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I. NUMPAC routine

- Library programs of NUMPAC are roughly divided into two cathegories, ie., function subprograms
and subroutine subprograms, There are some general rules for each of them and the rules are used

in this manual for simple description, Please read the following explanations carefully before

using NUMPAC.

(I) Function subprogram
(1) Function name and type
The function name of the real type follows the rule of the implicit type specification of
FORTRAN,
Example : BJO, ACND
The function name of the double precision real type consists of the function name of the
corresponding real type with adding D to the head of it. The function name of the quadruple
precision real number type (if exists) consists of the function name of the corresponding real
type with adding Q to the head of it, However, there are some exceptions, |
Example : SINHP, DSINHP, QSINHP
Example of exception : ALOGL DLOGL, 0LOGI
It is severely observed that the function name for double precision begins with D and that for
quadruple precision begins with Q, - Note that the function name should be declared with a
suitable type in each program unit referring to the function,
Example : DOUBLE PRECISION DCOSHP, DJ1
REAL=8 DCELI1, DCELI2
REAL=16 QSINHP, GASINH
Because the function name of double precision always begins with D and that of quadruple
precision with 0, it is convenient to use the IMPLICIT statement considering other variables,
" Example : IMPLICIT REAL8(D)
IMPLICIT REAL*8 (A-H, 0-2)
In this way, you need not declare the function name, separately,
(2) Accuracy of function value
Function routines are created aiming at the accuracy of full working precision as a rule,

However, this cannot be achieved completely because of fundamental or technical difficulty '),

1
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Especially, it is not achieved for functions of two variables and functions of complex variable,
(3) Limit of argument
(a) The domain is limited,
Example : ALOG1
This function calculates log(1+x) . Therefore, x>-1 should be satisfied,
(b) The singular point exists,
Example : TANHP
This function calculates tanwx/2. Therefore, an odd integer X is a sungularity.
(c) The function value overflows,
Example : BIO

* is calculated

This function is for modified Bessel function Ig(x) ,‘ and for big x, e
referring to standard function EXP, Therefore, overflow limit 2052l0g.2=174.673 of EXP
is the upper bound of the argument of this function,

(d) The function value becomes meaningless,

Example : BJ)
. This function is for Bessel function Jo(x), and standard functions SIN and COS are referred
to for big x. Therefore, the argument limit |x|=2"87=8.23-10° of SIN and COS is the
limit of the argument of this function,

There are many such examples, Note that the value 218 is not a sharp limit and that the
number of significant digits for the function decreases gradually as approaching this limit even
if within this limit,

When the function value underflows, it is set to ( without special processing,

(4) Error processing

When the argument exceeds the limit, an message for the error is printed and the calculation is
cortinued with the all function values set as 0, The message consists of the function name, the
argument value, the function value (0) and the reason for the error,

Example : ALOG1 ERROR ARG=-0.2000000E+01 VAL=0.0 ARG, LT.-1

The error processing program counts the frequency of the errors and stops the calculation if
the frequency exceeds a certain limit, conside.ring the case that the calculation becomes
meaningless when the error occurs one after another, Because all users do not want this, you can

adopt or reject this processing including the print of the message, Subroutine FNERST is

2



provided for

this purpose and you can use it in the following way.

CALL FNERST (IABORT, MSGPRT, LIMERR)

Argument Type and Attrib Content
kind ute
IABORT Integer Input lABURT=0 The calculation is not stopped.
type [ABORT£(0 The calculation is stopped,
MSGPRT Integer | Input | MSGPRT=0 The message is not printed.
type MSGPRT#0 The message is printed,
LIMERR Integer Input | Upper bound of frequency of errors,
type

If this subroutine is not called, following values are set as a standard value,

IABORT=], MSGPRT=1, LIMERR=10 *

(I1) Subroutine subprogram

(1) Subroutine name and type

There is no meaning of the type in the head character of the subroutine name, Subroutines with

the same purpose and the different type are distinguished by the ending character of the name,

The principle is as follows,

Single precision : S| Complex number : C Vector computer single precision
Double precision : D | Double precision v
Quadruple precision | complex number : B | Vector computer double precision
:Q Quadruple precision W

complex number : Z Vector computer complex number : X
Vector computer double precision
complex number : Y

However, there are some exceptions,

Example Example of exception
LEQLUS/D/Q/C/B FFTR/FFTRD
RK4s/D/0/C/B MINVSP/MINVDP
GJMNKS/D/Q

a

(2) Argument --- The following four kinds are distinguished as an attribute of the argument.

Input

Users should set this data before calling the subroutine, As long as it is not
especially noticed, the data is preserved as it is at the subroutine exit., This
includes the case when the function name and the subroutine name are used as
arguments, Note that those names should be declared with EXTERNAL.




Output | This data is created in the subroutine and is significant for the user,

Input/Ou | Data is output in the same place as the input to save area, When input/output
tput argument is a single variable, you should not specify a constant as a real
argument, For instance, if LEQGLUS is called with constant 1 specified in
input/output argument and is ended normally, IND=0 is output, but all conmstants 1
are changed to (.

Work It is an area necessary for calculation in a subroutine, and the content of the
area subroutine at exit is meaningless for. users,

The type and attribute of the argument are explained for each subroutine group, The explanation
is for single precision, For others, please read it with exchanging the type for the suitable
one,

When a suhroutiné is called with an argument, but the argument is not used, the area for thé

.
argument need not be prepared, and anything can be written in that p]ace,‘ The same area can be
allocated for the different arguments, only if it is pointed as it like SVDS, There is aﬁ
example (FT235R) that special demand is requested fﬁr the argument,

It is requested for users to provide the function routine and the subroutine for the numerical
integration routine and the routine for solving differential equations, In this case, the
number, the type, and the order of the argument should be as specified, If parameters except a

regulated argument are necessary, they are allocated in COMMON area to communicate with the main

program, Refer to the explanation of an individual routine for the example.

