.OkT(t))dt with upper limit 'XE [-1. 11 

VCHB3S. DCHB3S. and ICHB3S obtain the value of the series. differential coefficient. and 

iDteg~al for with respect to the series Eo"k<N' CJkTk(x) of shifted Chebyshev polynomials. 

(2) Directions 

CALL VCHBlS/D(A.N.X.F.ICON) 

.. 
", . 

:.' . 
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.. " Argument 

A 

CALL DCHBlS/D (A. N. X. P. I CON) 

CALL ICHBlS/D(A, N, X. p, ICON) 

CALL VCHB3S/D(A,N,X,P, ICON) 

CALL DCHB3S/D(A.N,X.P. ICON) 

CALL ICHB3S/D(A,N,X,P, ICON) 

Type and AUribut 
kind (*1) e 

Real type Input S i z e 

Content 

o f array A~N. Fourier 
One-dimens coefficients ao,Ol, ••• ,ON-I are stored in A(l). A(2). 
ional •••• and A(N). N~1 
array 

N Integer 
type 

X Real type Input -1~X~1. 

P Real type Output Calculation-value of each subroutine. 

ICON Integer Output I CON=O: Norma 1. ICON=30000: Parameter error. 
" type 

*1 Por double precision subroutines, all real types should be double precision real types. 

(3) Calculation method 

The value at the point X E (-1, 1) of the Chebyshev series 

can be obtained with the recurrence formula. named Clenshaw's algorithm 

or 

k=N-2,N-l, ... ,1 ,0 

SN(X)=~ (bo-b2) 

=Xbl-b2 Iao 
2 

The sum of (N-l)-th order Chebyshev series is obtained by N times of multiplication. 

/t J 

,. 
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Arrays are not used for the sequence {bkJ that is the intermediate result. A differential 

coefficient 
N 

ECIk!Tk(X) I x-x 
k=1 

at the point X of the N-th order Chebyshev series is obtained witn the recurrence formula 

k=N-l,N-2, ... ,1 

Differential coefficient =bl. 

The indefinite integral of Chebyshev series is 

1
% . 1% N E 'ClkTk(X)clx= E 'Ok Tk(x)clx=EOk=~Clk+1 (Tk(X)-(-l)k) 

-I Osk<N 'Osk<N -I Ko;: 1 

Where ClN+I=atFO. 

Thus. the integral value can be obtained by 

bN+ 1=0, CN=ON-I!2N 

k=N,N-1,·.· ,,1 

Integral value=xbl-b2+St. 

The value can be obtained with a similar method for shifted Cheby~hev polynomials. 

(4). Bxample 

For simplicity. the numerical differentiation and integration are tested by an exponential 

function. The value of 

I(~).I' (x). [.1 (x)dx 

X= 1 ,i=-4, -3, . · . ,3,4 
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is obtained by expanding the funciton on the interval [-1. 1] 

into Chebyshev series under a required precision using VCHBIS, DCHBIS and ICHBIS. Also, the 

example includes the calculation of 

· r:r I(x) ,I (x), J
o 

l(x)dx,x=O, 1,···,8 

where the same exponential function 

I(x) 

is expanded over an interval [0. 8] with shifted Chebyshev series. This requires variable 

transformation for changing an interval [0. 8] to [0, 1]. 

C TEST FOR SUBROUTINE VCHB1S,DCHB1S AND ICHB1S 
DIMENSION A(257) 
EXTERNAL F 
EPSA=1·.0E-05 
EPSR=O.O 
NMIN=O 
NMAX=257 
CALL FCHB1S(F,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ILL1) 
ACN)=A(N)*0.5 
H=0.25 
X=-1.0 

10 CONTINUE 
CALL VCHB1S(A,N,X,V,ILL2) 
CALL DCHB1SCA,N,X,D,ILL3) 
CALL ICHB1S(A,N,X,VI,ICON) 
ICON=ICON+ILL1+ILL2+ILL3 
TRUEV=EXPCX) 
ERV=TRUEV-V 
ERD=TRUEV-D 
ERI=TRUEV-EXP(-1.0)-VI 
WRITEC6,600) X,V,ERV,D,ERD,VI,ERI,N,ICON 

600 FORMATC1HO,4X,F8.3,3CF15.06,E15.03),2I8), 
X=X+H 
IFCX.LE.1.0) GO TO 10 
STOP 
END 

FUNCTION FCP) 
F=EXPCP) 
RETURN 
END 

C TEST FOR SUBROUTINE VCHB3S,DCHB3S AND ICHB3S 
DIMENSION A(257) 
EXTERNAL F 
EPSA=1.0E-05 
EPSR=O.O 
NMIN=O 
NMAX=257 
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CALL FCHB3SCF,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ILL1) 
ACN)=ACN)*O.S 
Y=O.O 
H=1.0 

10 CONTINUE 
C APPLY THE VARIAB.LE TRANSFORMATION 

X=Y/S.O 
. CALL VCHB3SCA,N,X,V,ILL2) 

CALL DCHB3SCA,N,X,D,ILL3) 
CALL ICHB3SCA,N,X,VI,ICON) 
ICON=ICON+ILL1+ILL2+ILL3 
D=D/S.O 
VI=VI*S.O 
TRUEV=EXPCY) 
ERV=TRUEV-V 
ERD=TRUEV-D 
ERI=TRUEV-1.0-VI 
WRITEC6,600) Y,V,ERV,D,ERD,VI,ERI,N,ICON 

600 FORMATC1HO,4X,FS.3,3CF1S.06,E1S.03),2IS) 
Y=Y+H 
IFCY.LE.S.O) GO TO 10 
STOP 
END 

FUNCTION FCP) 
C APPLY THE VARIABLE TRANSFORMATION 

Q=S.O*P 
F=EXPCQ) 
RETURN 
END 

Bxpansion of eX by { Tk(X)} , sum of series, differential coefficient, 

and indefinite integral 

x Sum of series Brror Differential Brror Integral Brror 
coefficient 

-1.00 0.367879 -0. 745B-08 0.367879 0.291B-06 0.000000 0.373H-08 

-0. 75 0.472367 -0. 745H-08 0.472366 0.112H-06 0.104487 0.745H-08 

-0.50 0.606531 0.149B-07 0.606531 -0.104H-06 0.238651 0.745B-08 

-0.25 O. 778801 -0. 149B-07 O. 778801 -0. 596B-07 0.410921 0.0 

0.00 1000000 0.0 1. 000000 O. 1348-06 0.632121 -0. 7458-08 

0.25 1284025 0.0 1. 284026 -0. 1198-06 0.916146 0.745B-08 

0.50 1648721 -0. 298B-07 1. 648721 -0.5968-07 1. 280842 -0.2248-07 

O. 75 2.117000 0.0 2.117000 0.5968-07 1. 749121 0.745B-08 

100 2. 718282 -0.5968-07 2. 718281 0.1198-05 2.350402 -0. 522B-07 

Note: Precision required for development: £=10-5 ; number of samples: N=9. 
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Bxpansion of eX by { Tk(x/8)} • sum of series. differential coefficient 

and indefinite integral. 

x Sum of series Brror Differential Brror Integral Brror 
coefficient 

0.0 0.999996 0.381B-05 0.999893 0.107B-03 0.000008 -0. 763£-05 

1.0 2. 718304 -0. 219B-04 2. 718166 0.115B-03 L 718302 -0.200B-04 

2.0 7.389103 -0.4688-04 7.389107 -0.507B-04 6.389076 -0.2018-04 

3.0 20.085506 0.305B-04 20.085672 -0. 1358-03 19.085560 -0.2298-04 

4.0 54. 598145 0.572B-05 54. 597870 0.2808-03 53.598206 -0.5538-04 

5.0 148.413208 -0. 496B-04 148.413406 -0. 248B-03 147.413169 -0. 114B-04 

6.0 403.428611 0.1838-03 403.428878 -0.8398-04 402.428771 0.2298-04 

7.0 1096.63305 0.9168-04 ·1096. 63201 0.113B-02 1095.63314 0.0 

8.0 2980.958 0.0 2980.9678 -0. 983B-02 2979.95788 0.122B-03 

Note: Precision required for expansion: £=10-5 ; number of samples: N::17. 

(1987. 06. 05) (1987. 08. 10) 
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VCHB2S/D,ICHB2S/D 

(Bvaluation of Second Kind Chebyshev Series) (VCHB2S/D) 

(Bvaluation of Indefinite Integral) (ICHB2S/D) 

Bvaluation of Second Kind Chebyshev Series(VCHB2S/D) 

Bvaluation of Indefinite Integral(ICHB2S/D) 

Programm Tatsuo Torii. December 1978 
ed by 

Format Subroutine Language: FORTRAN; Size: 47. 48. 47. and 48 lines 
respectively 

(1) Out line 

VCHB2S/D and ICHB2S/D obtain the value at the point x of the second kind Chebyshev series 

E OkUk(X) 
Osk<N 

and integral 

l X EOkUk (x)dx 
-1 k 

(2) Directions 

CALL VCHB2S/D (A. N. X. F. I CON) 

CALL I CHB2S/D (A. N. X. F. I CON) 

(1) 

(2) 

~ 

~ 
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Argument Type and Attribut Content 
kind (*1) e 

A Real type Input 5 i z e o f array A~N. Fourier 
One-dimens coefficients OO,al,··· ,ON-I are stored in A(l). A(2). 
ional ... , and A(N). N;;::;1 
array 

N Integer 
type 

X Real type Input -1~X~1. 

P Real type Output Calculated value of each subroutine. 

ICON Integer Output I CON=O: Norma I. ICON=30000: Parameter error. 
type 

*1 Por double precision subroutines, "all real types should be double precision real types. 

(3) Calculation method 

Because the recurrence formula of the Chebyshev polynomials of second kind is the same as that 

of first kind except for the initial conditions, the value of series (I) is obtained with 

bN =- 0, ,bN-1 =- ON-I, • bk .... 2J>k+t-bk+2+<lkt , k .... N-2, N-3,···, 1,0, and 

value of ser ies (l) = bt • 

Also, indefinite integral (2) is obtained by 
N N 
~Ok-ITk(X)-~(-l)kOk-t 
k=t k k=t k 

• Therefore, the calculation conforms to the indefinite integral (ICUB1S) of the first kind 

Chebyshev series. 

(4) Example 

By expanding the exponential function e% over an interval of [-1. 1] using the second kind 

Chebyshev series (and FCHB2S), the value and integral of this series are found. The point x is 

a sample point on the interval [-1,1] divided into eight equally parts. 

C TEST FOR SUBROUTINE VCHB2S AND ICHB2S 
DIMENSION A(2SS) 
EXTERNAL F 
EPSA=1.0E-OS 
EPSR=O.O 
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NMIN=O 
NMAX=255 
CALL FCHB2S(F,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ILL1) 
H=0.25 
X=-1.0 

10 CONTINUE 
CALL VCHB2S(A,N,X,VA,ILL2) 
CALL ICHB2S(A,N,X,VI,ICON) 
ICON=ICON+ILL1+ILL2 
TRUEV=EXP(X) 
ERV=TRUEV-VA 
ERI=TRUEV-EXPC-1.0)-VI 
WRITEC6,600) X,VA,ERV,VI,ERI,N,ICON 

600 FORMATC1HO,4X,F8.3,2(F15.06,E15.03),2I8) 
X=X+H 
IFCX.LE.1~O) GO TO 10 
STOP 
END 

FUNCTION FCP) 
F=EXPCP> 
RETURN 
END 

Bxpansion of eX by {Uk(X)}. sum of series. and indefinite integral 

x Sum of 8rror Integral Brror 
series 

-1. 00 0.367879 0.0 0.000000 -0.3738-08 

-0.75 0.472367 O. 7458-08 0.104487 O. 7458-08 

-0.50 0.606531 -0.0 0.238651 O. 7458-08 

-.0.25 O. 778801 -0.2988-07 0.410921 -0. 745B-08 

0.00 1. 000000 0.0 0.632121 -0. 7458-08 

0.25 1. 284025 0.0 0.916146 -0. 7458-08 

0.50 1.648721 -0.2988-07 1.280842 -0.2248-08 

0.75 2.117000 0.0 1. 749121 O. 7458-08 

1. 00 2. 718282 -0.5968-07 2.350402 -0.5228-07 

Note: Required precision £=10-5 for expansion 

Number of samples N=15 

<1987.05. 25} <1987. 8.10} 
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VCOSS/D,VSINS/D 

(Evaluation of cosine series) (VCOSS/O) (Evaluation of sine series) (YSINS/D) 

Evaluation of Cosine Series(VCOSS/D) 

Evaluation of Sine Series(YSINS/D) 

Programm Tatsuo Torii. December 1978 
ed by 

Format Subroutine Language: FORTRAN; Size: 38. 39. 38. and 39 lines 
respectively 

---

*1 For double precision subroutines. all real types should be double precision real types. 

(1) Out} ine 

YCOSS/D and VSINS/D obtains the 'values of the cosine series E~<-k<N OkCosk8 and sine 

series ~fc.:.IClksink8 . 

(2) Directions 

CALL VCOSS/D(A.N. T.F. ICON) 

CALL YSINS/D(A.N. T.F. ICON) 

Argument Type and Attr Content 
kind (*1) ibut 

e 

A Real type Inpu Size of array A~N. 
One-dimens t For VCOSS/D. 00,01,··· ,ClN-1 are stored on A. 
ional 
array 

N Integer For VSINS/D. 01,··· ,ON are stored on A. 
type N~1 

T Real type Inpu Arbitrary real number. Retained. 
t 

F Real type Outp Evaluation of cosine (YCOSS) and sine (YSINS) series at O=t. 
ut 

ICON Integer Outp ICON=O: Normal. ICON=30000: Parameter error. 
type ut 

- - - --- ---- -----

*1 For double precision subroutines. all real types should be double precision real types. 

(3) Calculation method 

If? 
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The sum of the cosine series is obtained by Clenshaw's method as well as the sum of the 

Chebyshev series of first kind. 

The sum of the sine series can be obtained by multiplying the sum of the Chebyshev series of 

second kind by sin (}. 

(4) Bxample 

1. Bxample of cosine series calculation 

If a periodic function can be expanded in Fourier series. then it is easily integrated term 

by term. Now. the integration of the sine series is obtained below as an example of using 

the subroutine VCOSS. 

The termwise integration of a generating function of the sine function is written by 

rtp sin B dB- E'ClkCOSktp 
Jo t-2tcosB+t2 ~ 

where 

Clk=- tk- J /k , k~ t 

• ao=-2~~JClk. Thus. the integrand is expanded and integrated termwise by using the subroutine 

FSINOS. 

The value of the cosine series is obtained by using the subroutine VCOSS varying the upper 

limit ({) of the integration with 1/1~7r. 2/127r •...• and 6/127r. The analytic solution of 

this integration is expressed as 

_1 10 {1-2tCOS({)+t2 '} 
2t g (t_t)2 

C TEST FOR SUBROUTINE VCOSS 
DIMENSION A(2S6) 
EXTERNAL F 
COMMON T 
TRUE(P,T)=ALOG«1.0-2.0*T*COS(P)+T*T)/(1.0-T)**2)*O.S/T 
T=O.S 
NX=6 
HPI=2.0*ATAN(1.0) 
H=HPI/FLOAT(NX) 
EPSA=1.0E-OS 
EPSR=O.O 

,. 
", 

~ 

~ 
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NMIN=O 
NMAX=2SS 
CALL FSINOSCF,EPSA,EPSR,NMIN,NMAX,A,N,ERR,ILL) 
NP1=N+1 
S=O.O 
DO 10 I=1,N 
K=NP1-I 
ACK+1)=-ACK)/FLOATCK) 
S=ACK+1)+S 

10 CONTINUE 
A(1)=-S-S 
THETA=H 
DO 20 I=1,NX 
CALL VCOSSCA,NP1,THETA,VA,ICON) 
ICON=ICON+ILL 
ERV=TRUECTHETA,T)-VA 
WRITEC6,600) I,VA,ERV,T,N,ICON 

600 FORMATC1HO,4X,I4,F1S.06,E15.03,F8.3,2I8) 
THETA=THETA+H 

20 CONTINUE 
STOP 
END 

FUNCTION FCP) 
COMMON T 
F=SINCP)/C1.0-2.0*T*COSCP)+T*T) 
RETURN 
END 

/'7/ 
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Development and calculus of sine generating functions 

({) Calculus Error 

"/12 0.127774 -0. 119E-07 
211:/12 0.429115 -0. 217E-07 
311:/12 O. 775452 -0.300E-07 
411:/12 1. 098612 -0. 274E-07 
5" /12 1.377436 -0. 194E-07 
611:/12 1.609438 -0. 190E-07 

Note: ·Required precision 10-5 (input) for sine series expansion. 

Parameter t=1/2 (input) 

Number of samples N=31 (output) 

·t Example of sine series calculation 

Elliptic Integral 

The calculation example of 

F«({),a)=f' dB 
10 ~1-sin2asin2B 

is given below. Por simplicity. suppose a=1I:14. If the integrand developed into cosine series 

is integrated termwise, it becomes a sine series except the constant terms. Thus, the sum is 

obtained for various ({). The constant terms can be separately calculated and added. In the 

following example, the variable ({) is assigoed as ({)=1/1211:, 2/1211:, .•• , and 6/1211:. 

C TEST FOR SUBROUTINE VSINS. 
DIMENSION A(257) 
EXTERNAL F 
NX=6 
HPI=2.0*ATAN(1.0) 
H=HPI/FLOATCNX) 
EPS·A=1.0E-05 
EPSR=O.O 
NMIN=O 
NMAX=257 . 
CALL FCOSCSCF,EPSA,EPSR~NMIN,NMAX,A,N,ERR,ILL) 
ACN)=A(N)*0.5 
M=N-1 
CONST=A(1)*0.5 
DO 10 I=1,M 
A(I)=ACI+1)/FLOAT(I) 

10 CONTINUE 
T=H 
DO 20 I=1,NX 
CALL VSINSCA,M,T,V,ICON) 
V=V+CONST*T 
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, ::'.6.". 

ICON=ICON+ILL 
WRITE(6,600) I,V,N,ICON 

600 FORMAT C 1HO,4X, 14,·F15. 06,218) 
T=T+H 

20 CONTINUE 
STOP 
END 

FUNCTION F(P) 
F=1.0/SQRTC1.0-0.5*SINCP)**2) 
RETURN 
END 

/113 

173



Blliptic calculus 

({) Calculus Error 

zr/12 0.263297 Number of samples = 17 
2zr/12 0.535623 
3zr/12 0.826018 True value 
4zr/12 1. 142429 1.14242906 
5zr /12 1. 487885 
6zr/12 1. 854075 1. 85407468 

<1987. 05. 28} (1987. 08. ll) 

'. 
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8. Numerical quadrature 

[Method of choosing numerical integration routines] 

To meet various cases, NUMPAC includes a large number of excellent quadrature routines such as 

one-dimensional and multidimensional integrations, finite and infinite interval integrations, and 

fixed rule and automatic integrations. If they are carefully selected based on the following 

. guides, significant effects can be achieved in both precision and speed. For simplicity, the' 

name of recommended routines is represented with the one for single precision. 

(A) One-dimensional definite interval 

1. Well-behaved analytic function 

(1) Fixed rule quadrature GASNS 

(2) Automatic quadrature ODAPBS, DBFINS, and AONN9S 

2. Analytic function of oscillatory type ODAPBS 

3. Function of peak type AONN9S 

( Analytic function with singularity at end points DBFINS 

5. Function with singularity and discontinuity AONN9S 

6. Function of uncertain behavior AONN9S 

7. Integral over a whole period of periodic function TRAPZS 

(B) When f(x) is a well behaved function in the integral folD e-Xf(x)dx in a one-dimensional 

semi-infinite interval 

1. Fixed rule quadrature GSLNS 

2. Automatic quadrature HINFAS and HINFBS 

(C) One-dimensional .infinite interval 

l ID 2 

1. When f(x) is a wel I-behaved function in the form of -ID e-x f(x)dx 

(1) Fixed rule quadrature 

(2) Automatic quadrature 

2. When I(x) decreased rapidly in the form of l:/(X)dx 
(D) Multidimensional, fixed rule quadrature 

1. Function input 

2. Data input 

3. Higher dimension 

GSIINS 

INFINS 

TRAPZS 

MOPRRS 

MONCDS 

MOFSRS 

/7S 

175



17t 
(B) Mu It id imens i ona 1 automat i c .quadra ture AOMDS and AONDS 

To help raise the precision of results, pre-processing should De executed. Por example, divide 

integration intervals if necessary. or turn the upper and lower limits to numbers represented 

without error such as 0 or 1 by variable transformation. 

.. 

~ 

~ 
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AQCHYS/D (Automatic quadrature of Cauchy principal value integrals) 

Automatic Quadrature of Cauchy Principal Value Integrals 

Programm Takemitsu Hasegawa; Pebruary 1984 

ed by 

Pormat Subroutine language; PORTRAN Size; 319 and 322 lines respectively 

(1) Outl ine 

When integrand function f(x). lower limit a. upper limit b. and pole c are given. AQCHYS or 

AQCHYD automatically calculates the approximate value 

of the Cauchy principal value integral 

I(c)=p r ;~~ dx a<c<b 

It calculates the solution with precision that satisfies 

I I (c) -IN(C) I ~max(Ea' ET I I (c) I ) 

. where e a is the requested absolute precision and eT is the requested relative precision. 

AQCHYS is a routine for single precision and AQCHYD is one for double precision. 

(2) 0 i rect ions 

CALL AQCHYS/D (A. B. C. PUN. EPSA. EPSR. NMI N. NMAX. JUMP. S. N. ERR. I CON) 

Argument Type and Attribut Content 

kind (*1) e 

A Real type Input Lower limit of integral domain. 

B Real type Input Upper limit in integral domain. A<B 

C Real type Input Pole C of principal value integral. 
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Argument Type and Attribut 

PUN 

BPSA 

BPSR 

NMIN 

NMAX 

JUMP 

S 

N 

BRR 

ICON 

kind (*1) e 

Real type Input 

function 

subprogram 

Real type Input 

Integer 

type 

Integer 

type 

Real type 

Integer 

type 

Real type 

Integer 

type 

Input 

Input 

Output 

Output 

Output 

Output 

Content 

Given function f(x). The user should prepare a function 

subprogram f(x) having a variable x. 

Requested absolute error Ea (BPSA) and relative error Er 

(BPSR) for approximate value S of an integral. 

BPSA~O, BPSR~O. 

Lower limit (NMIN) and upper limit (NMAX) of the number of 

function PUN evaluations. 

NMIN is usually set to 9. NMAX is usually set to 200 to 900. 

When NMAX~514, NMAX is assumed to be 514 (single 

precision). When NMAX~2050, NMAX is assumed to be 2050 

(double precision). O<NMIN<NMAX. 

JUMP is usually set Q 

If you want to calculate for the same function f(x) with the 

same value for E a but with different values for pole C, set 

JUMP to 1 when calling this routine second time and after. 

Then, the values of FUN camputed and stored in the first call 

are reused. 

Approximate value of integral. 

Total number of function PUN evaluations. 

Bstimation of absolute error of S. 

ICON;O:Normal termination. 

ICON;10000: The accuracy of the approximate value of the 

integral has reached the level of rounding error. 

ICON;20000: Convergence does not occur even after the 

function has been evaluated NU~X times. 

ICON;30000: Parameter error. 
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*1 For double precision subroutines. all real types should be changed to double precision real 

types. 

(3) Calculation method 

To make explanation simple, the integration interval is assumed to be [-1. 1]. An integral 

is transformed as follows: 

pLl~ (1 f(x)-f(c) dx+J(c) In( l-c) 
-1 x-c )-1 x-c 1 +c 

In the first integrand at the right-hand sid~ c is no longer a pole. P(x) is expanded in 

Chebyshev polynomial. The order of expansion is increased more gradually than doubly until 

the requested accuracy is satisf\ed. This is to save the number of function evaluations. 

The expansion coefficients are calculated efficiently by using PPT. 

(4) Bxample 

The integral 

(1 1 1 
)-1 x-c x2+el-dx 

that has ten poles C=O.li-O. 01 (i = 1, 2, ...• 10>. when the values of parameter a are 1. 1/2, 

and 1/4. is calculated. 

e a= 10-4 and e r=O. 

As shown in the above example. when the integrand function contains a parameter (a in this 

example). the parameter is put in the common area to communicate with the main program. 

(5) Notes 

1. This method should be used only when pole C is in the integration interval and Ic-al and 

Ic-bl>10-7 (AQCHYS) or 10-16 (AQCHYD) is satisfied. 
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2. When this routine is called. repeatedly for the same function f (x) with the same value for 

ea but with different values for pole C. set JUMP to 1 when calling this routine second time 

and after. Then. the value of PUN used for the first time is reused repeatedly. This 

enables efficient calculation and greatly saves calculation tia:e. (For this operation. er 

should be set to 0.0.) 

Bibliography 

1) Tatsuo Torii and Takemitsu Hasegawa: DFFT of real function gradually increasing sample 

pointsD• Information Processing Soc. of Japan. Vol. 24. No.3. pp.343-350 (1983). 

2) Takemitsu Hasegawa and Tatsuo Torii: DAutomatic quadrature of Cauchy principal value 

integralsD• Kagakukenkyuhi Sogokenkyu (A) Reports of Applied Mathematic Symposium 

(Representative: Nakashima and Yoneda)D. pp.163-174 (1983). 
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AQCOS S I D and AQS INS I D (Automatic Quadrature of Semi-Infinite Integral of Osci llatory 

Function) 

Automatic Quadrature of Semi-i.nfinite Integral of Oscillatory Function 

Programm Toshio Yoshida, September 1982 

ed by 

Format Subroutine Language: FORTRAN; Size: 16~ 168, 16~ and 168 lines 

respectively 

(1) Outl ine 

AQCOSS/D and AQSINS/D calculate the semi-infinite integral LCD f(x)cos qx dx (same as for 

LD f(x) sin qx dx) within the prescribed absolute precision s for the function f (x) that 

attenuates with the increase of x. 

(2) Directions 

CALL AQCOSS/D (A, Q, F, S, EPS, LF, LA, NF, NS. W, ILL) 

CALL AeSINS/D(A; Q, F, S, EPS, LF. LA, NP, NS, W, ILL) 

Argument Type and Attribut. Content 

kind (*1) e 

A Real type Input Lower limit a of definite integral. 

e Real type Input q of integrand function. q>O. 

Real Name of f(x) of integrand function. The function as an 

P number Input actual argument for this name should be prepared as a 

type function subprogram with only one integral variable. The 

function name of f(x) should be defined as the EXTERNAL declaration 

subprogram in the program that calls this subroutine. 

S Real type Output The values of an definite integral is output. 
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Argument Type and Attribut Content 

kind (*1) e 

Positive number that represents a prescribed absolute 

EPS Real type Input accuracy. 

10-3-'10-5 Single precision: .-

Double precision: 10-5N I0-J4 

These are standard values. (See 3 in DNoteD) 

l.P Integer Input Upper limit of total number of calculations of function 

type f(x). l.P>12. The adequate value is several thousands. 

Upper limit of the number of operations that r(x) requires 

LA Integer Input to o~tain a function g(x). 

type LA>10. The adequate value is several hundreds. 

NP Integer Output" Total number of calculations of a function f(x). If NP>L~ 

type control escapes from the routine, stopping the calculation. 

NS Integer Output 

type Number of sampling times of an integrand function in 

[

1C/Q 

a g(x)cos qx. 

One-dimens Work Size LA. 

ional area 

array of 

real 

number 

type. 

This argument represents a calculation state in the 

rout i ne. It is set to 0 in the rout i ne. Each time the 

next state is activated, a certain value is added. 
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Argument Type and Attribut Content 

ra+~/q 
(1) Integration of J

a 
g(x)cos qx dx 

(a) If the length of a small subinterval becomes 

extremely small, 1 is assumed. 

ILL Integer Output (b) If a discontinuity is detected, 10 is assumed. 

type (c) If a logarithmic singular point is detected, 100 

is assumed. 

(d) If an algebraic singular point is detected, 1000 

is assumed. 

(e) If the order of an algebraic point is up to -L 

20000 is assumed. 

(2) When the value of a function g(x) is to be obtained by 

Euler transformation, if the number of calculations of f(x) 

becomes greater than LA, 15000 is assumed. 

(3) If NP>LP, 10000 is assumed. 

(4) If limits on the input are exceeded, 30000 is assumed. 

If 10000 or more is assumed, control escapes from the 

routin~ stopping the calcplatio~ 

*1 Por double precision subroutines, all real types should be double precision real types. 

(3) Calculation method 

An integral value is obtained by changing the semi-infinite integral LID f(x)cos qx dx to 

L
a+7C/q 0 

the finite interval g(x)cos qx dx, and applying to it the adaptive automatic o . 
numerical integration method1

) by Ninomiya based on the Newton-Cotes 9-point rules. 

However, suppose 
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The value of the function g(x) at a sampling point must be obtained by calculation. Then, if 

the series ~k decreases very slowly with the increase of k, the calculatidn of the series 
CD 

L(-l)k~k does not converge easily. 
k=O 

However, if the series is converted into a fast convergence series by Euler transformation, the 

value of g(x) can be obtained with a very few number of terms. Actually. the first several terms 

of the series should be added as they ar~ and Euler transformation should be applied to the 

subsequent terms. 

In this routine, the series is transformed to 
CD 5 CD k 
E(-l)k~k=E(-l)k~k+E(-l)k ~~6 
k=O k=O K=6 i::"-+ 

, and the terms are summed up until I Ak~k/it+ll equals eq/Tr or less (e: required absolute 

precision) . 

If other than this method is used, an enormous number of function calculations may be required 

for this kind of integration. 

(4) Example 

This program obtains the value of 

J.CD cos xcix 
J X 

us i ng AQCOSS. 

C MAIN PROGRAM 
DIMENSION W(100) 
EXTERNAL FUN . 
CALL AQCOSS(1.0,1.0,FUN,S,1.0E-4,SOOO,100,NF,NS,W,ILL) 
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WRITEe6,1000) S,NF,NS,ILL 
1000 FORMATe1H ,'S=',E15.6,3X,'NF=',I8,3X,'NS=',I8,3X,'ILL=', 

1 IS) 
STOP 
END 

C FUNCTION SUBPROGRAM FOR FeX) 
REAL FUNCTION FUNCX) 
FUN=1.0/X 
RETURN 
END 

In this example. the result of calculation is 

S= -0.337394E+00 

If the value of 

rm sin x 
Jo xcix 

NF= 208 NS= 21 ILL= 

is obtained by using AQSINS (required absolute precision 10-4. the result of calculation is 

S= 0.157078E+01 NF= 195 NS= 21 ILL= 

The result of these examples is obtained within the required precision. 

, (5) Note 

1. If the lower limit a of an integral is a singular point of the integrand function. and f{x) 

becomes 00 at that point. an integral value can be obtained by replacing it with an adequate 

finite value (O for'example). However. it is more effective to use the adaptive automatic 

o 

10 

numerical integration method AQNN9S/D in the interval [a. "Iq] containing a singular point. and 
! 

this routine for the remaining interval excluding the singular point. 

[

1C/Q 

2. a g(x)cosqxcix is calculated in the same manner as AQNN9S/D. For detai Is. see the 

explanation of AQNN9S/D. 

3. If the prescribed absolute precision EPS is taken very small as compared with the integral 

value. the calculation does not converge. EPS should be selected to be the estimated integral 

value. 

( This routine should be used only when an integral value exists. or f{x) attenuates with the 
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increase of x. This is because the result of the integration is output in the meaning of 

summation of divergent series even when the integral value diverges or oscillates (f(x) = 

constant. for example). 

Bibliography 

1) Ichizo Ninomiya; Adaptive Automatic Numerical Integration Based on Newton-Cotes 5 (7.9) Point 

Rule. Usage Guidance of Library Program pp.·200-202. Nagoya University Computer Center (1982). 

2) Moriguchi. Udagaw~ and Hitotsumatsu; Mathematical Formula 11. p.3t Iwanami Bookstore (1957). 

(1987. 08. 11) 
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AQCPACK(AQNNSC/B,QDAPBC/B,AQNDC/B,AQNN7C/B,HINFAC/B,AQ NN9C/B, 

INFINC/B,DEFINC/B,AQMDC/B) (Automatic Ouadrature for Complex Valued Functions) 

Automatic Ouadrature for Complex Valued Functions 

Programm Ichizo Ninomiya, Takemitsu Hasegawa, and Yasuyo Hatano, August 1982 

ed by 

Format Subroutine Language; FORTRAN77 

(1) Outline 

AOCPACK calculates the definite integrals of one, two, and three dimensions of a real variable 

complex valued function using automatic Ouadrature methods. The routines whose name ends with 

C/B are for 4- and 8-byte complex valued functions. 

(2) Directions 

AONN5C/B 

CALL AONN7C/B (A, B, P, S, EPS, LP. NP. ILL) 

AONN9C/B 

CALL DEFINC/B(A, B. F. S. EPS, N. ILL) 

CALL ODAPBC/B (A, B, P. S. ERR, N, ILL) 

CALL HINPAC/B(P. S, EPS, N. ILL) 

CALL I NPI NC/B (P, S, EPS. N. ILL) 

CALL AOMDC/B (M. LSUB, F. EPSA, EPSR, NMI N, NMAX, S. ERR, N, ILL) 

CALL AONDC/B(ME,lAFUN,BFUN,F.EPSA,EPSR.NMIN.NMAX,S.ERR,N. ILL) 

The contents of ~n argument are the same as those of corresponding argument each subroutine 

whose end character C/B is replaced with SIDe Where. C is an 8-byte complex number type. and B 

is a I6-byte complex number type. 

(3) Calculation method 
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Bach subroutine uses the same calculation method as the corresponding subroutine of a real 

version. The absolute values (ABS and DABS) are used in the convergence test of an real 

version. However. the sum of absolute values 

11 x+iy 11 1= I x I + I y I 
(CABS! and CDABS!) is used in that of a complex version. 

The reason why the sum of absolute values is used instead of the absolute value of usual complex 

numbers 

11 x+iy 112=JJ?-+Jf 

is that the former is much faster and inexpensive. 

(4) Bxample 

The following are the program for calculating the definite integral 

foZeiZcb; 

by AQNN9B. and its' output. 

COMPLEX*16 S,FUN 
REAL*8 PI 
EXTERNAL FUN 
PI=3.14159265358979324DO 

• 

CALL AQNN9BCO.DO,PI,FUN,S,1.D-10,2000,NF,ILL) 
WRITEC6,600) S,NF,ILL 

600· FORMAT C10X,2D20 .10,216) 
STOP 
END 

FUNCTION FUNCX) 
COMPLEX*16 FUN 
REAL*8 X 
FUN=DCMPLXCDCOSCX),DSINCX» 
RETURN 
END 

< Output result >. 

0.1387778781D-15 0.2000000000D+01 41 o 

',..) 

I' 
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(5) Note 

1. A complex valued function can· be calculated with its real and imaginary parts handled 

separately by using a subroutine for real valued functions. but it is more natural and faster to 

use present subroutines • 

. ~:! 2. It is essential to declare the i,ntegrand fiunction and integral value ·as complex numbers • .. :-': ... ; 

(1987.07.21> (1987.08.21> (1987.08.27) 

~: 

;: 

~ 

., 
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110 
AQDCCS/D,AQDCOS/D 

(Automatic quadrature of closed type by Clenshaw-Curtis method) (AQOCCS/D) 

(Automatic quadrature of open type by Clenshaw-Curtis method) (AQOCOS/D) 

Automatic Ouadrature of Closed Type by Clenshaw-Curtis Method (AQOCCS/D) 

Automatic Quadrature of Open Type by Clenshaw-Curtis Method (AQOCOS/D) 

Programm Tatsuo Torii; July 1918 
ed by 

Format Subroutine language; FORTRAN Size; 106, 101, 104, and 105 lines 
respectively 

(1) Out line 

AODCCS/O and AQOCOS/D each automatically obtain the approximate value of integral ~j'(X)ctt 
of bounded function I(x) which is smooth in a finite interval (a, b) in the specified 

precision. The base of this method depends on the expansion of I(x) to a Chebyshev series on 

the interval [a,b] and on the termwise integration. Therefore, the faster the convergence of 

this series, the less number of samples this integral method requires to attain the required 

precision. The smoother the function, the faster the convergence of the Chebyshev series. 

If an integrand function is defined on the closed interval [a,b], it is preferable to use the 

closed-type quadrature of which samples include both end points. If it is given in an open 

interval, the open-type quadrature must be used. 

(2) 0 i rect ions 

Argument 

A.B 

F 

CALL AQDCCS/D(A,B,F,BPSA,EPSR,NMIN,NMAX, S, ERR,N, ICON) 

CALL AODCOS/D (A. B, F, BPSA. EPSR, NMI N, NMAX, S, ERR. N, I CON) 

Type and Attribut Content 
kind e 

Real type Input A and B are lower and upper limits of the integration 
interval. 

Real type Input The user defines an integrand function as the function 
Function subprogram of one variable. 
subprogram 
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Argument Type and' Attribut Content 
kind e 

EPSA Real type Input Required precision. EPSA and EPSR are the limits of absolute 
EPSR and relative errors. respectively (~O). 

NMIN Integer Input Lower and upper limits of the number of samples. 
NMAX type NMAX;;;:NMIN~O 

AODCCS/D: NMAX~1025 
AODCOS/D: NMAX~1023 

I 

S Real type Output ' S is an approximate value of the integral to be determined. 
ERR ERR is an estimated value of the absolute error. 

N Integer Output Number of samples used to compute S. 
type 

ICON Integer Output ICON = 0: Normal. 
type ICON = 10000: Required precision is too severe. The 

operation result can be regarded as normal because the 
maximum precision available with the computer used has been 
already obtained. 
ICON = 20000: Abnormal. The required precision cannot be 
obtained even though the number of samples is increased to 
the limit NMAX. I 

I 
I ICON = 30000: Parameter error. 

- --- ~-- ---- - -- -
(3) Performance 

Fast Fourier cosine transform based on the midpoint rule is used for Chebyshev series expansion 

of an integrand function. When the number of samples is N. therefore. the number of real 

multiplications is about N 12loC}2N. 

(4) Calculation method 

Interval [a. b] is transformed to [-1. 1] by linear transformation. and integrand function 

J(t) is expanded to a Chebyshev series which is termwise integrated. 

1:/(t)dt= ~1: (/( t)+/( -t) )dt 

1
1 IZI 

- E'02kT2k(t)dt 
-lk=O 

-00-2 -+-+-+ ... (
020406 ) 
1·3 3·5 5·7 

Errors of closed- and open-type quadratures are evaluated by ( I ON-21 + ION I )/N with Nt1 

sample points and 4( I ClN-41 + I ClN-21 )/N with N-l points. respectively. 

/1/ 
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Where. coefficient 4 is an expedient. 

A Drelative errorD in each quadrature is the one obtained by dividing each evaluated absolute 

error by the norm of the i ntegrand f unct ion 11 I ( t ) +1 ( - t) 11 CD • where the f unct i on norm is 

11 I" CD=max I/(x;) I . and Xj is a sample point. 

The level of rounding errors (computation or propagation errors) are evaluated by 

16ull/(t)+/(-t) 11 

where u is the minimum unit of machine precision. 

Safety coefficient 16 is determined from experience. This completes preparation. The 

convergence criteria are explained below. 

Given required precision values £0" (absolute error). and £r (relative error). at least one 

of the following conditions is satisfied. it is "judged that convergence has attained: 

Bvaluation value of absolute error ~ max { £a, computation error} 

Bvaluation value of relative error ~ £r 

If neither conditions are satisfied, the number of samples is doubled each time like 17, 33. 65. 

and so on. in case of closed-type quadrature. or 15, 31. 63. and so on. in case of open-type 

quadrature. 

If £o=£r=O is given, the result with the highest precision (rounding errors are predominant 

over truncation errors) can be obtained. 

The validity of the above convergence criteria depends on the smoothness of integrand function. 

If integrand function I(t) is sufficiently smooth. error evaluation is successful with less 

number of samples required (about?!». If I(t) cannot be differentiable, however, more number 

of samples are needed.and the error evaluation value tends to be too lower than the actual one. 

Even if I( t) is analytic on the interval [-1. 1] in the real axis. the simi lar si tuat ion occurs 

as the singular point approaches [-1. 1]. 

(5) Bxample 

As the test, we use the following three kinds of problems whose analytic solutions are known: 

(1) 11 1_t2 dx=(.1- t ) log 1 +t t=1j2,3/4,15/16 
-11-2tx+t2 t 1-t 
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(2) 

(3) 

11 2a __ 2d:r=2tan-1 ~ 
-la +x-

1
1 
cosaxc:lx= ~ sina 

-1 

a=l ,1/4,1/16 

a=4,16,64 

The following program performs the above integral calculations changing required precision £ 

to 10-2 ,10-4,10-6, ••• and prints the index (ICON) which indicates whether operations have 

been done normally for calculated values, errors, error evaluation, number of samples, and 

calculation. 