1) Ichizo Ninomiya; "Current state, issues of mathematical software”, information processing,

Vol.23 and pp. 109-117(1982).



[ Opening source program to the public ]

The following source programs are published for users requesting them, Calculation can be
requested directly, and the source list can be output or can be copied in the shared file, The

copied program cannot be given to .the third party without the permission of this center,

If you need to copy the source list in the card or the data set, please execute folloﬁing
procedures, ‘
(1) Input the following command for TSS.
© NLIBRARY ELM (library name) "DS (data set name)” "SLAVE(ON)”
When you need only the source list, you can omit DS and SLAVE, When SLAVE(ON) is specified,
all slave routines of the program will be output,
(2) Execute the following job for BATCH.
//EXEC NLIBRARY, ELM=program names[, DS=" data set names’ ][, SLAVE=0N]
You can have examples of the program usage with the following procedures,
(1) For TSS
EXAMPLE NAME (library name) [DS (data set name)]
(2) For BATCH

//EXEC EXAMPLE, NAME=program names[, DS=" data set names’]

Four Rinds of manual listed below are prepared concerning library program,

Numb Manual title Content
er
1| Library program and data list All library programs and data which can be

used in this center are listed,
Additionally, “description format of the
NUMPAC routine and notes on use”, "How to
choose the NUMPAC routine”, and usage of
error processing subroutine "FNERST” are
.| described in this list,

2 | Guidance to use library program This volume describes the general use of
programs except NUMPAC, which can be used in
(General volume : GENERAL VOL.1) this center,




3 | Guidance to use library program

(Numerical calculation : NUMPAC VOL.1)

This volume describes how to use .the
following five kinds of programs,

1. Basic matrix operations

2. System of linear equations

3. Matrix inversion
- 4, Eigenvalue analysis

5. Polynomial equation and nonlinear
equation

4 | Guidance to use library program

(Numerical calculation : NUMPAC VOL.2)

This volume describes how to use the
following five kinds of programs,

6. Interpolation, smoothing, and numerical
differentiation and integration

7. Fourier analysis

8. Numerical quadrature

9. Ordinary differential equation

10. Elementary function

5| Guidance to use library program

(Numerical calculation : NUMPAC VOL.3)

This volume describes how to use the
followlng nine kinds of programs,

11. Table functions

12. Orthogonal polynomial

13. Special functions

14. Bessel function and related function
15. Acceleration of convergence of sequences
16. Linear programming

17. Special data processing

18. Figure display application program

19. Others )

All these manuals can be output by "MANUAL command®, “PICKOUT command” is available if you

need part of the usage of individual program,




For NUMPAC users

Please note the following and use NUMPAC effectively,

(1) The user has the responsibility for the result obtained by NUMPAC,
(2) When the trouble is found, please report it to the center program
consultation corner (Extension 6530).

(3) Do not use NUMPAC in computer systems other than this center without
permission,

(4) To publish the result obtained NUMPAC, the used program names (for

instance, =tx of NUMPAC) should be referred to’

This manual was translated using Fujitsu’s machine translation system ATLAS,
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BERNO/DBERNO/QBERNO (Bernoulli’s numbers)

Bernoulli Numbers

Programm | Ichizo Ninomiya, April 1981
ed by

Format Function Language: FORTRAN; Size: 57, 57, and 57 lines respectively

(1) Outline

BERNO (DBERNO, QBERND) calculates the Bernoulli’s number B2, for a positive integer m with

single (double or quadruple) precision,

(2) Directions
1. BERNO(N), DBERNO(N), and QBERNO(N)
N is an arbitrary expression of an integer type, DBERNO (QBERNO) requires the declaration
of double (quadruple) precision,
2. Range of argument
1=N=48

3. Error processing

If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as (. (See "FNERST, ”)

(3) Calculation method

The table precomputed with a sufficient precision is used,

(4) Note

1. There is the following relationship between the Bernoulli’s number B2, and Riemann Zeta

. function (),

(g 2@Y L o
Bon=(-1)™E2050¢ (2n)

2. If n—oo, Ianl increases in about the same order as (n/ew:)z",

Bibliography
10
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1 ‘Handhook of Mathematical Functions, Dover, N, Yiv,‘:b:f804 QAOT0), T T T
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BETNO/DBETNO/QBETNO (Beta Numbers)

Beta Numbers

Programm | Ichizo Ninomiya, December 1987
ed by

Format Function Language: FORTRAN; Size: 28, 55, and 84 lines respectively

(1) Outline
BETNO (DBETNO, QBETNO) calculates beta numbers B(n) for a positive integer m with single

(double or quadruple) precision,

v (-1)k
B(n) -kgo———(zm &

(2) Directions
1. BETNO(N), DBETNO(N), and QBETNO(N)
N is an arbitrary expression of an integer type, DBETND (QBETND) requires the declaration
of doublé (quadruple) precision,
2. Range of argument
N21
3. Error processing
If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as (. (See "FNERST.”)

(3) Calculation methed

The table precomputed with a sufficient precision is used,

(4) Note
. 1. B(n)~1-3™ for a sufficiently large number m.