C TEST PROBLEMS FOR SUBROUTINE AQDCCS AND AQDCOS. 
C 1978.11.15 

DIMENSION PARAMC3,3) 
DATA PARAM/0.5,0.75,0.9375,1.0,0.25,0.0625,4.0,16.0,64./ 
COMMON T,J 
EXTERNAL F 
ZERO=AMACHCZERO) 
EPSA=1.0E-02 
EPSR=O.O 
NMIN=O 
NMAX=1025 
A=-1.0 
B=1.0 

10 WRITEC6,600) EPSA 
600 "FORMATC1HO/4X,32HPERMISSIBLE ABSOLUTE ERROR BOUND,E15.3/) 

DO 20 J=1,3 
DO 20 1=1,3 
T=PARAMCI,J) 
CALL AQDCCSCA,B,F,EPSA,EPSR,NMIN,NMAX,S,ERR,N,ICON) 
TS=TRUECT,J) 
ERROR=TS-S 
WRITEC6,601)J,I,T,TS,S,ERROR,ERR,N,ICON 

601 FORMATC1H,2I4,F8.4,2F15.06,2E13.03,2I8,5X,6HAQDCCS) 
CALL AQDCOSCA,B,F,EPSA,EPSR,NMIN,NMAX,S,ERR,N,ICON) 
ERROR=TS-S 
WRITEC6,602) J,I,T,TS,S,ERROR,ERR,N,ICON 

602 FORMATC1H ,214,F8.4,2F15.06,2E13.03,2I8,5X,6HAQDCOS/) 
20 CONTINUE 

EPSA=EPSA*1.0E-02 
IFCEPSA.GT.ZERO)GO TO 10 
STOP . 
END 

FUNCTION FCP) 
COMMON T,J 
GO TO C1,2,3),J 

1 F=C1.0-T*T)/C1.0-2.0*T*P+T*T) 
RETURN 

193



2 F=T/CT*T+P*P) 
RETURN 

3 F=COSCT*P) 
RETURN 
END 

FUNCTION TRUECP,J) 
GO TO C1,2,3),J 

1 TRUE=C1.0/P-P)*ALOGCC1.0+P)/C1.0-P» 
RETURN 

2 TRUE=2.0*ATANC1.0/P) 
RETURN 

3 TRUE=2.0*SIN(P)/P 
RETURN 
END 

Ca I cu I at ion resu I t under. reqlJi red prec i s i on 10-5 

Calculated Hrror Number Normal or 
Problem Parameter Kind integral Hrror evaluation of Abnormal 

value samples 

t=1/4 AQDCCS 1. 647918 0.0 0.781H-06 33 0 
AQDCOS 1. 647918 0.0 O. 781H-06 31 0 

(1) t=3/4 AQDCCS 1.135114 0.596H-07 O. 166H-05 65 10000 
AQDCOS 1.135114 0.298H-07 O.166H-05 63 10000 

t=15/16 AQDCCS 0.443557 0.104H-06 O. 714H-05 257 10000 
AQDCOS 0.443548 0.858H-05 0.647H-05 127 10000 

a=l AQDCCS 1. 570796 -0. 298H-07 o 531H-06 17 0 
AQDCOS 1. 570796 -0. 298E-07 0.472E-06 31 0 

(2) a=1/4 AQDCCS 2.651635 0.596H-07 0.184H-05 65 10000 
AQDCOS 2.651635 0.119H-06 0.184H-05 63 10000 

a=1/16 AQDCCS 3.016755 O. 179H-06 O. 735H-05 ·257 10000 
AQDCOS 3.016755 0.238E-06 O. 735E-05 255 10000 

a=4 AQDCCS -0.378401 0.0 0.469H-06 17 0 
AQDCOS -0.378401 0.0 0.476E-06 31 0 

(3) a=16 . AQDCCS -0.035988 -0. 484E-07 0; 477E-06 33 0 
AQDCOS -0.035988 -0. 829E-07 O.477H-06 63 0 

'a=64 AQDCCS 0.028751 -0. 424E-07 0.477H-06 129 0 
AQDCOS 0.028751 0.405H-07 0.477H-07 127 0 

(1987.05.21) (1987.08.08) 
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AQIOSC/B (Automatic quadrature of oscillatory infinite integral of complex-valued function) 

Automatic Quadrature of Oscillatory Infinite Integral of Complex-Valued Function 

Programmed Takemitsu Hasegawa; February 1986 

Format Subroutine language; FORTRAN Size; 698 and 704 lines 

respectively 

(1) Outline 

When a complex-valued function f(x) is given. AQIOSC or AQIOSB calculates the approximate ~alue 

of the oscillatory infinite integral 

1= LID f(x)ei(.)%dx, a~O 

with requested absolute error Eo. 

AQIOSC is a routine for single precision and AQIOSB is one for double precision. 

(2) Directions 

CALL AQI OSC/B (A, OMBGA, FUN. BPSA,.NMI N. NMAX. SC. NFUN. BRR. I CON) 

Argument Type and AUr Content 

kind (*1) ibut 

e 

A Real type Inpu Lower limit of integral domain. A~O 

t 

OMBGA Real type Inpu Frequency w. 2n- 1 w 1>1. E-7 (single precision) and 

t 2" 1 w 1>1. E-15 (double precision). w>O 
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FUN Complex 

type 

function 

subprogram 

Inpu Given function f(x). For the function as an actual 

t argument of this function, the user should prepare a 

function subprogram having a variable x. 

EPSA Real type Inpu Requested absolute error ea for approximate value SC 

NMIN 

NMAX 

SC 

NFUN 

ERR 

ICON 

Integer 

type 

Real type 

Integer 

type 

Real type 

)nteger 

type 

t or SS of an integral. 

EPSA>O 

Inpu Lower limit (NMIN) and upper limit (NMAX) of the number 

t 

Outp 

ut 

Outp 

ut 

Outp 

ut 

of function FUN evaluations. NMIN is usually set to 

9. NMAX is usually set to 200 to 90Q When NUAX~513, 

NMAX is assumed to be 513 (single precision). 

When NMAX~2049, NMAX is assumed to be 2049 (double 

precision). O<NMIN<NMAX. 

Approximate value of integral I. 

Total number of function FUN evaluations. 

Estimation of absolute error of SC 

Outp ICON=O; Normal termination. 

ut ICON=1000, 10000, or 11000; The accuracy of the 

approximate value of an integral has reached the level 

of rounding erro~ 

ICON=2000, 12000, 21000, or 22000; No approximate 

value satisfied the requested accuracy (EPSA) even 

after NMAX function evaluations are used. 

ICON=30000; Parameter error. 

*1 For double precision subroutines, all real types should be changed to double precision real 

types. All complex types should be changed to double precision complex types. 
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(3) Calculation method 

Integral 

I =ilD f (x) eit.adx= tSn 
o n"'O 

is represented as 

Sn= f(x)eit.adx l
xn 

Xn-I 

• where a<xo <x 1 <x2 < ••• is the root of sinaJx=O. 

(a) Set {Sn} of the approximate value of each Sn is efficiently calculated by using Chebyshev 

polynomial expansion of f(x). 

(b) Alternating series with slow convergence • 

• is subjected to the Sidi acceleration method. a generalized Richardson extrapolation. to 

. improve the convergence. 

By combining these two methods (a) and (b). the approximate value of an integral can be obtained 

eff ic ient Iy. 

(4) Example 

When aJ=l. 11. 21. • ••• 91 for the values of the parameter a being 1. 4. 7. 

is calculated. :-4 
e 0=10 . 

C EXAMPLE FOR AQIOSC 
C FEBRUARY 15,1986 

IMPLICIT COMPLEX*8(C) 
COMMON ALPHA 
EXTERNAL CFUN 

11'7 
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C 

A=O.EO 
EPSA=1.E-4 
NMIN=9 
NMAX=400 
WRITEC6,1000) 

1000 FORMATC1HO,'TEST '1111H ,'ALPHA OMEGA', BX,'REAL', 
* 9X,'IMAGINARY',6X,'N',SX,'ERR ICON') 

DO 20 IALPHA=1,7,3 
ALPHA=FLOATCIALPHA) 
WRITEC6,1010) 

1010 FORMATC1H ) 
DO 10 IOMEGA=1,100,10 
OMEGA=FLOATCIOMEGA) 
CALL AQIOSCCA,OMEGA,CFUN,EPSA,NMIN,NMAX,CSS,NFUN, 

*ERR,ICON) 
WRITEC6,~020) ALPHA,OMEGA,CSS,NFUN,ERR,ICON 

1020 FORMAT(1H ,FS.2,F6.2,2E16.7,IS,E10.2,I7) 
10 CONTINUE 
20 CONTINUE 

STOP 
END 

FUNCTION CFUNCX) 
IMPLICIT COMPLEX*BCC) 
COMMON ALPHA 
CFUN=EXPC-ALPHA*X)*C10.EO,1.EO) 
RETURN 
END 

As shown in the above example. when the integrand function contains a parameter (tr in this 

example). the parameter is put in the common area to communicate with the main program. 

(5) Note 

1. When there is a.point x;p (or a sharp peak point) that the function f(x) is singular or near 

singular in the integration interval [a. 00). this method should be used for integrals in the 

interval [pt6. 00) (6)0) beyond this point. For integrals in the [a. at6] interval. however. 

another method should be used. 

Bibliography 

1) Takemitsu Hasegawa and Tatsuo Torii; DOsc~llatory semi-infinite integral based on Chebyshev 

series expansionD• Preprints of Working Group for Numerical Analysis. IPSJ 10-3 (1984>. 

(1987. 08. 05) 
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~ III 
AQIOSS/D (Automatic quadrature of oscillatory infinite integral) 

Automatic Quadrature of Oscillatory Infinite Integral 

Programmed Takemitsu Hasegawa; February 1985 

by 

Format Subroutine language; FORTRAN Size; 669 and 677 lines 

respectively 

(l) Out] ine 

When a constant-sign function f{x) is given. AQIOSS or AQIOSD calculates the approximate value 

of the oscillatory infinite integral 

~ IC=J[mf(X)COS~Xdr, IS=J[mf(X)Sin~Xdr, u~o 

with requested absolute error eo. 

AQIOSS is a routine for single precision and AQIOSD is one for double precision. 

(2) Direct ions 

CALL AQIOSS/D{A.OMEG~FUN.KEY.EPSA.NMIN.NMAX.SC.$S.NFUN.ERR. ICON) 

~ Argument Type and Attr Content 

kind (*l) ibut 

e 

A Real type Inpu Lower limit of integral domain. A~O 

t 

OMEGA Real typ~ Inpu Frequency CI). 2n 1 Cl) 1>1. E-7 (single precision) and 

t 2n 1 Cl) 1>1. E-15 (double precision) 

FUN Real type Inpu Given function f(x). For the function as an actual 

function t argument of this function. the user should prepare a 

subprogram function subprogram baving a variable x. 
-----.-~~ 
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2...00 

KEY Integer 

type 

Inpu KEY should be set to O. 1. or 2 for obtaining the 

t cosine integral Ic. the sine integral Is. or both. 

respectively. 0~KEY~2 

EPSA Real type Inpu Requested absolute error e: a for approximate integral 

NMIN 

NMAX 

SC 

SS 

NFUN 

Integer 

type 

t SC or- SS. 

EPSA>O 

Inpu Lower limit (NMIN) and upper limit (NMAX) of the number 

t of function FUN evaluations. NMIN is usually set to 

9. NMAX is usually set to 200 to 90Q When NMAX~513. 

NMAX is assumed to be 513 (single precision). 

When NMAX~2049. NMAX is assumed to be 2049 (double 

precision). O<NMIN<NUAX. 

Real type Outp Approximate value (SC) of cosine integral Ic and 

ut approximate value (SS) of sine integral Is. 

Integer Outp Total number of function FUN evaluations. 

type ut 

ERR Real type Outp Estimated value of absolute error for SC and SS. 

ICON Integer 

type 

ut 

Outp ICON=O; Normal termination. 

ut ICON=1000. 10000. or 11000; The accuracy of the 

approximate value of an integral has reached the level 

of rounding error. 

ICON=2000. 12000. 21000. or 2200G; No approximate 

value satisfied requested precision (EPSA) even after 

the number of function evaluations reached NMAX. 

ICON=30000; Parameter error. 

*1 For double precision subroutines. all real types should be changed to double precision real 

types. 

(3) Calculation method 
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cosine integral is represented as follows: 

l
%n 

Sn= ! (x) cosU)xcix , 
%n-I 1%0 

~= 0 !(x)cosooxcix, 

where a<xo <x J <X2 < ••• is the root of coswx=O. 

(a) Set {Sn} of the approximate value" of each Sn is efficiently calculated by using Chebyshev 

polynomial expansion of f{x). 

(b) Alternating series with slow converence, 

, is subjected to the Sidi acceleration method, a generalfzed Richardson extrapolatio~ to 

improve the convergence. 

By combining these two methods (a) and (b), the approximate value of an integral can be obtained 

efficiently. 

Sine integral Is is calculated in the same way. 

(4) Bxample 

When w=1. 3. 5. 7. 9 for the value of parameter a being 1. 2. 3. 

is calculated. e a=10-4• 

C EXAMPLE FOR AQIOSS 
COMMON ALPHA 
EXTERNAL FUN 
A=O.DO 
EPSA=1.E-4 
KEY=2 

20/ 
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NMIN=9 
NMAX=200 
WRITEC6,1) 

1 FORMAT(1HO,'TEST FOR AQIOSS'III1H ,'ALPHA OMEGA',7X, 

C 

*'COSINE',9X,'SINE',8X,'N',7X,'ERR ICON') 
DO 10 IALPHA=1,3 
ALPHA=FLOATCIALPHA) 
WRITEC6,2) 

2 FORMATC1H ) 
DO 20 IOMEGA=1,9,2. 
OMEGA=FLOATCIOMEGA) 
CALL AQIOSSCA,OMEGA,FUN,KEY,EPSA,NMIN,NMAX, 

*SC,SS,N,FUN,ERR,ICON) 
WRITEC6,3) ALPHA,OMEGA,SC,SS,N,FUN,ERR,ICON 

3 FORMATC1H ,F5.2,F6.2,2E15.7,I5,E10.2,I7) 
20 CONTINUE· 
10 CONTINUE 

STOP 
END 

FUNCTION FUNCX) 
COMMON ALPHA 
FUN=EXPC-ALPHA*X) 
RETURN 
END 

As shown in the above example. when the integrand function contains a parameter (ar in this 

example). the parameter is put in the common area to communicate with the main program. 

(5) Notes 

1. When there is a point x=p (or a sharp peak point). at which the function f(x) is singular or 

near singular in the integration interval [a. 00). this method should be used for integrals in 

the interval [pt8, 00) (8)0) beyond this point. For integrals in the [a, at8] interval. 

however, another method should be used. 

2. When both cosine integral Ic and sine integral Is are needed for the same function f{x). 

calculation of the function f{x) can be used commo~ly. This method thus has an advantage that 

both approximate values can be obtained by the time needed for function calculation of either Ic 

or Is. 

Bibliography 

1) Takemitsu Hasegawa and Tatsuo Torii; DOscillatory semi-infinite integral based on Chebyshev 

series expansionD, Preprints of Working Group for Numerical Analysis. IPSJ 10-3 (1984>. 

(1987. 08. 05) 
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AQMDS I D (Automatic multiple integration based on the interpolatory type quadrature 

increasing the sample points with arithmetfcal progression) 

Automatic Multiple Integration Based on the Interpolatory Type Quadrature Increasing the Sample 

Points with Arithmetical Progression 

Programm Takemitsu Hasegawa: April 1980 
ed by 

Format Subroutine language; FORTRAN Size; 562 and 563 respectively 

(1) Outl ine 

AQMDS and AQMDO are automatic integration routines that calculate multiple integration 

I=L~ldxlLr/I2dx2 • ••• ·LI/I. dxJ(Xl ,X2, ••• ,x.) 
1/11 fP2 c.o. 

in a curved boundary region to obtain approximate value S with precision satisfying 

IS-I I :smax(£o,£rII I) 

• where £0 is an absolute error and £r is a relative error. 

It uses a product formula that repeatedly applies an interpolatory type quadrature increasing 

sample points with arithmetical progression in each coordinate axial direction. (For the 

interpolatory type quadrature. this routine uses an open formula which does not use both ends of 

an integration interval as sample points. QDAPBS/D uses a closed formula. AQMDS/D uses an open 

formula to handle functions which are near singular at the ends of the integration interval, as 

well as smooth functions. The product formula is effective for smooth or oscillatory-type 

functions. in paticular. 

(2) Direct ions 

CALL AQMDS/D(M,LSUB. FUN. EPSA. EPSR,NMIN. NMAX.S. ERR. N, ICON) 

Argument Type and Attr Content 
kind (*1) ibut 

e 

M Integer Inpu Multiplicity of integral calculus. I~M~3 
type t 

ZoJ 

203



Argument 

LSUB 

FUN 

Type and 
kind (*1) 

Subroutine 

subprogram 

Real type 
Function 
subprogram 

Attr 
ibut 
e 

Inpu 
t 

Content 

Name of the subroutine subprogram that calculates upper and lower 
I i m its 0 fin t e g rat ion. Num b e r k 
in the direction of coordinate axi$ Xk, on which integration is 
being done, is put into the first argument (K). The second 
argument (X) is the name of an one-dimensional array having M 
elements. Values of Xt and X2 enters X (1) and X (2)' The 
lower limit of integration is put into toe third argument (A), 
and the upper limit is put into the fourth argument (B). This 
subprogram must be declared in the BXTERNAL statement in the main 
program. 

Inpu Name of an integrand. This function needs to have only one 
t one-dimensional array having M elements as an actual argument 

(X) . V a I u e 0 f Xi i s put i n t 0 X (i 
). (l~i ~M). This function subprogram must be declared in the 
BXTBRNAL statement in the main program. 

EPSA Real type Inpu Requested absolute error £0 (BPSA) and relative error £r (EPSR) 
EPSR t for approximate value S of an integral. EPSA~O,EPSR~O. 

NMIN 
NMAX 

S 

ERR 

N 

Integer 
type 

Real'type 

Real type 

Integer 
type 

ICON Integer 
type 

Inpu Lower limit (NMIN) and upper limit (NMAX) of the number of times 
t the integrand function FUN is to be evaluated for an integral in 

the direction of each coordinate axis. NMIN=7 and NMAX=100 (in 
case of AOMOS) or NMAX=511 (in case of AOMOO) are suitable. When 
NMAX~511 is specified, NMAX=511 is assumed. 

Outp Approximate value of an integral. 
ut 

Outp Bstimation of the absolute error of S. 
ut 

Outp Total number of evaluations of the integrand function FUN. 
ut 

Outp ICON=O: Normal termination. ICON=30000: Parameter error. 
ut If integration in the direction of each coordinate axis does not 

converge even if NMAX function evaluations are used, ICON is set 
as follows: ICON=200 when the coordinate axis is X3. ICON=2000 
when the coordinate axis is X2, ICON=20000 when the coordinates 
axis is Xt. If requested accuracy is too high and, as the 
result of integration in the dire~tion of a certain coordinate 
axis, the accuracy of the approximate value of the integral has 
reached the level of the rounding error of the computer, ICON is 
set as follows: ICON=100 when the coordinate axis is X3. 

ICON=1000 when the coordinate axis is X2, ICON=10000 when the 
coordinate axis is Xt. If two or more such events occur 
simultaneously, ICON is set to the sum of the respective values. 

*1 For double precision subroutines, all real types should be changed to double precision real 

types. 

(3) Example 
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The program below calculates the following triple integral with the value of parameter J> 

allowed varied: 

1: dx1l: d:r21: dx3 48( 4-COSPXI-~OSJ>X2-C05PX3) 

C EXAMPLE ••• AQMDS ••• 
EXTERNAL FUN,LSUB 
COMMON P 
EPSA=1.{)E-4 
EPSR=O.O 

C 

C 

NMIN=7 
NMAX=100 
M=3 
DO 10 IP=1,10 
P=FLOATCIP)*O.S 
CALL AQMDSeM,LSUB,FUN,EPSA,EPSR,NMIN,NMAX,S,ERR,N,ICON) 

10 WRITEC6,100) P,S,ERR,N,ICON 
100 FORMATC1H ,'P=',F4.1,SX,'S=',E1S.7,SX,'ERR=',E10.2,SX, 

*'N=',I7,SX,'ICON=',IS) 
STOP 
END 

FUNCTION FUNeX) 
DIMENSION X(3) 
COMMON P 
FUN=1.0/e4.O-COSCP*X(1»-COSep*XC2»-COSep*Xe3»)/48.0 
RETURN 
END 

SUBROUTINE LSUBeK,X,A,B) 
DIMENSION X(3) 
GO TO C1,2,3),K 

1 A=-1.0 
B=1.0 
RETURN 

2 A=-2.0 
B=2.0 
RETURN 

3 A=-3.0 
B=3.0 
RETURN 
END 

As shown in this example. if the integrand function contains a parameter (J> in this example). 

it is put in a common region to communicate with the main program. 

(4) Performance 

With BPSA=10D-7. we tested the following three triple integrals using double precision 

subroutine AOMDD. The results are as follows. 
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where region 0 is [-1, IJ 3• 

Proble A 
m 

p 1 1/2 1/4 1/4 

Number 12,167 59,487 350,847 11,215 
of 

sample 
s 

1 1 
p=1, 2' 4 

P
_1 1 3 
-4'2'4 

p=8,16,32 

B 

1/2 3/4 

29,791 223,543 

C 

8 16 32 

29,663 65,151 272, 199 

The three values for parameter p in each problem correspond, from left to right, to 

(integration is) Deasy, D Drather difficult,D and DdifficultD. 

(5) Notes 

1 When this routine is called several times, it calculates weight of a one-dimensional 

integral and sample points only when it is called for the first time. So,. it can save time a 

little in calculation when it is called second and subsequent time. 

2. If ICON is other than 0 and 30000, the integration results do not satisfy requested 

precision, but the absolute error can be estimated from argument BR~ 

3. If ICON is 200, 2000, or 20000, requested accuracy may be satisfied by increasing the NMAX 

value. 

( Multiple integration generally uses many sample points, resulting in remarkable accumulation 

of rounding errors. Generally speaking, therefore, AQMDD can be used when £PSA and BPSR are less 

than 0.5£-( If satisfactory precision cannot be obtained with AOMDS when NMAX~60, use of AQMDD 

may improve precision. 

Bibliography 

1) Tatsuo Torii, Takemitsu Hasegawa, and Ichizo Ninomiya; Dlnterpolatory automatic integration 
increasing sample points with arithmetical progressionD Information processing, Vol. 19, No. 3, 
and PP. 248-255 (1978). 
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less number of sample pointsD, Preprints of the 21th Symposium of Information Processing So~ of 
Japan, PP. 951 0980> . 

3) Ichizo Ninomiya; DNewly registered numerical analysis softwareD• Nagoya University Computer 
Center News. Vo 1. 10, No. 3, PP. 278-308 (979). 

4) Takemitsu Hasegawa; DAutomatic multiple integration based on interpolatory type quadrature 
increasing sample points with arithmetical progressionD• Nagoya University Computer Center News. 
Vo 1. 11. No. 4. P. 413 0980> • . 
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AQNDS/D, AQ3DS/D, AQ2DS/D, and AQ1DS/D (Automatic multiple quadrature) 

Automatic Multiple Ouadrature 

Programm Ichizo Ninomiya, Takemitsu Hasegawa, and Yasuyo Hatano: March 1979 
ed by 

Pormat Subroutine language~ PORTRAN Size; 622 and 623 lines respectively 

(1) Out} ine 

Suppose we calculate multiple integrals: 

rUt lun 
1= J, dx.- - - dxn -I(x.- - -xn) 

It In 
(1) 

where 

(2) 

Now, £o,£r, which are the upper limits of absolute and relative errors for approximate value ~ 

of integral I, are given to calculate ~ satisfying 

I ~-I I =amax (£0' £r I I I ) (3) 

We use a product formula by which various automatic integration methods for one variable are 

repeatedly used in each dimensional direction. The following six types of au.tomatic formulas are 

available for one variable. They can be used in arbitrary combinations. 

(1) Adaptive Newton-Cotes 9-point rule. 

(2) Clenshaw-Curtis integration--Formula that adds data points in a geometric progression (common 

ratio ,./2). 

(3) Double exponential function type integration formula. 

(4) Double exponential function type integration formula (semi-infinite interval). 

(5) Double exponential function type integration formula (infinite interval). 

(2) Directions 

CALL AONDS/D(ME,M,AFUN,BFUN,FUN, EPSA, EPSR,NMIN,NMAX,S,ERR,N , ICON) 

CALL AQ3DS/D (ME, AFUN, BFUN, PUN, EPSA, EPSR. NUl N, NMI\X. S, ERR. N. I CON) 

CALL A02DS/D(ME.AFUN,BFUN,FUN,EPSA,EPS~NMIN,NMAX,S,ERR,N, ICON) 

CALL AOIDS/D(NE, AFUN. BFUN, FUN, EPSA. EPSR. NMIN, NMAX. S, ERR, N, ICON) 
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Argument Type and Attr Content 

MB 

M 

APUN 
BPUN 

PUN 

BPSA 
BPSR 

NUIN 
NUAX 

S 

BRR 

N 

kind (*1) ibut 
e 

Integer Inpu One-dimensional array with M number of elements. The integration 
formula to be used for each dimensional direction is specified by 
the number. 

type t 
One-dimens 
ionaI 
array 

Integer 
type 

Real type 
Punction 
subprogram 

Real type 
Punction 
subprogram 

1~MH~5. 
When MB=1. the adaptive Newton-Cotes 9-point rule is used. 
When MB=2. the Clenshaw and Curtis formula is used. 
When MB=3. the double exponential function formula (finite 

interval) is used. 
When MB=~ the double exponential function formula 

(semi-infinite interval) is used. 
When MB=5. the double exponential function formula (infinite 

interval) is used. 

Inpu Multiplicity of integration. M=l is assumed for AQ1DS/~ M=2 is 
t assumed for AQ2DS/~ and M=3 is assumed for and AQ3DS/D. 1~M~3 

Inpu Name of a function subprogram for calculating the lower limit 
t (APUN) and upper limit (BPUN) of a definite integral. Bach has 

two arguments. The first argument (X) is the name of a 
one-dimensional array having M number of elements. The value of 
Xt is set in X(1). the value of X2 is set in X(2). and the 
value of X3 is set in X(3). The second argument (K) contains 
the number of the dimensional direction in which calculation is 
being performed. When the region of ·the defini te integral is 
defined by the function of an integration variable. the values of 
these arguments are called to define the values of APUN and BPUN. 
Both arguments need to be declared in the BXTBRNAL statement in 

the calling program. 

Inpu Name of a function subprogram that calculates integrand function 
t f. It must be a function of only one one-dimensional array 

having M number of elements. 
This argument needs to be declared in the BXTBRNAL statement in 
the calling program. 

Real type Inpu Upper limit £0 of absolute error and upper limit £T of 

Integer 
type 

Real type 

Real type 

Integer 
type 

t relative error of approximate 
value S of an integral. £O,£Te:O 

I npu Lower and u p per I i m its 0 f the 
t number of evaluations of f in each dimensional directio~ 

NMIN=10 and NMAX=100 are suitable. However. if the value 
conflicts with those specific to the component routine for each 
integration formula. it is automatically replaced with a standard 
value. 

Outp Approximate value of integral. 
ut 

Outp Bstimated absolute error of S. 
ut 

Outp Number of actual evaluations of f. 
ut 
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Argument I Type and I Attr 
kind (*1) ibut 

Content 

ICON Integer 
type 

e 

Outp I Condition code. The termination state of integration for XI is 
ut indicated at the place of 10.000. that for X2 at the 100. and 

that for X3 at the place of 1 Bach time one of the following 
events occurs. the number given to it is added to each place. 

(1) Normal termination: 0 
(2) Integration does not converge even when NMAX is exceeded: 2 
(3) The event in (2) exceeds the number of times obtained by 

NNAX/10: 20· 
(4) An error other than (2) and (3) occurs: 1 
(5) The event in (4) exceeds the number of times obtained by 

NMAX/10: 10 
For the above events. Sand BRR indicate an approximate value and 
estimated value of an error respectively. If N exceeds 
MAX=min(NMAX**~1000000). 5000 is added to the above-mentioned 
value. ICON=30000 indicates a parameter error. 

*1 For double precision subroutines. all real types should be changed to double precision real 

types. 

(3) Bxample 

The program shown below uses the Clenshaw-Curtis formula for XI. and double exponential 

function type formula for X2 for the following definite integral: 

folc:/xlfo 1-.: 1 dJ:2 

C *** EXAMPLE (AQ2DS) *** 
EXTERNAL FUN,AFUN,BFUN 
DIMENSION ME(2) 
ME(1)=2 

C 

C 

ME(2)=3 
CALL AQ2DS(ME,AFUN,BFUN,FUN,1.E-3,1.E-3,10,100,S,ERR,N, 

*ICON) 
WRITE(6,610) S,ERR,ICON 

610 FORMAT(1H ,'S =',F13.5,' ERR =',E10.2,' ICON =',16) 
STOP 
END 

FUNCTION AFUN(X,K) 
AFUN=O.O 
RETURN 
END 

FUNCTION BFUN(X,K)' 
DIMENSION X(2) 
BFUN=1.0 
IF(K.EQ.2) BFUN=BFUN-X(1) 

..) 

.J 
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C 

RETURN 
END 

FUNCTION FUN(X) 
DIMENSION X(2) 
Y=ABS(X(1)+X(2» 
IF<Y.LT.1.E-70) GO TO 2 
FUN=1.0/SQRT(Y) 

1 RETURN 
2 FUN=O.O 

GO TO 1 
END 

(4) Note 

Read paper in bibliography 1),2) for details of an automatic integration formula for one 

variable and the corresponding component subroutine. For selection of integration formulas. read 

paper in bibliography 1),4) 
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1) Ninomiya and Hatano; DNew SSL programD• Nagoya University Computer Cent er News. Vol.& No. 3. 
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3) Hatano. Hasegawa. and Ninomiya; DCreating automatic multiple integration subroutinesD• 
Preprints of the 20th Symposium of Information Processing Soc. of Japan. p.447 (1978) 

4) Ninomiya and Hatano; DState of use of library programs and selection of programsD• Nagoya 
Un i vers ity Computer Center News~ Vo I. 11. No. 4. P. 399 (1980). 
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AQNNSS/D,AQNN7S/D,AQNN9S/D/Q 

(Adaptive quadrature based on Newton-Cotes 5(7,9) point rule) 

Adaptive Quadrature Based on Newton-Cotes 5(7,9) Point Rule 

Programm Ichizo Ninomiya February, 1978 
ed 

Format Subroutine Language; FORTRAN Size; 93, 94. and 99,100.103.104 lines 

(1) Out} ine 

Given integrand I(x). lower limit a. upper limit b, and requested accuracy E. the definite 

integral r /(x)dx is evaluated with the absolute error tolerance • by using the adaptive 

quadrature. Adaptive quadrature is a very effective method adjusting the density of the sample 

points according to the behavior of the integrand. This routine is based on the Newton-Cotes 

5(7.9) point rule. A lot of new modifications (the error estimation. distribution of error to 

local subinterval. detecting and treatment of discontinuities and singularities etc.) are added. 

and it has higher reliability and requires·the smaller number of samples compared with the 

existing methods. 2) 

(2) 0 i rect ions 

Argument 

A 

B 

FUNC 

CALL AQNN5S/D{~B,FUNC,S,EPS.LF,NF. ILL) 

CALL AQNN7S/D (~ B, FUNC, S, EPS, LF, NF, ILL) 

CALL AQNN9S/D/Q(~B,FUNC,S,EPS.LF,NF, ILL) 

Type and Attribut Content 

Kind * e 

Real type Input Lower limit of definite integral. 

Real type Input Upper limit of definite integral. A<B is required. 

Real type Input Name of integrand. The user should prepare the function as 

Function . the actual argument corresponding to this argument as a 

subprogram function subprogram with the integration variable as the only 

o·ne argument. 
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Argument Type and Attribut Content 

Kind * e 

S Real type .Output The value of definite integral is output. 

BPS Real type Input Positive number representing requested precision. 

LF 

NF 

ILL 

Integer 

type 

Integer 

type 

Integer 

type 

Input 

For single precision 10-3",10-6 is reasonable, and for 

double precision 10-5"'10-J5• 

Upper bound of sample frequency of functions. LF>12. 

Several thousands are suitable. 

Output Sample frequency of functions. The calculation is 

interrupted, and the control escapes from the routine when 

NF>LF. 

Output The situation of the calculation in the routine is output. 

It is set to 0 first in the routine, and is increased by 

adding constants discribed below each time one of the 

following cases occur~ 

(1) When length of small subinterval becomes extremely 

small : 1 

(2) When a discontinuity is detected : 10 

(3) When a I ogar i thm i c ·s i ngu I ar i ty is detected : 100. 

(4) When an algebraic singularity is detected: 1000. 

(S) When NF>LF : 10000 

(6) When the order of algebraic singularity is -1 or less: 

20000 

(7) When the input limitation is violated: 30000 

When (S), (6), or (7) occurs, the calculation is interrupted. 

* All real types should be changed to be double (quadruple) precision real number types in the 

case of double (quadruple) precision subroutine. 
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(3) Performance 

Integrand is classified into the following five types according to the characteristic of its 

behavior. 

(l) Smooth type : The function is smooth, and the change is slow. 

(2) Peak type: There are steep peaks and valleys. 

(3) Oscillatory: There is a violent vibration with short wave length. 

(4) Discontinuous type: There is a discontinuous point in the value of function or the 

der i vat i ve. 

(5) Singular type: There are logarithmic singularities or algebraic singular~ties. 

This routine is strong for the peak type as well as the smooth type because of the locality of 

its algorithm. Bven the integrands of the discontinuous type or the singular type can be handled 

effectively by this routine, when abnormal points are located at easily detectable places such as 

the ends or the middle point of integration interval. Hoever. this routine is comparatively weak 

for oscillatory type integrands. Though the evaluation frequency of integrand may increase. 

sometimes this routine is robust because it always gives an appropriate integra1- value. 

Out of three routines, 9-point rule is recommended because of its high reliability. The 

following table shows the result of experiment of 21 test problems 1) of Kahaner, where 

reliability is the percentage of the cases where calculated valua of definite integral actually 

satisfies requested accuracy. 

Requested 10-3 10-6 10-9 

accuracy 

Routine name Rel.iabi I Average Reliabi I Average Reliabi I Average 
ity 00 Number of ity 00 Number of ity 00 Number of 

samples samples samples 

AQNN5D 95 61 90 106 90 346 

AQNN7D 86 51 90 105 86 237 

AQNN9D 95 82 95 123 90 234 

QNC7* 86 79 86 201 81 437 

QUAD** 95 149 90 269 86 465 

* QNC7 is a subroutine based on 7-point method by Kahaner. 

** QUAD is a subroutine based on 10-point method by Kahaner. 

i" . 
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(4) Examples 

The following shows a part of a program to calculate the value of definite integral 

101 
(x-Q+l +sinx)dx with AONN9S changing values of a from 0.1 to 0.9 in stepsize of O. L 

C MAIN PROGRAM 
COMMON A 
EXTERNAL FUN 
DO 10 1=1,9 
A=FLOATC1'*0.1 

C 

CALL AQNN9SCO.0,1.0,FUN,S,1.E-4,SOOO,NF,IND) 

10 CONTINUE 
STOP 
END 

FUNCTION SUBPROGRAM FOR 1NTEGRAND 
FUNCTION FUNCX) 
COMMON A 
FUN=1.+S1NCX) 
1FCX.GT.O.) FUN=X**C-A)+FUN 
RETURN 
END 

The auxiliary variable in integrand program (A in this example) is allocated in the COMMON 

region to make communication between main program and integrand subprogram. When the function 

value becomes infinity in the singular point. it is necessary to replace it with a suitable finit 

value (0 for instance) to use this routine. 

(5) Note 

1. .If necessary. it is desirable to normal ize the length of. the integration interval and the 

absolute value of the integral value to the order of unity with suitable variable conversion. 

The name of integrand subprogram must be declared in EXTERNAL statement in the main program. 

2. To improve accuracy. it is recommended to formulate the problem so that abnormal points 

should be situated at ends of the integration interval and. if possible. at origin of the 

integral variable. Refer to the explanation of the example. 

3. As described in the directions of the variable ILL. the obtained integral value is not 

always invalid even if ILL~O (except ILL~10000) in this routine. For instance. the integral 

value is correct though ILL=1000 when algebraic singularity is detected and handled correctly. 

If the obtained integral value is not sure. it is recommended to use two routines to compare 

their results. 
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AQOSCS/D {Finite Fourier Integral} 

Finite Fourier Integral 

Programmed Takemitsu Hasegawa. March 1983 

by 

Format Subroutine Language: PORTRAN; Size: 874 and 878 lines 

respectively 

(l) Outl ine 

AQOSCS/D obtains the value of the finite Fourier integrals 

Ie= [f(x)eOS(2n:rux)dx • . Is= [f(X) sin (2n:rux) dx 

for a given function f{x} at the precision of the convergence criterion E. 

AQOSCS(D} is for single {double} precision. 

(2) Directions 

CALL AQOSCS/D {A, B, OMEGA. PUN. KEY, EPSA, EPSR. NMIN. NMAX. SC. SS. Nt ERR. ICON} 

Argument Type and Attr Content 

kind ibut 

(*l). e 

A Real type Inpu Lower limit of integral domai'n. 

t 

B Real type Inpu Upper limit of integral domain. A<B 

t 

OMEGA Real type Inpu Frequency Cl). 

t 
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FUN Function Inpu Given function f(x). A function as an actual argument 

KBY 

subprogram t for this functiQn should be prepared as a 

of real single-variable function subprogram with integration 

number var iables only. 

type. 

Integer 

type 

Inpu If KBY=O, only Ic is calculated. If KBY=1, only Is is 

t calculated. If KBY=2, Ic and Is are calculated at the 

same time. O~KBY~2 

BPSA Real type Inpu Prescribed absolute error ea (BPSA) and relative error 

BPSR t er (BPSR) for approximate integration values se and 

NMIN 

NMAX 

se 

ss 

N 

Integer 

type 

Real type 

Integer 

ss. BPSA~O. 

Inpu Lower and upper limits (MMIN and NMAX) of the number of 

t evaluations of the function FUN. The adequate values 

are NMIN = 9 and NMAX = several hundreds. If NMAX~513 

is specified, we set NMAX=513 (single precision). 

If NMAX~2049 is specified, we set NMAX=2049 (double 

precision). O<NMIN<NMAX. 

Outp se is the approximate value of Ic. SS is the 

ut approximate value of Is. 

Outp Total number of evaluations of the function FUN. 

type ut 

BRR Real type Outp Bstimated absolute value for se and SS. 

ut 
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ICON Integer Outp ICON=O: Normal termination. 

type ut I f I CON=9999; (b-a) I w 1<0. 01, usual integration method 

is used. The result is correct. 

ICON=10000: When the accuracy of the approximate value 

.of integration reaches the level of a rounding error. 

ICON=20000: When the integration does not converge even 

if the number of evaluations of a function reaches 

NMAX. 

ICON=30000: Parameter error. 

*1 For double precision subroutines, all real types ~hould be set double precision 

real types. 

(3) Calculation method 

The funct ion f (x) is expanded in the Chebyshev polynomial and termwisely integrated. (1) The 

number of expansion terms is more slowly increased than doubling until the required precision £ 

is satisfied. (2) Bxpansion coefficients are calc~lated by using the fast Fourier transform. 

(3) The value of termwise integration is stably and efficiently calculated by using the 3-term 

recurrence formula stably and efficiently. These three features enable efficient automatic 

integrat ion. 

(4) Example 

10 I exp (ax) cos (27tCdX) dx 10 I e:rp( ax) sin (27tCdX)dx 

are calculated on the assumption that w = ~ 3~ 128 while the values of parameter or are 4 and 

8 . 

. Assume that £ r= £ a=1. E-3. 
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C EXAMPLE FOR AQOSCS 
COMMON ALPHA" 
EXTERNAL FUN 
A=O.O 
8=1.0 
KEY=2 
EPSA=1.E-3 
EPSR=EPSA 
NMIN=9 
NMAX=100 
ALPHA=2.0 
WRITEC6,1) 

1 FORMATC1HO,'TEST FOR AQOSCS'111H ,'ALPHA OMEGA',13X, 
*'COS',13X,'SIN',4X,'N',7X,'ERR ICON') 

DO 10 1=1,2 
ALPHA=ALPHA+ALPHA 
DO 20 J=1,3 
OMEGA=8.0*4.0**CJ-1) 
CALL AQOSCSCA,8,OMEGA,FUN,KEY,EPSA,EPSR,NMIN,NMAX, 

*SC,SS,N,ERR,ICON) 
WRITEC6,2) ALPHA,OMEGA,SC,SS,N,ERR,ICON 

2 FORMATC1H ,FS.1,F7.1,2E16.7,IS,E10.2,I6) 
20 CONTINUE 
10 CONTINUE 

STOP 
END 
FUNCTION FUNCX) 
COMMON ALPHA 
FUN=EXPCALPHA*X) 
RETURN 
END 

If the integrand function contains a parameter (tr in this example) as in this example, it is 

put in the COMMON region to communicate with the main program. 

(5) Note 

When the function f(x} diverges or has a sharp peak at the point x=p in the integration 

interval [a, oo}, this method should be used to approximate the integral over [pt8,oo} (8)0), 

and another method must be used for the integration of the interval [a, a+8]. 

2. If both cosine and sine integral le, Is are required for the same f (x),. the calculat ion of the 

function f(x} is commonly used. Therefore, there is an advantage that both approximate values 

can be obtained by one of the function calculations of the two Is. 

Bibliography 

1} Takemitsu Hasegawa and Tatsuo Torii; aSemi-Infinite Oscillatory Integral Based on Chebyshev 

Series Expansion, a Preprints of Working Group for Numerical Analysis, IPSJ 10-3 (1984). 

<1987.08.U} 
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DEFINS/D and IMTDES/D/Q (Automati.c numerical quadrature by double exponential 

formulas ---- finite interval) 

Automatic numerical Quadrature by Double Exponential Formulas ----Finite Interval----

Programm Yasuyo Hatano; March 1977 
ed by 

Format Subroutine language; FORTRAN Size; 264. 265. 136. and 137 lines 
respectively 

(1) Outline 

DEPINS/D and IUTDES/D/Q are automatic numerical integration routines. each of which calculates , lb definite integral a f(x)d:r with the precision within absolute error e. using 

Takahashi-Mori' s doub.le exponential formula1)2)3). when integrand f(x). lower limit a. upper 

limit b. and the required precision e are given. Especially. it can obtain a high precision 

result by a small amount of calcul~tion even if there are singular points of x-a (O<a<t ) type 

at end points in the integral interval. Note. however. that f(x) is assumed to be analytical 

except.at end points • 

. (2) Direct ions 

CALL DEPINS/D (A. B. P. S. EPS. N. ILL) 

CALL IMTDES/D/Q(A.B.F.S.EPS.N. ILL) 

Argument Type and Attribut Content 

kind (1*) e 

A. B Real type Input Upper and lower limits of a definite integral. A~B 

P Real type Input Name of integrand function. The user should prepare a 

Function corresponding function subprogram having only one integration 

subprogram variable as an argument. 

S Real type Output The value of a definite integral is generated. If ILL is 

neither 0 nor 30000. an approximate value obtained last is' 

generated. 
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Argument Type and Attribut 

EPS Real type Input 

N Integer Output 

type 

ILL Integer Output 

type 

ILL Integer Output 

type 

Content 

Positive number (e) indicating required precision. A 

standard value for single 

precision is ab~ut 10-5 and that for double precision is 

10- tO about • 

Number of actual evaluations of function. 

The situation of calculation in the routine is indicated. 