2. The following expression gives the Buler number E2,.

Ezu=(-1)" 28U g(on,1)

(m/2)%*

Bibliography
12



1) Handbook of Mathematical Functions, Dover, N.V., p 807 k1970). ’ /
(1987.07.08) (1988.01.11) -
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EULNO/DEULNO/QEULNO (Buler Number)

Euler Number

Programmed | Yasuyo Hatano and Kazuo Hatano, March 1983

by

Format Function Language; FORTRAN

(1) Outline
EULNO (DBULND;QEULNU) calculates the Euler number E2n for a positive integer n with single
(double) precision,
(2) Directions
1. EULNO(N), DEULNO(N), QEULNOD(N)
N is an arbitrary expression of the integer type, DEULNO (QEULND) requires the declaration
of double (quadruple) precision,
2. Range of argument
1=N=31
3. Brror processing
If an argument outside the range is given, an error message is printed, and the calculation
is continued with the function value as (.
(See FNERST.)
(3) Calculation method

The table calculated with sufficient precision in advance is used,

(4) Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y., p.804 (1970).

(1987. 08. 07)
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FCTRL/DFCTRL/QFCTRL, FFCTR/DFFCTR/QFFCTR,

HFCTR/DHFCTR/QHFCTR (Pactorials)

Factorials

Programm | Ichizo Ninomiya; December 1987, January 1980
ed by

Format | Function  Language; FORTRAN  Size; 25, 41, 66, 36, 62, 106, 67.
68, and 68 lines respectively

(1) Outline
FCTRL (DFCTRL, QRCTRL), FFCTR (DFFCTR, QFFCTR), and HFCTR (DHZCTR, QHFCTR) calculate factorial
n!, double factorial n//, and '(n+1/2)/T°(1/2) respectively, with single (double,

quadruple) precision, for an integer n,

1 n=0
nl= [
n (n-l) ...... 2 . 1 n>0

1 n=0
nll= [n(n-Z)--"--4'2 n=2 (even number)
n(n-2)--+-+- 31 n=21 (odd number)

F(n+1/2)/T (1/2)={(1)/2-3/2- - (n-1/2) e

(2) Directions
1. FCTRL(N), DFCTRL(N), QFCTRL(N), FFCTR(N), DFFCTR(N), QFFCTR(N), HFCTR(N), DHFCTR(N), and
QHFCTR (N)
N is an arbitrary integer-type expression, The double (quadruple) precision function name
needs to be declared as double (quadruple) precision,
2. Range of argument

Factorial: (=<N<57. Double factorial: (0=N=<97. HFCTR etc.: (0<N=5T.

15



3. Brror processing
If the specified argument is outside the range, an error message is printed but caleculation

continues with the function value assumed to be (. (See FNERST,)

(3) Calculation method

A numerical table precomputed with sufficient precision is used,

(1987. 07. 03) (1988. 02. 15)
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GAMCO/DGAMCO/QGAMCO (Coefficient of Tayler Series For 1/T (x))

Coeff-icients of Taylor Series for 1/T (x)

Programm | Ichizo Ninomiya, April 1981
ed by
Format Function Language: FORTRAN; Size: 91, 91, and 91 lines respectively

(1) Outline

GAMCO (DGAMCD, QGAMCO) calculates the value of coefficients of Tayler series Cn of 1/I'(x)

for positive integers n with single (double or quadruple) precision, where

1/r (x)=) Cox®
n=1

(2) Directions

1. GAMCO(N), DGAMCO(N), and QGAMCO(N)

N is an arbitrary expression of an integer type,

of double (quadruple) precision,

2. Range of argument

N=1

3. Error processing

DGAMCO (QGAMCO) requires the declaration

If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as 0.

(3) Calculation method

(See "FNERST. ")

The table precomputed with a sufficient precision is used,

(4) Note

1. Ca=0 is assumed because the function underflow at n=$§0,

2. C2 is the Euler's constant 7.

(1987.07.13)
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HARMS/DHARMS/QHARMS (Partial sum of harmonic series)

Partial Sum of the Harmonic Series

Programm | Ichizo Ninomiya; December 1987

ed by

Format Fuﬁction Language; FORTRAN Size; 118, 122, and 134 lines

respectively

(1) Outline
HARMS (DHARMS, QHARMS) calculates partial sums

o(n)=).1/k
k=1

up to term n of the harmonic series, with single (double, quadruple) precision, for an integer

n,

(2) Directions

1. HARMS (N), DHARMS (N), GHARMS (N)
N is an arbitrary integer-type expression, DHARMS (QHARMS) needs to be declared for
double (quadruple) precision,

2. Range of argument
N=0

3. Error processing

If the specified argument is outside the range, an error message is printed but

calculation continues with the function value assumed to be 0, (See FNERST.)

(3) Calculation method
(1) In case of n<0, an error results,
(2) In case of n=0, ¢(n)=0,
(3) In case of 1=n <100, ¢(n) is read from the numerical table calculated beforehand,

(4) In case of n>]100, the following asymptotic expansion is used:

18



Box
(n+1)%

. ‘P(n)=7+ln(n+l)‘ 2(nl+1) —; =.

where ¥ is an Buler's constant,

Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y., p.259 (1970).
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ZETNO/DZETNO/QZETNO (Riemann Zeta function)

Riemann Zeta Function

Programm | Ichizo Ninomiya; April 1981
ed by

Format | Function Language; FORTRAN  Size; 42, 62, and 162 lines
respectively

(1) Outline
ZETNO, DZETNO, and QZETNO each calculate Riemann Zeta function {(n) for a positive integer n

with single, double, or quadruple precision,
¢my=) L
k1K

(2) Directions
1. ZETNO(N), DZETNO(N), and QZETNO(N)
N is an arbitrary integer-type expression, DZETNO and QZETNO needs to be declared as
double and quadruple precision respectively.
2. Range of argument
N=1
3. Error processing
If the specified argument is outside the range, an error message is printed but calculation

continues with the function value assumed to be (., (See FNERST.)

(3) Calculation method

A numerical table precomputed with sufficient precision is used,

(4) Notes

1. Since original ¢ (1) is not defined for n=], the Euler’s constant is output instead:

k
v=1im(},Jr-logk)
- i=1 1

2. (n)~1+2™ for sufficiently large n.
20



3. The Bernoulli’s constant Bz, is givén by the following expression:

ywiEn) !

)l
Sosas(2n)

BZn=( 1

Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y., p.804 (1970).
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PLEGE/DPLEGE,PLEGA/DPLEGA,PLEGN/DPLEGN,PCHB1/DPCHB1.,
PCHB2/DPCHB2, PLAGU/DPLAGU, PLAGG/DPLAGG, and PHERM/DPHERM

(Orthogonal polynomials)

Orthogonal Polynomials

Programm { Ichizo Ninomiya and Yasuyo Hatano: March 1984, revised in December

ed by 1987

Format Function Language; FORTRANTT Size; 130 lines or less each

© (1) Outline

When order n and argument x (auxiliary variables m and a). are given, each function calculates
corresponding orthogonal polynomial as follows:

PLEGE (DPLEGE) -+~ Legendre polynomial Pn (X)

PLEGA (DPLEGA) --- Adjoint Legendre function Pq (X)

PLEGN (DPLEGN) -+ Normalized adjoint Legendre function Pj (¥)
PCHB1 (DPCHB1) --- Chebyshev polynomial of the first kind Tn (X)
PCHB2 (DPCHB2) <<+ Chebyshev polynomial of the second kind Upn (X)
PLAGU (DPLAGU) --- Laguerre polynomial Lp (X)
PLAGG (DPLAGG) --- Generalized Laguerre polynomial L‘“?. (X)
PHERM (DPHERM) +-- Hermite polynomial Hy (X)
(2) Directions
1. PLEGE(N,X), DPLEGE (N, DX)

PLEGA (N, M, X), DPLEGA (N, 4, DX)

PLEGN (N, M, X), DPLEGN (N, M, DX)

PCHB1(N, X), Dl"CHBl (N, DX)

PCHB2 (N, X),  DPCHB2 (N, DX)

PLAGU(N, X),  DPLAGU(N, DX)

PLAGG (N, A, X), DPLAGG (N, DA, DX)

PHERM(N, X),  DPHERM (N, DX)

N and M are arbitrary integer type expressions, X (DX) and A (DA) are arbitrary single (double)

23



precision expressions, A function whose name begins with D is used for double precision

calculation, The function name needs to be declared as double precision,

2. Range of argument
0=<N, 0<M=<N, -1<A(DA)
PLEGA (DPLEGA) : M=49
PLEGN (DPLEGN) : M=<100
3. Error processing
If the argument is outside the range, an error results with an error message printed, but

calculation continues with the function value assumed to be (, (Refer to FNERST.)

(3) Calculation method
Each function calculates a 3-term recurrence formula in the forward direction,
1. PLEGE (DPLEGE)

Pe(x) =4 ((Zk-1)aPi-1 (1)~ (k-1) Pec2())

2. PLEGA (DPLEGA)
PR(x) = h ((@-1)2PE-1 (1) - (ktm-1) PR-2(x))

3. PLEGN (DPLEGN)
ok (x)=((2k+1)/(kK>-m?)) /2

x ((2k-1)"2 xpP-1(x)-(((k-1)%-uP)/(2k-3)) "/ %pR-2(x))

4. PCHiB1 (DPCHB1)

Tk (x)=2xTk-1(x)-Tk-2(x)

5. PCHB2 (DPCHBY)
Uk (x) =2xUxk-1 (x) -Uk-2(x)

6. PLAGU (DPLAGU)

24
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Lie(2) =4 ((Ze-1-2) Lic-1 () - (k=1) Li2(2))

7. PLAGG (DPLAGG)
L <x>=%(<2k-1+a-x>usel (x)-(k-1+a) L{%(x))

8. PHERM (DPHERM)

Hie(x) =2xHi-1 (x)-2(k-1) He-2(x)

(4 Note

d"Pp(x)
d® °’

Pa(x)=| 1-2% | ™/
PR(X)=(-1)"((2n+1) - (n-m) 1/ (2- (n+m) 1)) /2Ph(x) .

Bibliography
1) Handbook of Mathematical Functions, Dover, N.Y., pp.T771-802 (1970).

(1989. 01. 25)
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ABRMO/DABRMO,ABRM1/DABRM1,ABRM2/DABRM2

(Abramowitz functions of the order (, 1, and 2))

Abramowitz Functions of the Order 0, 1, and 2

Programmed | Ichizo Ninomiya; December 1986

by

Format Function Language; FORTRANT?T Size; 53, 82, 53, 76, 54, and

80 lines respectively

(1) Outline
ABRMO (DABRMO), ABRM1 (DABRM1), and ABRM2 (DABRM2) calculate fo(x), fi(x), and fz(.r)

respectively for a single (double) precision real x with single (double) precision,

fa(x) by the Abramowitz function and is defined as follows:

fa(x)= fo " oo (tPea/) gy (m=0)

(2) Directions

1. ABRMO (X), ABRM1 (X), ABRM2 (X), DABRM( (D), DABRM1 (D), DABRM2(D). X(D) is an arbitrary single (double)

precision real type expression, DABRM0, DABRM1, and DABRMZ each needs to be declared as double
precision,
9. Range of argument 0sX, 0=<D

3. Error processing -

If the argument is outside of the range, an error message is printed but calculation

continues with the function value assumed to be ). (See FNERST.)