DEPINS/D: This argument is set to 0 at first in the routine. 

and the predetermined value is added to it each time the 

following conditions are met: 

(1) The required precision is automatically lowered because 

the function value increases rapidly near the lower limit of 

the interval: 1 

(2) The event of (1) occurs near the upper limit of the 

interval: 2 

(3) Convergence does not occur even if the maximum number 

of sample points available for the routine is used: 10000 

(4) A restriction on the input argument is violated: 30000 

IMTDES/D ILL=O: Normal termination. ILL=10000: Convergence 

does not occur even if the maximum number"of sample points 

available for the routine is used. ILL=30000: No calculation 

is done because a restriction on the input argument is 

violated. 

*1 Por double precision routines. real types are all assumed to be double precision real 

types. 

(3) Calculation method 
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Definite integral I=1 1
f(X)ds can be represented by I=l tn

f(q>(t))q>' (t)dt if it is 
-I ~ 

subjected to x transformation x=rp(t). 'I is then determined by applying the trapezoidal rule 

to this. The transformation formula used for DEFINS/D (2) is 

and that for IUTDES/D 3) is 

x=tanh { ~ sinh 2 (1~t -1!t) ) ,-1 ~x, t:s1 

(4) Performance 

Each of these subroutines features a less frequency of evaluation. It is efficient for such an 

integrand function that shows a smooth change or relatively gradual vibration. Especially for 

those which show singularity of x-a (0<a<1 ) at end points. it shllws a remarkable efficiency 

which is not available for any other routines. In this case. however. it may find it difficult 

to obtain precision of 10 digits or more. It is not suitable for those which have peaks at the 

center of an interval or which have a discontinuity point (see Table 1 on page 210 of 

bibliography 5». 

The following table shows the results of experi'ment of Kahaner"s 21 test problems 4). The 

reliability here indicates a ratio at which the calculated value of a definite integral actually 

satisfies the required precision. 

Required 10-3 10-6 10-9 

precision 

Name of ReI iab Average Reliab Average Reliab Average 

routine ility number of ility number of ility number of 

evaluations evaluations evaluations 

DEFIND 95% 81 90% 114 ls6% 138 

IMTDED 86 59 90 113 81 131 
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(5) Example 

c •••• EXAMPLE OF DEFINS •••• 
EXTERNAL FUN 
A=-1.0 
B=1.0 
EPS=1.0E-4 
CALL DEFINSCA,B,FUN,S,EPS,NF,ILL) 
WRITE(6,610) ILL,S,NF 

10 CONTINUE 
STOP 

610 FORMATC1H ,10X,SHILL= ,IS,3X,2HS=,E22~14,3X,2HN=,IS) 
-END 

FUNCTION FUNCX) 
P=C1.0+X)*(1.0-X) 
FUN=O.O 
IFCP.GT.O.O) FUN=1.0/SQRTCP) 
RETURN 
END 

Bibliography 

1) H. Takahashi and R Mori; »Double Exponential Formulas for Numerical Integration,» 
Bull. R.1. M. S., Kyoto Univ., 9, PP.721-741 (1974) 

2) Masatake Mori; »Curve and Curved Surface.» p.24. Kyoiku Shuppan (1974) 

3) Uasatake Mori; »IMT Type Double Exponential Integration Formulas,» Collection at the Society 
of Numerical Calculation Algorithm, Kyoto University Mathematical Analysis Laboratory (1976) 

4) D. K. Kahaner; »Comparison of Numerical Ouadrature Formulas», J. R. Rice, ed., Mathematical 
Software, Academic Press, pP.229-259 (1971) 

5) Ichizo Ninomiya and Yasuyo Hatano; »New Registration SSL Program, » Nagoya University Computer 
Center News, Vol. 8, No. 3, pp.209-263 (1971) 

(1987. 05. 29) (1987. 08. 21) 
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GASNS/D,GLBNS/D,GSCNS/D,GCSNS/D,GLGNS/D,GSLNS/D,GSHNS, ID 

(Gaussian quadrature) 

Gaussian Quadrature 

Programm Ichizo Ninomiya and Yasuyo Hatano: January 1984 

ed by 

Format Subroutine language; FORTRAN 

Size; 50, 51, 28, 29, 27, 27, 600, 600, 322. 322, 58, 60, 68, and 69 

lines respectively 

(1) Outline 

Each of these subroutines calculates a one-dimensional integral using the Gaussian quadrature 

rules. 

GASNS or GASND calculates a finite interval integral 

y=tf(X)dx 

using the Gauss-Legendre rule. 

GLBNS or GLBND calculates a finite interval integral 

y=tf(X)dx 

using the Gauss-Lobatto rule. 

GSCNS or GSCND calculates a finite interval integral 

y=Jlbf(X)dx/~(X-a)(b-x) 

using the Gauss-Chebyshev rule. 
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· 2)£ 

GCSNS or GCSND calculates a finite interval integral 

l
b 7C(2x-a-b) 

y= a I(x) cos 2 (o-a) m: 

using the Gauss-cosine rule. 

..J 

..J 

226



GLGNS or GLGND calculates a finite interval integral 

y=lbfCX) log X-Gdx 
a b-a 

using the Gauss-logarith rule. 

GSLNS or GSLND calculates a semi-infinite integral 

y= fome-%fCX)dx 

using the Gauss-Laguerre rule. 

GSHNS or GSHND calculates an infinite integral 

y= L: e-x2fC~)dx 
using the Gauss-Hermite rule. 

(2) Directions 

CALL GASNS/D (A, 8. FUN. N. Y. I CON) 

CALL GL8NS/D(A. 8. FUN,N, y, ICON) 

CALL GSCNS/D (A, 8, FUN, N, Y. I CON) 

CALL GCSNS/D(A.B, FUN,N. y, ICON) 

CALL GLGNS/D(A.8, FUN.N, y, ICON) 

CALL GSLNS/D(FUN,N. Y. ICON) 

CALL GSHNS/D(FUN.N. Y. ICON) 
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Argument Type and Attribut Content 

kind (*1) e 

A Real type Input Lower limit of definite integral. 

B Real type Input Upper limit of definite integral. 

PUN Real type Input Name of integrand f(x). Por the function as an actual 

function argument of this function, the user should prepare a function 

subprogram subprogram with only the integration variable as an argument. 

N Integer Input Number of sample points. 

type GASNS, GLBNS, GSCNS, GSLNS, GSHNS·· ·1~N~20. 

GASNO, GLBNO, GSCNO·· ·1~N~50. 

GSLNO, GSIlNO···l~N~38. 

GCSNS, GCSNO·· ·1~N~33. 

GLGNS, GLGNO·· ·1~N~17. 

y Real type Output The value of the definite integral is output. 

ICON Integer Output ICON=O: Normal termination. 

type ICON=30000: The restriction on input argument N was not 

observed. 

*1 Por double precision subroutines, all real types should be changed to double precision real 

types. 

(3) Bxample 

C***** EXAMPLE FOR GASNS **** 
EXTERNAL FUN. 
A=O.O 
B=1.0 
E=EXACTCA,B) 
DO 1000 N=1,20 
CALL CLOCKMCITA) 
CALL GASNSCA,B,FUN,N,Y,ICON) 
CALL CLOCKMCITB) 
ERR=E-Y 
IT=ITB-ITA 
WRITEC6,610) N,ICON,Y,ERR,IT 
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610 FORMAT(1H ,'~ASNS~i13~' POINTS ICON· =',I6,E25.15, 
*E10.3,I5) 

1000 CONTINUE 
2000 STOP 

END 

FUNCTION .FUN(X): 
FUN=EXP(-X) 
RETURN 
END 
FUNCTION EXACTCA,B) 
EXACT=-EXP(-B)+EXPC-A) 
RETURN 
END 

(1987.07.25) 

y;) 
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HINFAS/D/Q and HINFES/D (Numerical Quadrature by Double Bxponential Pormulas -

Semi infinite Interval -) 

Numerical Ouadrature by Double Bxponential. Por~ulas ----Semi infinite Interval-

Programm Yasuyo Hatano. May 1977 
ed by 

Pormat Subroutine Language: PORTRAN;·Size: 261. 262. 261. and 262 lines 
respectively. 

(1) Out} ine 

HINPAS/D/O and HINPBS/D are automatic integration routines for calculating the definite 

integral fo-/(X)dx over a semiinfinite interval with an absolute error of • or less using 

the double exponential function type integration formula I) of Takahashi and Mori when the 

integrand function f(x) and the required precision e are given. Bspecially HINPBS(D) uses a 

formula to be represented in the form of f(x)=g(x)e-% using a stable function g(x). Bven 

if f(x) is slow in conversion to 0 with x-+oo. a high-precis:on solution can be obtained at . 

x=Q with a singularity of about x-a (O<a< 1). 

(2) Directions 

'CALL HINPAS/D/O (P.S.BPS.N. ILL) 

CALL HINPBS/D (P. S. BPS. N. ILL) 

Argument Type and Attr Content 

kind (*1) ibut 

e 

P Real type Inpu Name of an integrand function. The user should prepare a 

Punction t subprogram for this integrand function as the one that has only 

subprogram one integration variable as an argument. 

S Real type Outp The value of a definite integral is output. If ILL is neither 0 

ut nor 30000. the last obtained approximation value is output. 
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Argument Type and AUr Content 

e 

BPS Rea I type I npu Pos i t i ve numbe~ (e) that represents a requ i red prec i s ion. 10-5 

t is adequate for single precisionr and 10-8 is .adequate for 

double precision. Retained. 

N Integer Outp Actual number of evaluations of a function. 

type ut 

ILL Integer Outp Indicates a calculation state in the routine. lhis argument is 

type ut first set to 0 in the routine. Bach time one of the following 

states is activated, a certain value is added correspondingly. 

(1) 1 when required precision is automatically lowered because 

the function value increases sharply with x~O. 

(2) 2 when required precision is automatically lowered because 

the function value is slow in convergence to 0 with X-+OO. 

(3) 10000 if the function does not converge with a maximum 

allowable number of samples of the routine are used. 

(4) 30000 when BPS<O is specified. 

*1 Por double precision routines, all real types should be double precision real types. 

(3) Calculation method 

Trapezoidal rules should be applied to the integration variable x that is converted as 

described below in the def ini te integral Lm f(x)d.r. 

x=exp ( ~sinht ), - CD:5 t:5 CD 

is used for HINPAS(D)I) , and 

x=exp { ~ (t-exp( -t)) }, - CD:5 t:ii CD 

is used for HINPBS(D) I) 
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(4) Performance 

A considerably good result is obtained even if the function value is slow in convergence to 0 

with x-+oo or an integral cannot be effectively obtained with the Gauss-Laguerre formula. 

However. it is difficult to obtain a precision of 10 digits or more {refer to Table 1 (page 210) 

of the bibliograph~». 

Bibliography 

1) Masatake Mori; »Curve and Curved Surface,» p.2t Kyoiku Shuppan (1974). 

2) Ichizo Ninomiya and Yasuyo Hatano; DNewly Registered Program SSL, D Nagoya University Computer 

Center News Vol. 8, No. 3, PP. 209-263 (1977). 

(1987. 05. 13) (1987. 08. 21) 
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INFINS/D (Numerical Ouadrature by Double Exponential Formulas -- Infinite Interval--) 

Numerical Quadrature by Double Exponential Formulas --Infinite Interval--

Programm Yasuyo Hatano. April 1977 
ed by 

Format Subroutine Language: FORTRAN; Size: 250 and 251 lines respectively. 

(1) Outl ine 

INFINS/D is an automatic integration routine for calculating the definite integral 

L:/(X)clx over an indefinite interval with an absolute error of e or less using the double 

exponential function type integration formula t) of Takahashi and Mori when the integrand 

function I(x) and the required precision e are given. A high-precision solution can be 

obtained even when I(x) is slow in convergence to 0 with x-+±oo. 

(2) Directions 

CALL I NF I NS/D (F. S. EPS. N. ILL) 

Argument Type and Attribut Content 

kind (*1) e 

F Real type Input Name of an integrand function. The user should prepare a 

Function function subprogram for this integrand function as the one 

subprogram that has only one integration variable as an argument. 

S Real type Output The value of a definite integral is output. If ILL is 

neither 0 nor 30000. the last obtained approximation value is 

output. 

EPS Real type Input Positive number ( e) that represents a requ ired precision. 

10-5 is adequate for single precision. and 10-8 is 

adequate for double precision. 

N Integer Output Actual number of evaluations of a function. 

type 
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Argument Type and Attribut Content 

ILL Integer Output Indicates a calculation state in the routine. This argument 

type is first set to 0 in the routine. Bach time one of the 

following states is activated, a certain value is added 

correspondingly. 

(1) 1 when required precision is automatically lowered 

because the function value is 

slow in convergence to 0 wi th x -+-00. 

(2) 2 when the state of (1) is activated with x-+too. 

(3) When the function does not converge even if a maximum 

allowable number of sample points of the routine are used. 

10000 

(4) 30000 when BPS<O is specified. 

*1 For double precision routines, all real types should be double precision real types. 

(3) Calculation method 

Trapezoidal rules should be applied to the integration varia~le X that is converted as 

des~ribed b~low in the definite integral l:f(X)dx l) 

x=sinh (~sinht), - CD:1iX, t =i CD 

(4) Note 

A considerably good result is obtained even if the function value is slow in convergence to 0 

with x-+±oo or an integral is not effectively obtained with the Gauss-Hermite formula. However.· 

this routine is inadequate for the function that has a peak point or oscillates violently near 

the origin (refer to Table 1 (page 210) in bibliography 2) ). 

Bibliography 

1) Masatake Mori; -Curve and Curved Surface,- p.24. Kyoiku Shuppan (1974). 

2) Ichizo Ninomiya and Yasuyo Hatano; -Newly Registered Program SSL.· Nagoya University Computer 
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MQFSRS/D (Multiple quadrature by fully symmetric rules) 

Multiple Quadrature by Pully Symmetric Rules 

Programm. Ichizo Ninomiya: April 1981 
ed by 

Format Subroutine language; PORTRAN Size; 250 lines each 

(1) Out} ine 

When the following multiple integral for n-dimensional (1:in:i50) hyperrectangle ( 

Qi:aXi:abi, i=l,···,n) is given; 

lbl 11>:2 lbn 
. dxl dx2. • ••• dxnf(Xl ,X2, ••••• ,Xn) 

QI 02 On 

MOPSRS or MOPSRD calculates its values using the 3rd. 5th. 7th. and 9th fully symmetric rules. 

MOFSRS is for single precision and MOPSRD is for double precision. 

(2) 0 i rect ions 

CALL MOFSRS/D (N. A. B. FUN. MBT, NO, S. ILL) 

Argument Type and Attribut Content 
'kind (*1) e 

N Integer Input Multiplicity of integral. l:iN~50 
type 

A Real typ~ Input Lower limit of integral domain. 
One-dimens 
ional 
array 

B Real type Input Upper limit of integral domain. 
One-dimens 
ional 
array 

PUN Real type Input Integrand function. The user must prepare the actual 
Function argument as a function subprogram that uses only integration 
subprogram variables as arguments. 
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Argument Type and Attribut Content 
kind (*1) e 

MET Integer Input One-dimensional array with two elements. MET (1) shows the 
type order of the fully symmetric rule and should be one of 3. 5. 
One-dimens 7. and 9. MET (2) is used only for 7th or 9th rule. The 
ional value is 1 or 2. having the following meanings: 
array MET (2)=1: Sample points near edges of a region are used. 

MET (2)=2: Sample points near the center of a region are 
used. 

NO Integer Input Number of equipartitions of a ~ide in the direction of each 
type coord inate axis. l:iNO(I). 1=1 •.•.• N 
One-dimens 

·ional 
array 

S Real type Output Approximate value of integral. 

ILL Integer Output ILL=O: Normal termination. I LL=K: NO (K) ~O. 
type ILL=30000: N and MET violated the limits. 

*1 For double precision subroutines. all real types should be changed to double precision real 

types. 

(3) Calculation method 

To make explanation simple. suppose a region is the product [-1,1]" of the interval [-1,1] 

. The fully symmetric rule is a nonproduct-type multiple numerical integration rule. which uses 

sample points consisting of a group of small number of non-zero coordinate elements that are 

arranged to be fully symmetric (about exchange and inversion coordinate axes) in respect to the 

origin. The weight factor by which the function value at each ~ata point is multiplied is 

determined so that the integration rule becomes accurate for a pulynomial with the highest order. 

This routine uses the third. fifth. seventh, and ninth integration rules. The fully symmetric 

rules are not so good in precision. but the increase of the number of sample points along with an 

increase of dimension n is comparatively moderat~ It can thus be applied to rather high 

dimensions. The number of sample points F is given by dimension n as follows: 

3rd: F 

5th: F 

2n + 17th: F 

2n2 + 19th: F 

4/3n(n2 + 2) + 1 

2j3n(n - 2) (n2 - 1) + 4n(2n- 1) + 1 

The table below lists the values of F when N ranges from 3 to 20. 

2)7 
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N 3 5 7 9 

3 7 19 45 77 
4 9 33 97 193 
5 11 51 181 421 
6 13 73 305 825 
7 15 99 477 1485 
8 17 129 705 2497 
9 19 163 997 3973 

10 21 201 1361 6041 
11 23 243 1805 8845 
12 25 289 ·2337 12545 
13 27 339 2965 17317 
14 29 393 3697 23353 
15 31 451 4541 30861 
16 33 513 5505 40065 
17 35 579 6597 51205 
18 37 649 7825 64537 
19 39 723 9197 80333 
20 41 801 10721 98881 

The weight factor depends on the number of dimensions n, and vibrates harder as n increases 

(this tendency is eminent as the order becomes large). Therefore, this routine is not expected 

to have good precision with fully symmetric rules. It is suitable for integration of higher 

dimensional, smooth functions with low accuracy. 

(4) Bxample 

We calculate the integral 

_1_1111 ----_11 cos (3(1-Xl)X2X3X4X5X6+.1.)dx1dX2- - -dx6 
64 -1 -1 -1 2. . 

in six-dimensional area [-1, 1J6. 

Fully symmetric rules are applied to 64 small areas produced by halving the area in the 

direction of each coordinate axis. The program and its output are as follows. 

C EXAMPLE FOR MQFSRS 
DIMENSION A(6),BC6),METC2),NDC6) 
EXTERNAL FUN 
N=6 
MET(2)=1 
EXACT=0.8585247 
DO 10 I=1,N 
NOCI)=2 
ACI)=-1.0 

10 BCI)=1.0 
WRITEC6,600) 

600 FORMATC1HO,'TEST FOR MQFSRS'II 
*1H ,'N ORDER',8X,'EXACT',7X,'RESURT' 
*,3X,'ABS ERR',3X,'REL ERR'/) 

DO 20 J=3,9,2 
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MET(1)=J. 
CALL MQFSRSCN,A,B,FUN,MET,ND,S,ILL) 
AER=S-EXACT 
RER=AER/EXACT 

20 WRITE(6,610) N,J,EXACT,S,AER,RER 
610 FORMATC1H ,I1,I6,2E13.5,2E10.2) 

STOP 
END 

FUNCTION FUNCX) 
DIMENSION X(6) 
FUN=COS(C1.0-XC1»*XCZ)*XC3)*XC4)*XC5)*X(6) 

**3.0+0.5)/64.0 
RETURN 
END 

T8ST FOR MQFSRS 

N ORD8R 8XACT 

6 3 0.858528+00 

6 5 0.858528+00 

6 7 0.858528+00 

6 9 0.858528+00 

Bibliography 

RBSURT ABS 8RR RBL 8RR 

O. 864498+00 0.608-02 0.698-02 

0.85897B+00 0.448-03 0.528-03 

0.857698+00 -0.848-03 -0.978-03 

0.858008+00 -0.528-03 -0. 61B-03 

1) J. McNamee & F. Stenger; ·Construction of Fully Symmetric Numerical Integration Formulas·, 
Numer. Uath., Bd, 10. PP.327-344 (967). 

0987.05.25) 

.: . " 239



24-0 

MQNCDS/D (Multiple Quadrature by Product of Newton-Cotes Rules (Data Input» 

Multiple Quadrature by Product of Newton-Cotes Rules (Data Input) 

Programm Ichizo Ninomiy~ April 1981 
ed by 

Format Subroutine Language: FORTRAN; Size: 60 and 61 lines respectively 

(1) Outline 

MQNCDS/D obtains the value of an n dimensional multiple integral 

l b
l l~ lbn 

dxl dx2· • • • • dxn!(Xt ,X2, ••• ,In) 
al 02 On 

using the product of Newton-Cotes rules when the value of an integrand function Jf is given as 

data on the equally spaced mesh points of an n dimensional (1 :an:a 10) hyperrectagular 

MQNCDS(D) is for single (double) precision. 

(2) Directions 

CALL MQNCDS/D (F. N. NC. NP. H. S. ILL) 

Argument Type and Attribut Content 
kind (*1) e 

F Real.type Input The values at the mesh points of an int~grand function should 
N-dimensio be input. The value of each subscript in the array 
nal array declaration of F should be exactly equal to the number of 

sample points in the corresponding direction of the 
coordinates of the hyperrectangle. 

N Integer Input Multiplicity of an integral. I~N~lO 
type 

NC Integer Input Number of divisions in each direction of coordinates. 
type I~NC (I). 1=1. •••• N 
One-dimens 
ional 
array 

NP Integer Input Number of sample points of Newton-Cotes rules used in each 
type direction of coordinates. 
One-dimens l~NP(I) ~11. 1=1. • ••• N. NC(I)·(NP(I)-l) is the number of 
ional sample points in each direction of coordinate (see 
array "Bxample"). 
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Argument Type and Attribut Content 
kind (*1) e 

H Real type Input Mesh interval in the each direction of coordinates. 
One-dimens 
ional 
array 

S Real type Output Approximate value of the integral. 