(3) Calculation method

1. When 1.0=x<1, polynomials A0, Al, A2, and rational functions B0, Bl, and B2 are used to

calculate:

fo(x)=logx-x-Ap(x%)+Bo(1-x)

27
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Ffi1(x)=logx-x?- A1 (x?)+B1 (1-x)
| jé(x)=logx-x§-Az(x2)+Bz(1—x)

2. When 1=x=2, rational approximations CQ, Cl, and C2 are used to calculate:

Ffo(x)=Co(x-1), f1(x)=C1(1-x), f2(x)=C2(1-x)

3. When x>2,
Fo(@)=e™Do(1/v) » F1(x)=e(x/2) /3Dy (1/v) , f2(x) =™ (/2) Do (1,/v)

is calculated by polynomial approximations DO, D1, and D2,
Where, v=3(a:/2)2/ 3,
(4) Bibliography

1) Handbook of Mathematical Functions, Dover, N Y., p. 1001 (1970).
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ABRMW/DABRMW (Abramowitz functions of integral order)

Abramowitz Functions of the Integral Order

Programm | Ichizo Ninomiya{ December 1986

ed by

Format Function Language; FORTRAN7T7 Size; 36 and 37 lines respectively

(1) Outline
ABRAMW (DABRMW) calculates fn(x), where n is an integer and x is a single (double)

precision real, with single (double) precision,

Where ® 0
fa(x)= fo tPe /gt (m20)

(2) Directions
1. ABRMU (N, X), DABRMH (N, D)
X (D) is an arbitrary single (double) precision expression,
DABRMW needs be declared as a doqble precision real type,
2. Range of argument
0<N, 0<X(D)

3. Error processing

If the value given to the argument is outside of the range, an error message is output but

operation continues with the function value assumed to be 0, (See FNERST.)

(3) Calculation method

Recurrence formula
Fa(@ =851 fo o(2) + L fu3(x)
2 2
is used,

Jo(x),f1(x),f2(x) are calculated by calling function routines ABRMO (DABRMO), ABRM1

(DABRM1), and ABRM2 (DABRM2) respectively,
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(4) Bibliography
1) Handbook of Mathematical Functions, Dover, N.Y., p.1001 (1970).

(1987.08.07)

~.30



33

ACND/DACND, ACNDC/DACNDC (The Inverses of the Cumulative Normal Distribution

Function and its Complement)

The Inverses of the Cumulative Normal Distribution Function and its Complement

Programm | Ichizo Ninomiya, revised in April 1977, April 1981
ed by

Format Function Language: FORTRAN; Size: 9, 10, 9, and 10 lines respectively

(1) Outline
ACND (DACND) calculates ¢'l(x) for a single (double) precision real numbers X with single

(double) precision, and ACNDC (DACNDC) calculates !""l(x) similarly,

where,

o(x) = ﬁ j; Pt w(x) = ﬁ L "oty - %—m:)

and ¢'l(x) ,?"(x) are the inverse functions of @ (x),¥(x) respectively.

(2) Directions
1. ACND(X), DACND(D), ACNDC(X), and DACNDC(D)
X (D) is an arbitrary expression of a single (double) precision real number type, DACND
and DACNDC require the declaration of double precision,
2. Range of argument
(1) ACND and DACND

-1 1
s <X<3%

< D <

(\V] o
o=

(2) ACNDC and DACNDC
0<¥<1, 0<D<1
3. Error processing
If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as (. (See "FNERST. ")
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(3) Calculation method
1. ACND (DACND)
ABRF (DAERF) is called using the relationship &' (x)=vZerf ! (2x).
2. ACNDC (ﬁACNDC)
AERFC (DAERFC) is called using the relationship @"l(x)=a/§er‘fc_](2x),

(1987. 07. 3D
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AERF/DAERF, AERFC/DAERFC (The Inverse of the Error Function and Its Complement)

The Inverse of the Error Function and Its Complement

Programm | Ichizo Ninomiya, April 1977
ed by

Format Function Language: FORTRAN; Size: 21, 31, 37, and 63 lines
respectively

(1) Outline

AERF (DAERF) calculates erf":r for a single (double) precision numbers X with single (double)

precision, and ABRFC (DAERFC) calculates er‘fc"x similarly,
where, :
erf x = -2 f xe‘-t2dt
~T Jo
- 2 f -2
erfc x A e tdt

erfx+erfcx=l

. The functions above are the inverse functions of erf '1‘, erfc":r respectively,

(2) Directions

1. AERF(X), DAERF(D), AERFC(X), and DAERFC(D)

X (D) is an arbitrary expression of a single (double) precision real number type,

and DAERFC require the declaration of double precision,
2. Range of argument
-1<¥<1 and -1<D<1 for the inverse of error functions,
0<X¥<2 and (0<D<2 for the inverse of error functions and their complement,

3. EBrror processing

DAERF

If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as . (See "FNERST.”)
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(3) Calculation method
1. AERF (DAERF)
(1) If |x|=1, an error results,
@ If |x|=0.75, erf":r=xR|(t) is calculated using the optimal, rational approximation
Ri1. Where, t=(0.75+x)-(0.75-x).
@ If 1x10.75, erf 'x=erfc™'(1-x) is calculated calling AERFC (DAERFC).
2. AERFC (DAERFC)
(1) If x=<0 or x=2, an error results,
(2) If 0.25=x=<1.75 that is, if |1-x|=<0.75, erfc']x=erf'(l—x) is calculated calling
AERF (DAERF).
(3) If 0.75<|1-x | =0. 9375, erfc":r=sign(1—x)-(]-u)-Rz(t) is calculated using the
optimal, rational approximation R2. Where, u=min(2-x,x),t=(u-0.0625) - (1.9375-u) .
() 1f [1-x1>0,9375, erfc 'x=t-R3(t) is calculated using the optimal, rational

approximation R3.

Where, t=»/-log(min(2-x,x)) .
Bibliography
1) A J.Strecok; *On the Calculation of the Inverse of the Error Funciion”,Math, Comp,, Vol 22
(1968).
(1987. 07. 15)
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AICGAM/DICGAM (Iﬁcomplete gamma functions)

Incomplete Gamma Functions

Programm | Toshio Yoshida: June 1985

ed by

Format Function language; FORTRAN Size; 309 and 918 lines respectively

(1) Outline
AIGAM (DIGAM) calculates

r'w,x) =f°e"‘u”"du

for single (double) precision real numbers » and x in single (double) precision,

(2) Directions
1. AICGAM(V, X), DICGAM (W, D)
. V and W correspond to », and X and D correspond to x.

Vand X (W and D) are arbitrary single (double) precision real type expressions, DICGAM
requires declaration of double precision,

2. Range of argument
V=20, ¥=0 (W=0, D=0) excluding V=X=0 (W=D=0)

3. Error processing

If an argument outside the range is given, an error message is output and calculation

is continued assuming the function value to be 0, (See the description of FNERST,)

(3) Calculation method
The calculation method of I' (v,x) differs depending on the size of x. When x is small and
0< v<], the function value is calculated from the modification of the following expression

in order to avoid loss of significant digits near »=(:
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X
F(v,x)=l"(v)—L e ldu
- -x ) ,x_.» N xk
rwe {e x,go_l“(kﬂw)}
When 1< v <2, the function value is calculated in the same way, When »>2 for T (v, Xx),
the function is calculated by using the following recurrence relation:
C'(v+l,x)=x’e*+I(v,x)

For details, refer to bibliography 1).

When x is large, calculation is done by the approximation of f» (1/x) in the following form:
r,x)=e*2"f,4)

Note that the approximation is obtained by applying the z method to the following differential

equation that satisfies fy (t):
125, <t>+{ (3—v>t+1}f;<t>+<1—u>f,,<t>=o
For details, refer to bibliography 2).

Bibliography
1) Toshio Yoshida and Ichizo Ninomiya: "Computation of incomplete gamma function I' (v, x) for

small argument x°, Transactions of Information Processing Soc. of Japam, Vol 23, No. 5, pp.522-528

(1982).

2) Toshio Yoshida and Ichizo Ninomiya: “Computation of incomplete gamma function I' (»,x) for
large argument x°, Transactions of Information Processing Sec, of Japan, Vol, 25, No.2, pp.306-312

(1984).
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BETIC/DBETIC (Incomplete Beta Integral)

Title Incomplete Beta Integral

Programmed | Ichizo Ninomiya, April 1983

by

Format Function Language: FORTRAN; Size 34 and 35 lines respectively

(1) Outline
BETIC (DBETIC) calculates the incomplete beta integral

X
B(x,a,b)=j; tt(1-t)blat

for single (double) precision real numbers x, a, and b with single (double) precision,

(2) Directions
1. BETIC(X, A, B)
DBETIC (D, P, Q)
A, B, and C (D, P, Q) are arbitrary expressions of single (double) precision number type,
DBETIC requires the declaration of double precision,
2. Range of argument
0=X=1, 0=A 0=<B, A+B=56,
0<b=<1, 0=P, 0=<Q, P+Q=<56
3. EBrror processing
If an argument outside the range is given, an error message is printed, and the calculation
is continued with the function value as (.
(3) Calculation method
1. If 0=<x=(.575. the Taylor series

2 (- b-1) (b-2) - - - (b-k)2**!
B(x,a,w-k;o e

is calculated,

2. If 0.575¢5<1, the calculation of B(x,a,b) is reduced to that of B(l-x,b,a) using the

38



relativonship -of B (x,a,b)=B(a, b)-B (1-x,b,a), - "

where, a compl_ete Beta integral is calculated as.

I'@@)-T' (b)/T (atbh) (ath+#1)
B (a, b)={ |

w/sinarm - (atbh=1)

W
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BLAS/DBLAS/BLASP/DBLASP (Solution of Blasius equation and its derivatives)

Solution of Blasius Equation and its Derivative

Programm | Ichizo Ninomiya; March 1987

ed by

Format | Function  Language; FORTRAN7T?  Size; 31, 56, 32, and 55 lines

respectively

(1) Outline

BLAS (DBLAS) calculates Jf(x) for a single (double) precision real x, with single (double)
precision,

BLASP (DBLASP) calculates ,f'(x) for a single (double) precision real x, with single (double)
precision,

Where, f satisfies 2f +ff =0, f(0)=f (0)=0, f (=)=1.

(2) Directions
1. BLAS(X), BLASP(X), DBLAS(D), DBLASP(D). X (D) is an arbitrary single (double) precision
real-type expression, DBLAS and DBLASP need to be declared as double precision,
2. Range of argument ¥=0 and D=0,
3. Error processing

If the argument is outside of the range, an error message is printed but calculation continues
with the function value assumed to be (.

(See FNERST.)

(3) Calculation method

1. When 0=<x=<3, 7490234375, polynomial approximation A and B are used to calculate:
F(@)=a?-A(t)
f (@=z-B(t),
t=ax®/2, =0.33205733621519620894 .

2. When 3, 7490234375<X<10(14), rational approximation C and D are used to calculate:

f(x)=x-B+e=-C(u) /22,

40



43

£ (x)=1+e=-D(u) /z,

z=(x-8)/2,

u=3.7490234375/z,

'B=1.7207876575205028196
3. When x>10(14), then

F(x)=x-B

fo=t .