ILL Integer Output ILL=O: Normal termination. 
type ILL=K: The input argument corresponding to the K-th direotion 

exceeded the limits. 
ILL=30000: N~O or N>lO. 

*1 For double precision subroutines, all real types should be changed to double precision 

real. types. 

(3) Example 

A 2-dimensional square region O=aXI =a 1 ,O~X2=a 1 is divided into 20 parts in each axial 

direction, and the value of a function leXt ,x2)=e%2 sin Xl is given to each mesh point as 

data. Then, the integral 

folfolf(XI.X2)d.r I<ir2 

is found by this subroutine. 

The subinterval in each axial direction is divided into two or four and Newton-Cotes ll-point or 

6-point rules are used correspondingly. The program and its output are as follows: 

00010 C 
00020 
00040 
00050 
00060 
00065 
00070 
00080 
00090 
00095 
00098 

·00100 
00110 
00120 
00130 
00140 
00150 
00160 
00180 

*** EXAMPLE FOR MQNCDS *** 
GENERIC 
DIMENSION NC(2),NP(2),H(2),AC21,21) 
H(1)=0.05 
H(2)=0.05 
WRITEC6,620) 
DO 20 1=1,21 
F=SINCFLOATCI-1)/20.EO) 
DO 20 J=1,21 

20 ACI,J)=EXPCFLOATCJ-1)/20.EO)*F 
T=C1.-COSC1.EO»*CEXPC1.EO)-1.) 
DO 30 11=2,4,2 
NC(1)=11 
NP(1)=20/11+1 
DO 30 12=2,4,2 
NC(2)=12 
NP(2)=20/I2+1 
CALL MQNCDSCA,2,NC,NP,H,S,ILL) 
E=S-T 

2f( 
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2t2-

00187 
00190 
00200 
00210 
00220 
00230 

620 

610 
30 

ILL 
220 
240 
420 
440 

(4) Note 

FORMAT(9X,4H ILL,7X,1HS,14X,1HT,14X,1HE) 
WRITi(6,610) I1,I2,ILL,S,T,E 
FORMAT(3I4,3E15.5) 
CONTINUE, 
STOP 
END 

S T E 
0.78989E+00 0.78989E+00 -0.23842E-05 
0.78989E+00 O.78989E+00 -O.30398E-05 
0.78989E+00 O.78989E+00 -0.30398E-05 
0.78989E+OO 0.78989E+00 -0.30398E-05 

The formulas of up to 11 sample points are prepared. However, it is generally better to divide 

each side into several equal parts (by increasing the value of Ne) and use the formulas with 

relatively small number of sample points, rather than the formulas with unnecessarily large 

number of sample points. 

(1987.08.08) 

..; 

,.J 
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MQPR R S I D OtuItiple Quadrature by Product Rules) 

Multiple Quadrature by Product Rules 

Programm Ichizo Ninomiy~ March 1979 
ed by 

Format Subroutine Language: PORTRAN; Size: 79 and 80 lines respectively. 

(1) Outline 

MQPRRS/D calculates the value of the 11 dimensional multiple definite integral 

Lbl L~ Lbn 
Wt(Xt)dxl W2(X2)dx2··· tlJn(xn)d:r:n·!(Xt, X2, ••• , Xn) 

al 02 On 

using product formulas of various one-dimensional rules when dimensions 11(1 :i11:i 10). lower 

limits al,··· ,a2, ••• ,an. upper limits ht, h2, ••• , hn• and an integrand function 

!(Xt, X2, ••• , Xn) are given. 

The following are available as one-dimensional integration rules. 

(1) Newton-Cotes rule (w(x) =1) 

(2) Gauss-Lobatto rule (w(x) =1) 

(3) Gauss-Legendre rule (w(x) =1) 

(4) Gauss-Laguerre rule (w(x) =e-%, a=O, b=m) 

(5) Gauss-Hermite rule (w(x) =e-x2
, a=-m, h=m)· 

(2) Directions 

CALL MQPRRS/D (N. A. B. FUN. MET. NPT. NDV. S. P. W. ISW. ILL) 

Argument Type and Attribut Content 
kind (*1) .e 

N Integer Input Multiplicity of an integral. 
type 

I~N~10 

A Real. type Input Indicates the lower limit of an integral domain. Elements 
One-dimens corresponding to infinite integral rules are arbitrary. 
ional 
array 

211-3 
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Argument Type and Attribut 

B 

FUN 

MBT 

NPT 

NDV 

S 

P 

ISW 

ILL 

kind (*1) e 

Real type Input 
One-dimens 
ional 
array 

Real type Input 
Function 
subprogram 

Integer 
type 
One-dimens 
ional 
array 

Input 

Integer Input 
type 
One-dimens 
ional 
array 

Integer Input 
type 
One-dimens 
ional 
array 

Real type Output 

Real type Work 
One-dimens area 
ional 
array 

Real type Work 
One-dimens area 
ional 
array 

Integer 
type 

Integer 
type 

Input 

Output 

Content 

Indicates the upper limit of an integral domain. Elements 
corresP9nding to infinite integral rules are arbitrary. 

Integrand function. A function as an actual argument for 
this integrand function should be prepared as a function 
subprogram with integration variables only. 

Represents the integration method used 
the coordinate axes. 

MET=! 'Newton-Cotes rule 
MET;2 Gauss-Lobatto rule 
MET=3 Gauss-Legendre rule 
MET=4 Gauss-Laguerre rule 
MET=5 Gauss-Hermite rule 

in each direction of 

Represents the number of sample points of the integration 
method used in each direction of the coordinate axes. 
!~NPT(I) ~20 However, assume !~NPT(I) ~11 for 
Newton-Cotes rule. 

Number of equipartitions of a side in each direction of the 
coordinate axes. 1~NDV (I) 
Blements corresponding to infinite integral rules are 
arbitrary. 

Approximate value of the integral. 

One~dimensional array of a size larger than the total number 
of data points (number of data points times number of 
divisions) in each direction of the coordinate axes. 

Work area of the same size as ~ 

If ISW=O, sample points and weights are calculated. If 
ISW~O, calculation of sample points and weights is omitted, 
and those of previous call are reused. 

ILL=O: Normal termination. 
ILL=30000: Limits on N are e~ceeded. 
ILL=K: The argument concerning the direction of the K-th axis 
exceeded the limits. 

*1 For double precision subroutines, all real types should be changed to double precision 

real types. 

(3) Example 
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~ 

~ 

The value of the triple integral 

t
llJ e-Xdxl1~y r1

dz .x2sin(q+Y)/(1+i2) Jo -1 Jo 

is obtained changing the value of the a~xiliary variable q. Gauss-Laguerre lO-point rules are 

used in the X direction. Newton-Cotes 3-point rules (Simpson rule) are used in the y dired:ion. 

and Gauss-Legendre 5-point rules are used in the ~ direction. 

Further. the interval [-1. 1] ·is equally divided into 10 parts in the y direction. and the 

interval [0. 1] is equally divided into two parts in the z direction. 

C 
1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 10 
22 610 

23 
24 

1 
2 
3 
4 
5 
6 

MAIN PROGRAM 
DIMENSION A(3),B(3),MET(3),NPT(3),NDV(3),P(100), 

*W(100) 
EXTERNAL FUN 
COMMON Q 
N=3 
A(2)=-1.0 
B(2)=1.0 
A(3)=0.0 
B(3)=1.0 
MET(1)=4 
MET(2)=1 
MET(3)=2 
NPT(1)=10 
NPT(2)=3 
NPT(3)=5 
NDV(2)=10 
NDV(3)=2 
DO 10 IQ=1,50 
Q=FLOAT(IQ)/10.0 
ISW=1Q-1 
CALL MQPRRS(N,A,B,FUN,MET,NPT,NDV,S,P,W,ISW,ICON) 
WRITE(6,610) Q,S,ICON 
FORMAT(lH ,3HQ =,F5.1,2X,3HS =,E13.5,2X,6HICON =, 

* 16) 
STOP 
END 

FUNCTION FUN(X) 
COMMON Q 
DIMENSION X(3) 
FUN=X(1)**2*SIN(X(2)+Q)/(X(3)**2+1.0) 
RETURN 
END 

If the integrand function contains an auxiliary variable as in this example (Q in this 

example). it is put in the common area for communication between the main program and integrand 

function subprogram. If the same integration formula is repeatedly used in the same region as in 

this example. it is better to use the ISW function and omit the calculation of sample points 

2.¥S-
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weights after the first call. 

(4.) Note 

1 The name of the integrand function subprogram must be defined in the EXTERNAL declaration in 

the calling program. 

2. Because ~ B. and NDV are arbitrary in the Gauss-Laguerre and Gauss-Hermite rules. the 

corresponding elements need not be defined. 

3. Up to 11 sample points are prepared for Newton-Cotes rule. and up to 20 sample points are 

prepared for other rules. However. it is generally better to divide the interval into a number 

of equal parts and use in each subinterval ttie formula with relatively small number of sample 

points rather than the formula with unnecessarily' large number of sample points. 

( This subroutine calls the following slave subroutines to obtain sample points and weights. 

(1) Newton-Cotes rule (TNCOTS/D) . 
(2) Gauss-Lobatto rule (TGLOBS/D) 

(3) Gauss-Legendre rule (TGLEGS/D) 

(4) Gauss-Laguerre rule (TGLAGS/D) 

(5) Gauss-Hermite rule (TGHERS/D) 

<1987. 05. 07) 
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QDAPBS/D (A Quadrature of Interpolatory Type Increasing the Sample Points with Arithmetic 

Progression) 

A Ouadrature of Interpolatory Type Increasing the Sample Points with Arithmetic Progression 

Programm Takemitsu Hasegawa. April 1977 
ed by 

Format Subroutine Language: FORTRAN; Size: 142 and 302 lines respectively. 

(1) Out line 

OOAPBS/O is an automatic integration routine for calculating the definite integral 

Lb f (x)dx with the highest precision that can be obta i ned with a computer when the integrand 

function I(x) and the lower and upper ends a and b of the integration interval are given. 

In this routine. the number of sample points is increased by arithmetical progression (in units 

of eight points). Therefore. it rarely wastes the samples. and is efficient. Also. it is high 

in precision for smooth integrand functions. 

(2) Directions 

CALL QDAPBS/D(A.B,F,S,EPS,N. ILL} 

Argum~nt Type and Attribut Content 
kind (*1) e 

A Real type Input Lower end of integration interval. 

B Real type Input Upper end of integration interval. 

p Real type Input Name of an integrand function. User should prepare a 
. Function function subprogram with one integral variable only . 
subprogram 

S Real type Output The approximate value of a definite integral is output. If 
ILL=10000, the last obtained approximate value is output. 

EPS Real type Output Estimation of errors of the approximate integral S. 

N Integer Input/ou The lower limit of the number of sample points is assumed to 
type tput be the input. The number of samples actually used is output. 

N=16(ODAPBS) or N=32(ODAPBD) should be used as the input. 
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Argument Type and Attribut Content 
kind (*1) e 

ILL Integer Output ILL=O: Normal termination. 
type ILL=10000: When the approximate integral does not converge 

even if 200 sample points (QDAPBS) or 512 sample points 
(QDAPBD) are used. 

ILL=30000: B~A. 

*1 Por double precision subroutines. all real types should be changed to double precision real 

types. 

(3) Calculation method 

The integration interval [~ B] is converted into [-1. 1]. and sequence of interpolation 

formulas are prepared and integrated by progressively adding a set of eight sample points at a 

time that is a subset of a sequence of Chebysheve distribution in the interval [-1. 1]. 

Bibliography 

1) Ichizo Ninomiya and Yasuyo Hatano; -Newly Registered Program SSL. - Nagoya University Computer 

Center News. Vol. 8. No. 3. pp.209-263 (1977). 

2) Tatsuo Torii. Takemitsu Hasegaw~. and Ichizo Ninomiya; -Interpolatory Automatic Integration 

Method That Increases the Number of Samples by Arithmetic Progression. - Information Processing. 

Vo 1. 19. No. 3. PP. 248-255 (1978). 

(1987. 05. 07) (1987. 08. 08) 
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ROMBG SI D (Romberg Quadrature) 

Romberg Quadrature 

Programm Ichizo Ninomiya. April 1977 
ed by 

Format Subroutine Language: FORTRAN; Size: 30 and 31 lines respectively 

(1) Outline 

ROMBGS/D is an automatic integration routine based on classic Romberg quadrature. It 
. b 

calculates the definite integral L I(x)dx with the precision '. when the lower and upper 

ends a and b of the integration interval. integrand function f(x). and convergence 

er iter i on e are given . 

..... 

(2) Directions 

CALL ROMBGS/D (A, B. F. s. BPS.ILL) 

Argument Type and Attr ibut Content 
kind (*1) e 

A Real type Input Lower end of an integration interval. 

B Real type Input Upper end of an integration interval. 

F Real type Input Name of an integrand function. A function as an actual 
Function argument for this integrand function should be prepared as a . subprogram function subprogram with a single integration variable only. 

S Real type Output The value of a definite integral is entered. If ILL=1. the 
last obtained approximate value is contained. 

BPS Real type Input Convergence criterion. If the absolute value of the 
difference between two consecutive approximate values becomes 
smaller than BPS, it is assumed that convergence has been 
attained. BPS>O 

ILL Integer Output ILL=O: Normal termination. 
type ILL=30000: BPS~O 

ILL=I: When convergence is not attained even if the 
integration interval is divided into 8192 parts in ROMBGS, 
and 16384 parts in ROMBGD. 

*1 For double precision subroutines, all real types should be changed to double precision 

real types. 

249



(3) Example 

Let 

Jo(x)=lr fott COS (x sin B)dB 

be an example of integration of a function containing an auxiliary variable. 

The following program obtains JO(x) changing the auxil iary var iable x from 0.1 to 5.0 in 

steps of O. 1. 

C MAIN PROGRAM 
COMMON X 
EXTERNAL BES 
PI=3.141593 
x=o.o 
DO 1 J=1, 50 
X=X+O.1 
CALL ROMBGS(0.0,PI,BES,S,1.0E-6,ILL) 
B=S/PI . . 

1 CONTINUE 

END 

C FUNCTION SUBPROGRAM FOR INTEGRAND 
FUNCTION BES(THETA) 
COMMON X 
BES=COS(X*SIN(THETA» 
RETURN 
END 

(4) Note 

This routine is adequate only when the integrand function is well behaved. If the integrand 

function varies sharply. other routines such as adaptive automatic integration routines should be 

used. 

(1987.08. 11> 
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TNCOTS/D/Q,TGLEGS/D/Q,TGLAGS/D/Q, 

TGCHBS/D/Q,TGHERS/D/Q,TGLOBS/D/Q 

(Tables of weights and sample points for quadrature formulas) 

Tables of Weights and Sample Points for Quadrature Formulas 

Programm Ichizo Ninomiya and Yasuyo Hatano : January 19'84 

ed by 

Format Subroutine language; FORTRAN 

Size; 31. 32. 32. 35. 36. 36. 36. 37. 37. 45. 46. 46. 41. 42. and 42 

lines respectively 

(1) Out line 

Each of these subroutines calculates the tables of weights and sample points for a quadrature 

formula. 

1. TNCOTS. TNCOTD. or TNCOTQ calculates the sample point xk and weight Wk for the Newton-Cotes 

rule 

2. TGLEGS. TGLEGD., or TGLEGQ calculates the sample point xk and weight Wk for ,the Gauss-Legendre 

rule 

3. TGLAGS. TGLAGD. or'TGLAGQ calculates the sample point xk and weight Wk for the Gauss-Laguerre 

rule 
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2S2 

rme~f(x)dX=i:Wkf(Xk)+En Jo kal· 

4. TGCHBS. TGCHBO. or TGCIIBQ calculates the sample point xk and weight Wk for the 

Gauss-Chebyshev rule 

1
1 n 

f(x)dx/~l-x2=~Wkf(Xk)+En 
-I kcl 

..j 

5. TGHBRS. TGHBRD. or TGHBRQ calculates the sample point xk and weight Wk for the Gauss-Hermite 

rule 

Ime~f(X)dx=~Wkf(Xk)+E~ 
-m kcl 

~ 
6. TGLOBS or TGLOBD calculates the sample point xk and weight Wk for the Gauss-Lobatto rule 

1
1 ~I 

f(X)dX=Wlf(-l)+~Wkf(Xk)+WnF(l)+En 
-I kc2 

(2) Directions 

CALL TNCOTS/D/Q(N. X.W. BPS. ICON) 
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Argument 

N 

X 

W 

BPS 

CALL TGLEGS/D/Q(N. X.W. EPS. ICON) 

CALL TGLAGS/D/Q(N. X.W. EPS. ICON) 

CALL TGCHBS/D/Q(N. X.W. EPS. ICON) 

CALL TGHERS/D/Q(N.X.W.BPS. ICON) 

CALL TGLOBS/D/Q(N. X.W. BPS. ICON) 

Type and Attribut Content 

kind (*1) e 

Integer Input Number of sample points n. 

type TNCOTS/D/O"·2~N~11 

TGLEGS/D/O·· ·2~N~37. 

TGLAGS/D/O·· ·1~N~39 . 
. 

TGCHBS/D/O·· ·1~N~50. 

TGIIERS/D/O·· ·1:iN~40. 

TGLOBS/D/O·· ·1~N~20. 

Real type Output Size N. The table of sample points xk is output 

One-dimens (k=1.2 ••••• nL 

ional 

array 

Real type Output Size N. The table of weights wk is output (k=1.2.···. nL . 

One-dimens 

ional 

array 

Real type Input Convergence criterion in the Newton method for calculating 

sample points xk (for instance. the zero point of Legendre 

polynomial Pn(x) for TGLBGS). 

2SJ 
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2S,! 

Argument Type and Attribut Content 

kind (*1) e 

ICON Integer Output ICON=O: Normal termination. 

type ICON=10000: EPS was too small. so it was raised as follows: 

Single precision ••• 10-6 

Double precision ••• 10-15 

Quadruple precision ••• 10-32 • 

ICON=30000: The restriction on input argument N was not 

observed. 

*1 Por double or quadruple precision subroutines. all real types should be changed to double or 

quadruple real types. 

Bibliography 

I} Yamauchi. Uno. and Hitotsumatsu; ~Numerical analysis method III for computers~. Baifukan. 

p.279 (1971). 

(1987.07.25) 
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TRAPZS/D (Numerical Quadrature by Trapezoidal Rule - Infinite Interval -) 

Numerical Quadrature by Trapezoidal Rule ----Infinite Interval-

Programm Yasuyo Hatano. April 1977 
ed by 

Format Subroutine Language: FORTRAN;' Size: 81 and 82 I ines respectively. 

(1) Out} ine 

TRAPZS/D is an automatic integration routine for calculating the definite integral 

L:f(X)dx with an absolute error of • or ;ess according to trapezoidal rules when the 

integrand function lex) and the required precision e are given. It is effective when 

lex) is fast in convergence to 0 with x-+±oo. 

(2) Direct ions 

CALL TRAPZS/D (P. S. H, EPS. N. MAXF. ILL) 

Argument Type and Attribut 

kind (*1) e 

F Real type Input 

Function 

subprogram 

S Real type Output 

H Real type Input/ou 

tput 

EPS Real type Input 

Content 

Name of an integrand function. The user should prepare a 

function subprogram for this integrand function as the one 

that has only one integration variable as an argument. 

Definite integral values are output. If ILL is neither 0 nor 

3000. the last obtained approximation value is output. 

An initial value of the step size is assumed to be the input. 

The input is decreased 50~ by 50% during the calculation, 

and the value of the step size at the final stage is output. 

H>O 

Positive number (s) that represents a required precision. 

10-5 is minimum with single precision, and 10-J5 is 

minimum with double precision. 
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Argument Type and Attribut Content 

kind (*1) e 

N Integer 

type 

Output Actual number of evaluations of a function. 

MAXF 

ILL 

Integer 

type 

Integer 

type 

Input 

Output 

Upper limit of the number of evaluations of a function. 

5~MAXF 

Indicates a calculation state in the routine. This argument 

is first set to 0 in the routine. Each time one of the 

following states is activated, a certain value is added 

correspondingly. 

(1) 1 when required precision is automatically increased 

because the function value is 

slow in convergence to 0 with X-+-OO, and the required 

precision cannot be obtained within MAXF. 

(2) 2 when the state of (l) is activated with x--t+oo. 

(3) 10000 when the function does not converge even with 

N<MAXF. 

(4) 30000 when limits on the input argument are exceeded. 

*1 For double precision subroutines, all-real types should be double precision real types. 

(3) Performance 

This routine is effective even When a solution is not well obtained with Gauss-Hermite or double 

exponential function type formulas if f(x) is fast in convergence to 0 with x--.±oo (refer to 

Table 1 (p.210) of bibliography I». 

(4) Note 

If this routine terminates with ILL=l or 2, the initial value H of the step size should be 

increased. 

Bibliography 
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1) Ichizo Ninomiya and Yasuyo Hatano; "Newly Registered-Program SSL." Nagoya University Computer 

Center News. Vo 1. 8. No. 3, PP. 209-263 (1977). 