(4) Summary.
In the range of 3.7490234375<x<14, precisidn of DBLASP is indicated by a relative error of
about 10"5,

(1987. 08. 07)
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CELI1/DCELI1/QCELI1 and CELI2/DCELI2/QCELI2 (Complete Elliptic Integrals

of the First and the Second Kind)

Complete Elliptic Integrals of the First and the Second Kind

Programm | Ichizo Ninomiya, April 1977
ed by

Format Function Language: FORTRAN; Size: 36, 61, 40, and 64 lines
respectively

(1) Qutline

CELI1 (DCELI1, QCELI1) calculates K(x) for a single (double) precision real numbers X with

single (double) precision, and CELI2 (DCELI2, QCELI2) calculates E(x) similarly,

where,

122 do % . 2
K(x)=f —_—, E(x)=f NM1-xsin“@ do
0 A/1-xsin0 0

That i1s, x is a value that is usually written as kz,

(2) Directions

1. CELI1(X), DCELI1(D), .QCELI1(@), CELI2(X), DCELI2(D), and QCELI2(Q)

X (D) is an arbitrary expression of a single (double) precision real number type,

DCELI2 require the declaration of double precision,

2. Range of argument
0<X¥<1 and 0=I<1 for the complete elliptic integral of the first kind,
0<X<1 and 0<D<] for the complete elliptic integral of the second kind,

3. Error processing

DCELI1 and

* If an argument outside the range is given, an error message is printed, and calculation is

continued with the function value as (. (See “FNERST.”)

142



us

(3) Calculation method
L CELII (DCELI1, QCELID)
(1) If x<0 or x=1, an error results,
(2) If 0=x<1/2, a rationalvapproximation function of y=1-x is used,
(3) If 1/2<x<1, rational approximations P and Q are used to calculate K(x)=P(y)-Q(y)logy,
where y=1-x.
2. CELI2 (DCELI2, QCELI2)
(1) If x<0 or x1, an error results,
(2) 1f x=1, B(x)=1
(3) If 0=x<1/2, a rational approximation function of Yy=1-xis used,
(4) If 1/2=x<], rational approximations P and Q are used to calculate E(x)=P(y)-Q(y)logy,

where y=1-x.

(4) Note

Note that not the modulus k but k2 is put in .the argument X,

Bibliography

1) Handbook of Mathematical Functions, Dover, N Y., p. 587 (1970).
(1987.07.31)
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CGAMMA/CDGAMA/CQGAMA (Gamma function for complex arguments)

Gamma Function for Complex Arguments

Programm | Ichizo Ninomiya; April 1977; Revised in December 1986

ed by

Format Function Language; FORTRAN Size; 76, 77, and 120 lines

respectively

(1) Outline

CGAMMA (CDGAMA, CQGAMA) calculates I'(z) for single (double, quadruple) precision complex number
z, as a single (double, quadruple) precision complex number,

(2) Directions

1. CGAMMA (C), CDGAMA (B) , CAGAMA (Z)

C (B, Z) is an arbitrary expression of the single (double, quadruple) precision type,
CGAMMA (CDGAMA, CQGAMA) needs be declared to bé a single (double, quadruple) precision
complex,

2. Range of argument

The range of argument is a complex plane from which 0, negative integers, and an area where
gamma function values overflow are excluded,

3. Error processing

If the value given to the argument is outside of the range, an error message is printed but

operation continues with the function value assumed to be (), (See FNERST.)

(3) Calculation method

Suppose the argument is z=x+iy,
1. When z is 0 or a negative integer, an error results,
2. When |x|>56 or|y!>956, an error results,
3. When |z|£;1 or |x|=<0.5 and |y|<1.0, 1/T(z) is calculated by the Taylor series,
4, When x<0, it is converted into the case of x> using the inversion formula
z)=c/(I'(1-2)-sinnz).

5. When J:2+y2>16(32,144) , LogT (z) is calculated by the partial sum of asymptotic series

44



longz)=(z-1/2)-2ogz+logv§%lz+§:;4C@Afh't
6. When |y|=1.0 but the argument is outside of (1) and (3), the asymptotic expansion
I' (z)=T (2+1)/z is repeated as many times as needed to reduce to the case of 3.
7. When |y|>1.0 and :t2+y2§16(32,144), the asymptotic expansion I' (2+1)=z T" (2) is

repeated as many times as needed to reduce to the case of 3.

(4) Note
1. CDGAMA and CQGAMA can be replaced by DCGAMA and GCGAMA respectively,

(1987. 08. 07)
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CLASN/DCLASN (Clausen’s Integral)

Clausen’s Integral

Programm | Ichizo Ninomiya, February 1985

ed by

Format | Function Language; FORTRANTT; Size; 29 and 43 lines respectively

(1) Outline
CLASN (DCLASN) calculates the Clausen’s integral f(x) for a single (double) precision real

number x with single (double) precision, Where,

f(x)=- _/;nlog(2sin%)dt=§.__8in£fx

(2) Directions
1. CLASN(X), DCLASN(D)
X(D) is arbitrary an expression of single (double) precision real type, DCLASN requires
the declaration of double precision,
2. Range of argument |X|<1 and |D|<1
3. Error processing
If an argument outside the range is given, an message is printed, and the calculafion is

continued with the function value as 0. (See FNERST,)

(3) Calculation method
1 If |x|>1, an error results,
2. If |x]=1/2, f(x):nx(A(xz)-log(nx)) is calculated with the optimal approximation A,

3 If 1/2%<|x]|=1, f(x)=x-B(x2) is calculated with the optimal approximation B,

Bibliography
1) Handbook of Mathematical Functions, Dover, N.Y., p. 1005 (1970}

(1989. 01. 25)
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CND/DCND, CNDC/DCNDC (The Cumulative Normal Distributicn Function and its Complement)