(1987. 08. 11) (1987. 08. 21> 
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2si 
ODEBSS/D/Q (Solution of initial value problems for systems of first order differential 

equations by the rational extrapolation method) 

Solution of Initial Value Problems for Systems of First Order Differential Equations by the 

Rational Extrapolation Method 

Programm Ichizo Ninomiya: April 1980 
ed by 

Format Subroutine language; FORTRAN Size; 146 and 147 lines respectively 
------

(1) Out line 

~ When system of Tt first order differential equations 

Y' i = f i (x , Y It Y2, •• • , Yn) , i = 1 ,2, .• • , Tt, 

initial condition Yi (XO)=l1i' i=l ,2, ... ,Tt, 

initial value ho of the step size of independent variable X, the number of integration steps m 

, and target value xe of an independent variable are given, ODHBSS, ODHBSSD, or ODEBSQ outputs 

a solution and derivative Yi(Xf),Y·i(Xf),i=1,2,···,Tt at output point xf=miTt(x.,xeJ and 

which is the value of the differential coefficient. To do this, the subroutine uses an automatic 

step size control algorithm based on the Bulirsh-Stoer rationai extrapolation method. Here X. 

is the value of the independent variable that is reached after m steps of integral calculation 

from initial values Xo, ho. 

~ 
(2) Directions 

CALL ODHBSS/D/Q (X, H, Y. N. DY. EPS. DI FFUN. NSTEP. XENO, ERR, NFUN. I NO) 

Argument Type and Attrib Content 
kind (*1) ute 

X Real type Input/ When initial value xo of independent variable is input. final 
output value xf is output. 

H Real type Input/ When initial value ho o f the 
output step size is input. step size h adequate for further 

integrat ion from xf is output. 
--
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Argument Type and Attrib Content 
kind (*1) ute 

Y Real type Input/ When the initial value of the solution is input. the value of 
One-dimens output the .solution in xI is output. One-dimensional array of size 

N 

DY 

ional N. 
array 

Integer 
type 

Real type 
One-dimens 
ional 
array 

Input Number of unknowns n of equation. O<N~1000 

Output The derivative of the solution in xI is output. 
One-dimensional array of size N. 

EPS Real type Input Error tolerance of solution. 

DIFFUN 

NSTEP 

Subroutine Input Subroutine to calculate derivatives as functions of X and Y. 
name The user should prepare this subroutine in a form of DIFFUN 

(X. Y. DY). 

Integer 
type 

Input Num b e r 0 fin t e g rat ion s t e p s m . 
NSTEP~O is handled as if m=oo and always causes xf=xe• 

XEND Real type Input Target value Xe of independent variable. (XEND-X)*H>O must 

ERR 

NFUN 

·IND 

Real type 
One-dimens 
ional 
array 

Integer 
type 

Integer 
type 

Output 

Input/ 
output 

be sat isf ied. 

Estimate value of absolute truncation error of each element of 
solution at final step. 

Input: When this routine is called for the first time or there 
is a discontinuous change in the equation. NFUN should be O. 

To calculate only the final step again. NFUN<O should be 
input. 
Output: The total number of times the derivative have been 
calculated after NFUN~O is output. 

Input/ Input: When IND=O. the rational extrapolatign method is used. 
output When INDiFO. the polynomial extrapolation method is 

used. 
Output: IND=O: Normal termination. 

IND=10000: Required accuracy could not be obtained 
after the process was repeated six times with the step size 
halved. 

IND=30000: Argument error. 
A value other t~an the above shows the total number of times 

the process has been repeated because it failed to obtain 
required accuracy when called. 

*1 For double precision subroutines. all real types should be changed to double precision real 

types. 

(3) Calculation method 
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Refer to paper in bibliography I). 

(4) Example 

The program shown below solves initial value problem 

{
Y·I=Yt/(2(x+l) )-2xY2, 
Y· 2=Y2/ (2(x+ 1) ) -2xYt , {

Yl (0)=1 
Y2(O) =0 

The exact solution is shown as follows. 

{
YI=,jX+l cosx2 
Y2=,jx+l si~ 

C TEST FOR ODEBSD 

C 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION Y(2),DY(2),ERR(2),Z(2) 
EXTERNAL RHS 
X=O.DO 
H=O.lDO 
Y(l)=l.DO 
Y(2)=0.DO 
N=2 
EPS=1.D-7 
NS=O 
NF=O 
XE=2.5DO 
IND=O 
CALL ODEBSD(X,H,Y,N,DY,EPS,RHS,NS,XE,ERR,NF,IND) 
XX=X*X 
S=DSQRT(X+1.DO) 
Z(l)=DCOS(XX)*S 
Z(2)=DSIN(XX)*S 
WRITE(6,600) H,X,(Y(J),Z(J),ERR(J),J=1,2),NF,IND 

600 FORMAT(lH ,2D13.5,2(2D15.7,D11.3),2I8) 
STOP 
END 

C SUBROUTINE ·FOR DERIVATIVES 

(5) Notes 

SUBROUTINE RHS(X,Y,DY) 
IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION Y(2),DYC2) 
DY(1)=YC1)*0.5DO/CX+1.DO)-YC2)*X*2.DO 
DY(2)=YC2)*0.5DO/CX+1.DO)+Y(1)*X*2.DO 
RETURN 
END 

1. These routines are used in the following two major ways: 

(1) Only the solution with a target value is output. To do this, the target v~lue should be 

put in XBND and NSTEP should be set to 0 as shown in the above example. 

(2) Results on the way to the target value are output. These two methods can be used for it: 

26/ 
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(a) The routine is called ,repeatedly with the target value kept in XBND and with relatively 

small positive values put in NSTBP. In this case. when the routine returns from the subroutine. 

the value of X is irregular because of automatic step size control. 

(b) Output points are set appropriately (in equal intervals for instance) until the target 

value is reached. The routine is called repeatedly while these output points are put in XEND one 

by one. This has an advantage that output is obtained at regular points. If. however. output 

points are set too often. the step size is forcibly changed each time the routine escapes at an 

output point. This may deteriorate the original function of automatic step size control. 

2. What can be controlled with BPS and estimated with ERR is a local truncation error and not 

a true error. 

3. If EPS is 1 or less. it means an absolute error for each component of the solution. If it 

exceeds 1. it means an error relative to the maximum value. 

( Note the way of input of NFUN. 

5. If IND indicates a value other than O. 10000. and 30000. the value of the solution is not 

necessarily inaccurate. 

6. The RKF4AS. RKF4AD. RKM4AS. and RKM4AD routines are very similar to these routines. Select 

the most appropriate one to your purpose. 

Bibliography 

1) ~ Bulirsch and J. Stoer; DNumerical Treatment of Ordinary Differential Equations by 
BxtrapolationD• Numer. Math •• Vol. 8. pp.l-l3 (1966). 

(1987.06.29) (1987.08.21) 
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RK4S/D/Q/C/B 

(Solution of initial value problems of systems of ordinary differential equations of the first 

order by the classic Runge-Kutta method of the fourth order) 

Solution of Initial Value Problems of Systems of Ordinary Differential .Equations 

';r', of The First Order by The Classic Runge-Kutta Method of The Fourth Order 

Programm Ichizo Ninomiya; March 1919 
ed by 

Format Subroutine language; FORTRAN Size; 21. 28. 28. 28. and 29 lines 
respectively 

~ (1) Out line 

When systems of n ordinary differential equations of the first order 

Y·i=!i(x,Yt,Y2,···,Yn),i=l,2,···,n. initial condition Yi(XO)=l1i, i=1,2,···,n. 

step size h of independent variable x. and number of steps of integration III are given. this 

routine calculates numerical solution Yi(Xr), i=l ,2, . ··n for 

Xr=xo+rh, r=l ,2, · .. ,Ill 

using the classic Runge-Kutta method of the fourth order. then outputs 

Yi (x.) ,y. i (x.) , i=l ,2, .. ·n 

~/ 

(2) Direct ions 

CALL RK4S/D/Q/C/B(X.H, Y,N.DY.DIFFUN,NSTEP.NFUN, ILL) 

Argument Type and Attrib Content 
kind (*) ute 

X** Real type Input/ When initial value xo of independent variable x is input, 
output value x.=XO+mh after III number of steps is output. 

I 
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Argument Type and Attrib Content 
kind (*) ute 

Ou Real type Input Step size h of independent variable. 0#=0. 0<0 is also 
acceptable. 

y* Real type Input/ When the initial value of the solution is input, the value of 
One-dimens output the solution for x=x. is output. 
ional One-dimensional array of size N. 
array 

N Integer Input Number of unknowns of equation. N>O. 
type 

DY* Real type Output The values of the derivatives of the solution in X=X. are 
One-dimens stored in the first N components. One-dimensional array with 
ional the size of 3N. 
array 

DIFFUN Subroutine Input Subroutine to calculate derivatives as functions of X and Y. 
name The user should prepare this subroutine in the form of 

01 FFUN (X, y, DY). 

NSTEP Integer Input Number of steps of integration m. m~l 
type 

NFUN Integer Input/ NFUN must be set to 0 when this routine is called for the first 
type output time. Thereafter, the total number of times the derivatives 

subroutine has been called is output to this argument 

ILL Integer Output ILL=O: Normal termination. ILL=30000: N~O, NSTEP~O or 
type 0=0. O. 

* For RK4D (RK4~ RK4C, RK4B) , Y and DY should be changed to double precision real type 
(quadruple precision. real type, complex type, double precision complex type). . 
u For RK4D (RK4~ RK4C, RK4B) , X and 0 should be changed to double precision real type 
(quadruple precision"real type, real type, double precision real type). 

(3) Example 

Suppose we solve linear equations 

{
Y· t=-Y2 
Y·2=YI-y2Ix 

that are obtained by variable transformation Yt=Y,Y2=-Y· from Bessel's differential equations 

y»+y. /x+y=O of the Oth order, under the initial condition Yt (0)=1,112(0)=0. The exact 

solution is YJ=JO(x) ,Y2=J J (x) . 

The program prints intermediate results and errors every five steps with step size h of x 0.1. 

It thus integrates 50 steps. 

DIMENSION Y(2),DY(6),E(2) 
EXTERNAL BES 
N=2 
x=o.o 
H=O.1 

~ 

~ 
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C 

Y(1)=1.0 
Y(2)=0.0 
NFUN=O 
NSTEP=5 
WRITEC6,600) X,Y 
DO 10 1=1,10 . 
CALL RK4SCX,H,Y,N,DY,BES,NSTEP,NFUN,ILL) 
E(1)=YC1)-BJOCX) 
E(2)=Y(2)-BJ1(X) 

10 WRITEC6,600) X,Y,E 
600 FO~MATC1H ,10X,F5.1,2E15.7,2E11.3) 

STOP 
END 

SUBROUTINE BESCX,Y,DY) 
DIMENSION Y(2),DYC6) 
DY(1)=-YC2) 
IFCABS(X).LT.1.0E-2) DY(2)=0.5-X*X*0.1875 
IFCABS(X).GE.1.0E-2) DY(2)=Y(1)-Y(2)/X 
RETURN 
END 

(4) Notes 

1. The name of the subroutine for derivative must be declared in the EXTERNAL statement in the 

ca 11 i ng program. 

2. When this routine is called for the first time or when it is called at the point where the 

values of the derivative change discontinuously. NFUN must be set to O. Because NFUN is used for 

both input and output. do not place a constant in this argument. 

3. The local truncation error of the Runge-Kutta method of the fourth order is given by £l=odl5 . 

for step size h. One cannot say anything definitely about the value of tr because it depends 

on the equations. But. it can be considered about 1 when solutions change slowly. When 

selecting a value for h. consider this factor together with th~ length of integration interval. 

In the above example. for instance. h should be about 0.1 to obtain solutions in 4 or 5 digit 

precision. If it is set to 0.01. not only a truncation error becomes too small (even smaller 

than the minimum unit of rounding error in single precision). but also the number of integrations 

increases. This makes rounding errors larger and causes poor results. 

( This subroutine is useful when solutions change gradually and step size h need not be 

changed. When solutions change violently and there is a difficulty to select step sizes. 

RKF4AS/D. RKM4AS/D. or ODEBSS/D having the function of automatic step size control should be 

used. 

(87. 06. 29) 
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RKF4AS/D 

(Solution of initial value problems of systems of first order differential equations by the 

Runge-Kutta-Pehlberg fourth order method) 

Solution of Initial Value Problems for Systems of Pirst Order Differential Equations by 

the Runge-Kutta-Pehlberg Pourth Order Method 

Programm Ichizo Ninomiya; April 1980 
ed by 

Pormat Subroutine language; PORTRAN Size; 77 and.78 lines respectively 
-------

(1) Out} ine ...) 

When a system of lt first order differential equations 

Y' i=/i(X,YltY2,··· ,Yn), i=l ,2,··· ,It, 

initial condition Yi(XO)=l1i,i=l ,2,··· ,It, 

initial value ho for the step size of independent variable x, the number of steps of 

integration Ill, target value Xe of the independent variable are given, RKP4AS/D uses the 

automatic step size control algorithm based on the combination of the Runge-Kutta-Pehlberg fourth 

and fifth order methods and outputs the solution at the output point xf=milt(x.,xe) and the 

differential coefficient value Yi(Xf) ,y' i(Xf) ,i=l ,2,··· ,It. Where, X. is the independent 

variable variable obtained after integral calculation of m steps from initial values Xo, ho. 

~ 

(2) Direct ions 

CALL RKP4AS/D(X, H. Y. N. DY. EPS. DIPPUN. NSTEP. XEND. ERR. NFUN.ILL) 

Argument Type and Attrib Content 
kind (*1) ute 

X Real type Input/ When initial value xo of an independent variable is input. 
output final value xf is output. 

H Real type Input/ When initial value ho of a step size is input. proper step 
output size h for further integration from xf is output. 

Y Real type Input/ When the initial value of a solution is input. the value of th~ 
One-dimens output solut ion in xf is output. One-dimensional array of size N 
ional 
array 
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is shown below. 

The theoretical solution is as follows: 

{Yt=~X+l cos ~ 
Y2=~x+l sin~ 

C TEST FOR RKF4AD 

C 

IMPLICIT REAL*8 (A-H,D-Z) 
DIMENSION Y(2),DY(12),ERR(2),Z(2) 
EXTERNAL RHS 
X=O.DO 
H=0.1DO 
Y(1)=1.DO 
Y(2)=0.DO 
N=2 
EPS=1.D-7 
NS=O 
NF=O 
XE=2.5DO 
CALL RKF4AD(X,H,Y,N,DY,EPS,RHS,NS,XE,ERR,NF,ILL) 
XX=X*X 
S=DSQRT(X+1.DO) 
Z(1)=DCOS(XX)*S 
Z(2)=DSIN(XX)*S 
WRITE(6,600) H,X,(Y(J),Z(J),ERR(J),J=1,2),NF,ILL 

600 FDRMAT(1H ,2D13.5,2(2015.7,011.3),2I8) 
STOP 
END 

C SUBROUTINE FOR DERIVATIVES 

(5) Notes 

SUBROUTINE RHS(X,Y,DY) 
IMPLICIT REAL*8 (A-H,D-Z) 
DIMENSION Y(2),DY(2) 
DY(1)=Y(1)*0.5DO/(X+1.DO)-Y(2)*X*2.DO 
DY(2)=Y(2)*0.5DO/(X+1.DO)+Y(1)*X*2.00 
RETURN 
END 

1. This routine"is used in two major objectives below: 

(1) To output only the solution for an target value. To do this, specify the target value in 

XEND as in the exampl~ then specify NSTEP=O. 

(2) To output intermediate results until the target value is reached. There are two methods 

for this. 

(a) While keeping the target value in XEND, put a comparatively small, positive value in 

NSTEP and repeat calling the subroutine. In this case, the values of X obtained after returning 

from the subroutine are irregular because of automatic control of step size. 

(b) Define output points properly, for instance, at equal intervals, before the target 
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Argument Type and Attrib Content 
kind (*1) ute 

N Integer Input Number n of equations. Q<NS1000 
type 

DY _ Real type Output The differential coefficient of the solution in xf is stored 
One-dimens in the original N elements and output. One-dimensional array 
ional with size of 6N. 
array 

BPS Real type Input Brror tolerance of solution. 

DIFFUN Subroutine Input Subroutine used to calculate differential coefficients as a 
I 

name function of X and l The user needs to prepare this subroutine 
in the form of DIFFUN(X, Y,DY). 

NSTBP Integer Input Number of step~ of integration m. NSTBP~O gives the same 
type effects as m=c:o and always causes Xf=Xe. 

XBND Real type Input Target value Xe of independent variable. This argument must 
satisfy (XBND-X)*H>O. 

BRR Real type Output Bstimated value of absolute truncation error of each element of 
One-dimens solution at final step. -
ional 
array 

NFUN Integer Input/ Input: Specify NFUN=O when this routine is called for the 
type output first time or there is a discontinuous change in the equation. 

To calculate only final step again, specify NPUN<O. 
Output: If NFUN~O is specified, the total number of 
evaluations of differential coefficients is output. 

ILL Integer Output ILL = 0: Normal termination 
-type ILL = 10000: Predetermined accuracy was not achieved after 

operation was repeated 10 times after change of the step size. 
ILL = 30000: The limitations on the argument were violated. 
Any value other than the above indicates the total number of 
iterations of operation done if this routine failed to achieve 
the expected accuracy in one call. 

~ 

*1 For double precision subroutines, real types should be cahnged to double precision real 

types. 

(3) Calculation method 

Refer to the reference in bibliography I). 

(4) Bxample 

A program to solve initial value problem 

{
Y't=Yt/(2(X+1) )-2rY2t 
Y· 2=Y2/(2(x+1) )-2rYt, {

YI (0)=1 
Y2(0)=0 

,.) 

..) 
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value. Repeat calling the subroutine while putting such output points one by one in XEND. This 

method has the advantage of obtaining output at regular points. If output points are given too 

densely. however. the step size is forcibly changed each time an escape is made at each output 

point. This results in deterioration of the original automatic step size control function. 

~ What can be controlled by EPS and estimated by ERR is a local truncation error but not a 

true error. 

3. EPS is used to mean an absolute error for each element of a solution when it is 1 or less or 

a relative error for the maximum value of the size when it exceeds 1. 

( Note the input method of NFUN. 

5. Even if ILL takes a value other than 0. 10000. and 30000. the value of the solution is not 

always inaccurate. 

6. There are sister routines RKM4AS/D and ODBBSS/D which can be used in almost the same way as 

this routine. Use them properly as the situation demands. 

Bibliography 

1) E. Fehlberg; »Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten 
-Kontrolle und ihre Anwendung auf Wa rmeleitungs-probleme ... Computing, Vol. 6. pp.61-71 (1970) 

(1987.07. 3D <1987.09.03) 
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RKM4AS/D 

(Solution of initial value problems for systems of first order differential equations by the 

Runge-Kutta-Merluzzi fourth order method) 

Solution of Initial Value Problems for Systems of Pirst order Differentia} Bquations by 

the Runge-Kutta-Merluzzi Pourth Order Method 

Programm Ichizo Ninomiya; April 1980 
ed 

Pormat Subroutine language; PORTRAN Size; '79 and 80 I ines respect i vely 

(l) Outline 

When system of n first order differential equations 

initial condition Yi (XO)=l1i, i=l ,2,··· ,n, 

Initial value ho of the step size of independent variable x, the number of integration steps lR 

• and target value Xe of an independent variable are given, RKM4AS or RKM4AD outputs a solution 

and values of derivative Yi (Xf), i=l ,2,···,n at output point Xf=lRin(x.,xe). To do this, 

the subroutine uses an automatic step size control algorithm based on the Runge-Kutta-Merluzzi 

fourth order method having the capability of evaluating accumulated truncation errors. Here X • 

. is the value of the independent variable that is reached after la steps of integral calculation 

"from initial values IO, ho. 

(2) Directions 

CALL RKM4AS/D(X,H, Y,~,DY.BPS,DIPPUN,NSTBP.XBND,BRR,NFUN, ILL) 

Argument Type and Attribut Content 
kind (*l) e 

X Real type Input/ou When initial value xo of the independent variable is input. 
tput final target value xf is output. 

H Real type Input/ou When initial value ho o f the 
tput step size is input, step size h adequate for integration 

from xf is output. 
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Argument Type and Attribut Content 
kind (*1) e 

Y Real type Input/ou When the initial value of the solution is input. the value of 

N 

DY 

EPS 

DIFFUN 

NSTBP 

XEND 

ERR 

NFUN 

ILL 

One-dimens tput the solution in ,xf is output. One-dimensional array of 
ional 
array 

Integer 
type 

Input 

Real type Work 
One-dimens area 
ional 
array 

Real type Input 

Subroutine Input 
name 

Integer 
type 

Input 

Real type Input 

Real type Output 
One-dimens 
ional 
array 

size N. 

Number of unknowns n of equation. O<N~1000 

One-dimensional array with size 6N. 

Error tolerance of solution. 

Subroutine to calculate derivative as a function of X and Y. 
The user should prepare this subroutine in the form of 
DIFFUN(X. Y. DY). 

Number of integration steps m. NSTEP~O is handled as if 
m=oo. and xf=xe always results. 

Target value Xe of independent variable. (XEND-X)*H>O must 
be satisfied. 

Estimated value of absolute truncation error of each element 
of solution at the final step. 

Integer 
type 

Input/ou Input: When this routine is called for the first time or 

Integer 
type 

tput there is a discontinuous change in the equation. NFUN<O 
should be input. To calculate only the final step again. 
NFUN<O should be input. 

Output 

Output: The total number of times the differential 
coefficients have been calculated after NFUN~O is output. 

ILL=O: Normal termination. 
ILL=10000: Required accuracy could not be obtained after the 
process was repeated ten times with different step sizes. 
ILL=30000: The restriction on the argument was not observed. 
A value other than the above shows the total number of times 
the process has been repeated because it failed to obtain 
required accuracy. 

*1 For double precision subroutines. all real types should be changed to double precision real 

types. 

(3) Calculation method 

Refer to paper in bibliography t). 
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(4) Example 

The program shown below solves initial value problem 

{ Y·l=Yl/(2(x+1) )-2rY2, 
Y· 2=Y2/(2(x+l) )-2rYI, { Yl (0)=1 

Y2(0) =0 

The exact solution is shown as follows. 

{
Yl="/X+l cosx2 
Y2=../x+l sin:r2 

C TEST FOR RKM4AD 

C 
C 

IMPLICIT REAL*8 CA-H,O-Z) 
DIMENSION YCZ),DYC1Z),ERRCZ),ZCZ) 
EXTERNAL RHS 
X=O.DO 
H=O.lDO 
Y(1)=1.DO 
Y(2)=0.DO 
N=2 
EPS=1.D-7 
NS=O 
NF=O 
XE=10.DO 
CALL RKM4ADCX,H,Y,N,DY,EPS,RHS,NS,XE,ERR,NF,ILL) 
XX=X*X . 
S=DSQRTCX+1.DO) 
Z(1)=DCOSCXX)*S 
Z(2)=DSINCXX)*S 
WRITEC6,600) H,X,CYCJ),ZCJ),ERRCJ),J=1,2),NF,ILL 

600 FORMATC1H ,2D13.5,2C2D15.7,D11.3),2I8) 
STOP 
END 

SUB.ROUTINE FOR DERIVATIVES 
SUBROUTINE RHSCX,Y,DY) 
IMPLICIT REAL*8 CA-H,O~Z) 
DIMENSION Y(2),DYC2) 
DY(1)=YC1)*O.5DO/CX+1.DO)-YCZ)*X*2.DO 
DY(2)=YC2)*O.5DO/CX+1.DO)+YC1)*X*Z.DO 
RETURN 
END 

(5) Notes 

1. These routines are used in the following two major ways: 

(1) Only the solution with a target value is output. To do this, the target value should be 

put in XEND and NSTEP should be set to 0 as shown in the above example. 

(2) Results on the way to the target value are output. These two methods can be used for it: 

(a) The routine is called repeatedly with the target value kept in XEND and with relatively 

J 

~ 
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small positive values put in NSTEP. In this case. when the routine returns from the subroutine. 

the value of X is irregular because of automatic step size control. 

(b) Output points are set in appropriately (in equal intervals for instance) until the 

target value is reached. The routine is called repeatedly while these output points are put in 

XEND one by one. This has an advantage that output is obtained at regular points. If. however, 

output points are set too often, the step size is forcibly changed each time the routine escapes 

at an output point. This may deteriorate the original function of automatic step size control. 

2. What can be controlled with EPS and estimated with ERR is an accumulated truncation error 

and not a true error. 

3. If EPS is 1 or less, it means an absolute error for each component of the solution. If it 

exceeds L it means an error relative to the maximum value. 

( Note the way of input of NFUN. 

5. If ILL indicates a value other than O. 10000. and 30000, the value of the solution is not 

necessarily inaccurate. 

6. The RKF4AS. RKF4AD. ODEBSS. and ODEBSD routines are very similar to these routines. Select 

the most appropriate one to your purpose. 

Bibliography 

1) P. Merluzzi et al; DRunge-Kutta Integration Algorithms with Built-in Estimation of the 
Accumulated Truncation ErrorD. Computing. Vol. 20. pp.I-16 (1978). 

<1987.06.29) 
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ALANGV I DLANGV (Langevin Function) 

Langevin Function 

Programm Ichizo Ninomiya. April 1981 
ed by 

Format Function Language; 21 and 26 lines respectively 

(1) Outline 

ALANGV (DLANGV) calculates Langevin functions L(x)=cothx-l Ix for a single (double) 

precision real numbers x with single (double) precision. 

~ 
(2) Direct ions 

1. ALANGV(X) and DLANGV(D) 

X(D) is an arbitrary expression of a single (double) precision real number type. DLANGV 

requires the declaration of double precision. 

2. Range of argument 

There is no limit on arguments. 

(3) Calculation method 

1. If Ix 1~4. L(x)=xR(x2
) is calculated with the optimal rational approximation R. 

~ 2. If 4<lx 1<10 (or 4<lx 1<20 in case of DLANGV). 

L(x)=sign(x) (2e-lxl/(l-elxl )-1/1 x 1 +1) is calculated. 

3. If Ixl~10 (or Ixl~20 in case of DLANGV), L(x)=sign(x) (l-1/lxl) is calculated. 

(4) Note 

If L(x) is calculat~d based on the definition formula. precision is lost near x=O. 

(1987.03.31) 
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ALOG11 DLOG1/QLOG11 CLOG11 CDLOG11 CQLOG1 (Function log(1+x» 

Function log(l+x) 

Programm I ch i zo Ni nom i ya, Apr i I 1981. Apr i I 1977. December 1987 
ed by 

Format Function Language: FORTRAN; Size: 18. 24. 34. 14. 15, and 15 lines 
respectively 

(1) Out! ine 

ALOG1(DLOG1,QLOG1) calculates log(l+x) for single (doubl~ quadruple) precision real numbers X 

with single (double. quadruple) precision. 

CLOG1(CDLOG1,COLOG1) calculates log(l+~) for single (double. quadruple) precision complex 

numbers ~ with single (double, quadruple) precision. 

(2) Directions 

1. ALOG1(X). DLOG1(D). OLOGl (0). CLOG1(C). CDLOGl(D), and COLOGl(Z) 

X(D.O) is an arbitrary expression of a single (doubl~ quadruple) precision real number type. 

C(D,Z) is an arbitrary expression of a single (double, quadruple) precision complex number 

type. Functions other than ALOGl require the declarations of corresponding types. 

2. Range of argument 

X>-l, D>-l. and 0>-1 for ALOGl, etc. 

3. Brror processing 

If an argument outside the range" is given, an error message is printed, and the calculation 

is continued with the func.tion value as 0." (See "FNERST. ") 

(3) Calculation method 

1. ALOGl/DLOG1/0LOGl 

(1) If X ~-l, an error is assumed. 

(2) If -l/2;$;x<1, transformation y=x/(x+2) is performed, and log(1+x)=log(1+Y)/(l-Y) is 

calculated using the polynomial approximation of Y. 

(3) If -1<X<-1/2 or X ~l, log(l+x) is calculated as it is by the elementary function log(x 
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2. CLOGl/CDLOGl/CQLOGl 

(1) If I z I :i 1 

log( 1 + (2+x) ·x+w)l2+i tan-I (y/(1 +x)) is calculated. Where. z=x+iy. 

10g(1 + (2+x)x+y2) is calculated using ALOGVDLOGl/QLOGl. and tan-I (y/(1 +x)) is 

calculated using the standard function ATAN2/DATAN2IQATAN2. 

(2) If Il+zl +0. 10g(1+z) is calculated as defined. 

(3) If Il+z I =0. an error resu Its. 

(4) Note 

If the function in this section is calculated using the standard function as defined. precision 

is lost near the origin. 

(1987. 07. 31) (1988. 02. 15) 
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AS INH/DASINH/QASINH, ACOSH/DACOSH/QACOSH, and 

AT ANH IDATANH IQAT ANH (Inverse Hyperbolic Function) 

Inverse Hyperbolic Punction 

Programm Ichizo Ninomiy~ April 1974. revised in April 1977 
ed by 

Pormat Punction Language: PORTRAN; Size: 1& 26. 37. 11. 12. 11. 18. 24. 
and 34 lines respectively 

(1) Outline 

ASINH(DASINH.OASINH). ACOSH(DACOSH.QACOSH). and ATANH(DATANH.OATANH) calculate siTiUl-1x. 

COSh-IX. and tanh-1x respectively with single (double. quadruple) precision for a single 

(double. quadruple) precision real number x. 

where. 

siTiUl-1X=log(x+~1 +x2) 

cosh-lx=log(x+~x2-1 ) 

tanh-1x=1..10g l+x 
2 I-x 

(2) Directions 

L AS I NH (X) • ACOSH (X) • ATANH (X) • DAS I NH (D) • DACOSH (D). DATANH (D) • QAS I NH (0) • OACOSH (0) • 

OATANH (0) 

X(D.O) are arbitrary expressions of a single (double.' quadruple) precision real type. The 

name of a function of double (quadruple) precision requires the declaration of double 

(quadruple) precision. 

2. Range of argument 

An inverse hyperbolic sine function has no limitation on arguments. 

X~l. D~l. and 0~1 for an inverse hyperbol ic cosine function. 

IXI<l. IDI<l. and 101<1 for an inverse hyperbolic tangent function. 

3. Error processing 

If an argument outside the range is given. an error message is printed. and the calculation 

is continued with the function value as O. (See PNERST.) 
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(3) Calculation method 

1 ASINH(DASINH) 

(1) If Ix 1<3/4. sinh-Jx is calculated by polynomial approximation. 

(2) If Ix I ~3/4, the foIIowing calculation is executed. 

Y= I x I ,sinh - Jx=signx- sinh - Jy , sinh - Jy= 1 Og(y+,j 1 +W ) 
(3) If y~4096{Y~3·108), sinh-Jy=log2y. 

2. ACOSH(DACOSH) 

(1) I f X <1. an error is assumed. 

(2) If 1<X<4096(1<x<3·108). the foIIowing calculation is executed. 

cosh-Jx=log(x+Jx2-1) 

(3) If X~4096(X~3·108). cosh-Jx=log2x. 

3. ATANH(DATANH) 

(1) If Ix I ~1.· an error is assumed. 

(2) If Ix I ~V3. tanh-Jx is calculated by polynomial approximation. 

(3) If 1/3<lx 1<1. the following calculation is executed. 

tanh-1x=.llog 1 +x 
2 I-x 

(4) Note 

All the functions in this section are simple functions that are defined with a logarithmic 

function. However. if they are calculated as described in the definition expressions. precise 

values cannot be obtained for the argument of small absolute values. Since special measures are 

taken for the argument of small absolute values. values of the functions of this section do not 

suffer the drop of accuracy. 

<1987. 06. 30) 
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280 
CABS1/CDABS1/CQABS1 (Sum of Moduli of Real and Imaginary Parts of a Complex Number) 

Sum of Moduli of Real and Imaginary Parts of a Complex Number 

Programm Ichizo Ninomiya, January 1980 
ed by 

Format Function Language: Assembler; Size: 42 lines 

(1) Outl ine 

CABS1 (CDABS!, CQABSl) calculates 11 z 11 1= I.x I + I y I for a single (double or quadruple) 

precision complex number z=x+iy with single (double or quadruple) precision. 

(2) 0 i rect ions 

1. CABS! (C), CDABS1 (B), and CQABS1 (Z) 

C (B, Z) is an arbitrary expression of a single (double, quadruple) precision complex 

number type. CDABS! (CQABS1) requires the declaration of double (or quadruple) precision. 

2. There is no limit on arguments. 

(3) Note 

1. The elementary external function CABS (CDABS, CQABS) gives the absolute value 

IIZIl2=lzl=,jx2+w of a usual meaning of complex numbersz=x+iy. However, it contains a 

square root and cannot be calculated directly. Thus, it is slow in calculation speed. 

In a convergence test, the smallness of complex numbers can be fully checked with the sum of 

simple absolute values 11 z Ill. This is the raison d' etre of the present function routine. 

By the way, in the tests with the same e, that is, in 11 Z 112< e and 11 z 11 J < e, the latter 

is stronger. That is, if IIzlll<e, we always have IIzIl2<e. 

2. CDABS1 (CQABSl) can be replace~ with DCABSl (QCABSl). 

0987. 06. 30) 
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COMB/DCOMB/QCQMB (Binomial Coefficient) 

Binomial Coefficient 

Programm Ichizo Ninomiya, April 1982 
ed by 

Format Function Language: FORTRAN; Size: 25, 26, and 26 lines respectively 

(1) Outl ine 

COMB (DCOMB, '1C014B) calculates the following binomial coefficient for integers m,n with single 

. -:. .~ . 
(double or quadruple) precision. 

mCn= ... m. ( m) t 

n n!(m-n)! 

(2) Directions 

1. COMB (M, N), DCOMB (M, N). and '1COMB (M, N) 

M and N are arbitrary expressions of an integer typ~ 

2. Range of argument 

l~M, O~N~M 

However, the range that function values overflow is excluded. 

3. Error processing 

If an argument outside the range is given, an error message is printed, and the calculation 

is continued with the function value as O. (See DFNERST. D) 

(3) Calculation method 

1. Let k=min(n,m-n). 

2. If m~56 and k>8. we compute as follows; call ing FCTRL (DFCTRL. QFCTRL). 

mCk k! (=~k)! 

3. In a case other than the above. 

the recurrence formula 

me -mC m-r+l T- T-I- r 

is repeated, beginning from mCo=1 · 
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EXP1/DEXP1/QEXP1, C EXP11 CDEXP11 CQEXP1 (Function exp{x)-l) 

Punct ioil eX-I 

Programm Ichizo Ninomiya; December 1987. April 1981 
ed by 

Format Function Language; FORTRAN Size; 21. 25. 28. 19. 21. and 21 
lines respectively 

(1) Outline 

BXP1. DBXPl. and OBXPl each calculate eX-I. with single. double, or quadruple precision, for a 

single, double, .or quadruple real number x. 

CBXP1. CDBXP1, and COBXPl each calculate ~-1, with single, double. or quadruple precision, for 

a single, double, or quadruple complex number z. 

(2) 0 i rect ions 

1. BXPl (X). DBXP (D), OBXPl (0), CBXPl (C). CDBXPl (B), and COBXPl (Z) 

X, 0, and 0 are arbitrary single. double, and quadruple real expressions respectively. 

C, B, and Z are arbitrary single, double, and quadruple complex expressions respectively. 

The function names other than those for single precision need the declaration of the 

corresponding types. 

2. Range of argument 

BXPl etc.: X:5174.673,D:5174.673,Q:5174.673 

CBXPl etc.: REAL(C) ~ i74.673,REAL(B) :5174.673,REAL(Z) :5174.673 

IIMAG(C) I :52187t, IIMAG(B) I :5~7t, I IMAG(Z) I :52106
7t. 

3. Brror processing 

If the specified argument is outside the range, an error message is printed but calculation 

cont inues with the function value assumed to be O. (See PNBRST.). 

(3) Calculation method 

1. BXP1/DBXP1/0BXPl 

(1) i(X)=-1 in case of x<-18.421 (in case of x<-41. 447 with DBXP1. and in case of 

x <-77. 633 with OBXP1). 

(2) In case of Ixl~l. polynomial approximations P and 0 are used to calculate 
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2g4-
e%-I=2:rP(x2)/ [Qex2)-xP(x2) ) . 

(3) In case of X other than those in (1) and (2), e%-l is calculated as defined. 

2. CBXPl/CDBXPl/CQBXPl 

(1) I n case of I X I ~ I , 

(e%-l )cosy-2sin2y!2+ie%siny is calculated. x+iy is used as the argument. 

BXPl/DBXPl/QBXPl is called to calculate e%-l. 

(2) In case of I X I >, e%(cosy+isiny)-l is calculated as defined. 

(4) Note 

If the function in this section is calculated by the standard function as defined, severe 

cancellation occurs near the origin. 

(1987. 07. aD (1988. 01. 27) 
..) 

~ 
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FASTEE (Fast High Precision Calculation of e) 

Fast High Precision Calculation of e 

Programmed Ichizo Ninomiya. January 1983 

by 

Format Subroutine Language; FORTRAN and assembler 

Size; 63 and 212 lines respectively 

(1) Out line 

FASTEE calculates and outputs the value of e at high speed with required precision. 

(2) Direct ions 

CALL FASTEE (N. P. W. ILL) 

Argument Type and Attribut Content 

kind (*1> e 

N Integer type Input Number of decimal digits of e. 100~N 

P Double Work Size of N/IO. 

precision area 

real type 

One-dimensio 

nal array 

W Double Work Size of N/IO. 

precision area 

real type 

One-dimensio 

nal array 

ILL Integer ,type Output Error code. 

ILL=O: Normal terminat ion. 

ILL=30000: IOO>N 

(3) Calculation method 

28S-
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2~6 

The Taylor series e=1+1/1!+1/2!+1/3!+··· is truncated at the n-th term where nI>10**(N) is 

established according to the required number of digits N. Then, it is arranged into 

e=2+1/2(1+1/3 (1+---+ (1/(n-l» (1+1/n» ... ». and calculated in the order of n, n-l. _ •. 

(4) Note .. 

1 The output is separated every 10 digits, and printed every 100 digits per line. 

2. The calculation speed on the M-200 is listed below. 

N 1000 10000 100000 

CPU 0.012 second 1.0 second 100 seconds 

(1987. 08. 11) 

~ 
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FASTPI (Past High Precision Calculation of 1Z') 

Past High Precision Calculat ion of 7r 

Programmed Ichizo Ninomiya, January 1983 

by , 

Pormat Subroutine Language: PORTRAN and assembler; Size: 54 and 382 lines 

respectively 

(1) Outl ine 

PASTPI calculates and outputs the value of 7r with required precision. 

(2) Directions 

CALL PASTPI (N, p, \11, ILL) 

Argument Type and Attribut Content 

kind (*1) e 

N Integer type Input Number of decimal digits of 7r. 

P Double Work Size of N/lO. 

precision area 

real type 

One-dimensio 

nal array 

\11 Double Work Size of N/1O. 

precision area 

real type 

One-dimensio 

nal array 

lOO~N 

ILL Integer type Output Error code. ILL;O: Normal termination. 

ILL;30000: lOO>N 

(3) Calculation method 

Mal:=hin's formula: tr=4a r c tan (1/S)-16a r c tan (1/239) is used. 

2~7 
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2~8 

The Taylor series arc tan (1/m)=1/m-1/3m**3+1/Sm**S-··· is truncated at 

the term of m** (2n +1) >10**N according to the required number of digits N and arranged 

into 

arc tan (1/m)=1/m(1-1/m**2(1/3-1/m**2(1/S-·· ·-1/m**2(11 (2n-1 

)-1/m**2(1/(2n+1»·· .») before the terms·of the two arc tangents are calculated 

in the order of 2 n + 1 , 2 n -1 , 

(4) Note 

1. The output is separated ever! 10 digits. and printed every 100 digits per line. 

2. The calculation speed on the M-200 is listed below. 

N 1000 10000 100000 

CPU 0.056 second 5.1 seconds 643 seconds 

Bibliography 

1) Ichizo ·Ninomiya; "Calculation of 1C." Proceedings of the 25th Symposium of Information 

Processing Soc. of Japan (Ill). pp.1167-1168 (1982). 

(1987. 08. 06) 
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SINHP/DSINHP/QSINHP,COSHP/DCOSHP/QCOSHP, 

TANHP/DTANHP/QTANHP and COTHP/DCOTHP/QCOTHP (Trigonometric Functions for 

the Argument 7r 12-x) 

Tr igonometr ic Punct ions for the Argument 7Z'/2·x 

Programm Ichizo Ninomiya. January 1980 
ed by 

Pormat Punction Language; Assembler (quadruple precision type is FORTRAN) 
Size; 117. 152. 47. 117. 152. 47. 134. 174, 55. 134. 174. 

and 55 lines respectively 

(1) Outl ine 

SI NHP (OSI NHP, QSI NHP), COSHP (OCOSHP, QCOSHP). TANIIP (OTANHP. QTANHP) and COTIIP (DCOTHP, QCDTHP) 

calculate sin 7r 12·x. COS7r 12·x. tan 7r 12·x and cot 7Z'/2·x respectively with single (double. 

quadruple) precision for a single (double. quadruple) precision real number x. 

(2) Directions 

1. SINHP(X). COSHP(X). TANHP(X). and COTHP(X), DSINIIP(O), DCOSHP(D), OTANHP(D). DCOTHP(D) • 

QSINHP(Q). QCOSHP(Q). QTANHP(Q). QCOTHP(Q) 

X (D.Q) is an arbitrary expression of a single (double. quadruple) precision real type. 

The name of a function of double (quadruple)' precision requires the declaration of double 

(quadruple) precision. 

~ Range of argument 

. 3. Error processing 

If a given argument is outside the range or a singular point. an error message is printed. 

and the calculation is continued with the function value as O. (See FNERST.) 

(3) Note 
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1. If an argument contains 7r as its factor, the value of a trigonometric function can be 

calculated using usual external elementary functions such as SIN and CO~ However, it is more 

reasonable to use various functions in this section because of the following reasons: 

(1) The value of 7r need not be written. (2) The speed is faster by two multiplications. 

(3) Precision is higher. 

Por example, SINHP(X) is better than SIN(1.570796*X), and DCOSHP(X+X) is better than 

DCOS(3.1415926535897932DO*X). 

COSHP(1.0) becomes precisely 0, but COS(1.570796) does not. 

2. HP at the end of a function name means HALP 'PI. Because H at the end of a hyperbolic 

function name means HYPERBOLIC, do not confuse them with each other. 

3. If an argument contains an error, the function value contains an error in its last digits. 

The number of incorrect digits is roughly the same as the number of digits of integral part of 

the argument. This is similar for standard functions. 

( Precision cannot be guaranteed for the function value near the pole of TANHP and COTH~ 

<1987.06.29) 
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