The Cumulative Normal Distribution Function and its Complement

Programm | Ichizo Ninomiya, revised in April 1977, April 1981
ed by

Format Function Language: FORTRAN; Size: 5, 6, 5 and 6 lines respectively

(1) Outline
CND (DCND) calculates @(x) for a single (double) precision real numbers x with single

(double) precision, and CNDC (DCNDC) calculates ¥ (x) similarly,

where,

o(x) = ﬁ fo et dt

7 (x) ./12? fx Tty -L-o@)
(2) Directions
1. CND(X), DCND(D), CNDC(X), and DCNDC(D)
X (D) is an arbitrary expression of a single (double) precision real number type, DCND and
DCNDC require the declaration of double precision,
2. Range of argument

There is no limit on arguments,

(3) Calculation method
1. CND (DCND)
The elementary external function ERF (DERF) is called using the relationship . y
¢ (x)=erf(x/v2)/2. |
2. CNDC (DCNDC)
The elementary external function ERFC (DERFC) is called using the relationship

v (x)=erfc(z/~2)/2,
47
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DAWSN/DDAWSN (Dawson’s Integral)

Dawson’ s Integral

Programm | Ichizo Ninomiya, February 1985

ed by

Format Function Language: FORTRANTT; Size: 62 and 125 lines respectively

(1) Outline
DAWSN (DDAWSN) caiculates the Dawson’s integral f(x) for a single (double) precision real

number x with single (double) precision, Where,

f(x)=e™ [) “etdt

(2) Directions

1. DAWSN(X), DDAWSN(D)
X(D) is an arbitrary expression of single (double) precision real type. DDAWSN requires the
declaration of double precision,

2. Range of arguments: None,

(3) Calculation method

1. DAWSN

(1) If |x|=4, the optimal rational approximations A is used according to the value of |x| to

calculate f(x)=x-A(x2).
(2) If |x|>4, we calculate f(x)=P((4/x)2)/x with the Optimal polynomial approximation P,
2. DDAWSN

(1) If x| =6, the optimal rational approximation formula B is used according to the value of le.

to calculate f(x)=x-B(x2).

(2) If |x|>6, we calculate f(x)=0((6/x)2)/x with the optimal polynomial approximation Q,

49



52

" Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y., pp.297-329 (1970)
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DEBYE/DDEBYE (Debye Function)

Debye Function

Programm | Ichizo Ninomiya, December 1987

ed by

Format | Function Language: FORTRANTT; Size: 33 and 49 lines respectively

(D

Qutline

DEBYE (DDEBYE) calculates the Debye function Db(x) for a single (double) precision real

numbers x with single (double) precision,

Where,
_[F t dt
Po@=J, o
(2) Directions

@)

1. DEBYE(X) and DDEBYE (D)
X(D) is an arbitrary expression of single (double) precision,
DDEBYE requires the declaration of a double precision real type,
2. Range of argument
No limit,
Calculation method
() If 2<-18.42(-41.45), Db(x)=-7°/6-2%/2,
@) 1f -18. 42(-41. 45) sx<-2, Db(x)=—-72/6-1n?(-t)/2-t-A(t) is calculated using an
optimal pqunomia] approximation A,
Where, t=1/(1-€™) |
Q) If |x|=2 Db(x)=x-(1—x/4+x2-B(xz)) is calculated using an . optimal polyncmial
approximation B,
() 1f 2<x<18.42(41. 45), Db(x)=r’/B+t -2+t (1+t/4+t2-B(1?)) is calculated. Where,
t=Iln(1-e™)
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G) 1f >18. 42(41. 45), Db(x)=1%/6,
(4) Note

There is the relationship Db(x)=Sp(-In(1-x)) with the functions Sp of Spence,
Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y. p.998 (1970)

(1987. 08. 07) (1988. 02. 15)
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DIGAM/DDIGAM (Digamma Function)

Digamma Function

Programm | Ichizo Ninomiya, April 1981
ed by

Format Function Language: FORTRAN; Size: 37 and 47 lines respectively

(1) Outline
DIGAM (DDIGAM) calculates the digamma function Y(x)=I"" (x)/I'(x) for a single (double)

precision real numbers X with single (double) precision,

(2) Directions

1. DIGAM(X) and DDIGAM(D)

X (D) is an arbitrary expression of a single (double) precision real number type, DDIGAM
requires the declaration of double precision,
2. Range of argument
x2-2'8, p2-2°
However, ( and negative integers are excluded,

3. Error processing

If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as (, (See "FNERST.”)

(3) Calculation method

1. If x<0.5, the argument is converted to x =0, 5 using the inversion formula
Y(1-x)=y(x)+7 cot mx,

2. If 0.5=x <16, the argument is converted to 0, 5Sx <1 5 using the recurrence formula
Y(x+1)=y(x)+1/x, and Y(x) is calculated as Y(x)=R(t)+t/(1+t)-r,t=x-1 using the
optimal rational approximation formula R,

3. If x>16, the optimal polynomial approximation related to 1/x2 of Y(x)-log(x)+1/2x is

used,
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Bibliography
1) Handbook of Mathematical Functions, Dover, N.Y., p.253 (1970).

(1987. 07. 09)
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DILOG/DDILOG/CDILOG/CDDILG (Dilogarithm)

Dilogarithm

Programm | Ichizo Ninomiya, December 1987
ed by

Format Function Language: FORTRAN; Size: 8, 9, 5, and 5 lines respectively

(1) Outline
DILOG (DDILOG, CDILOG, CDDILG) calculates the dilogarithm
1
dilog(x)=- f Int g4
x t-l )
for single precision real numbers (double precision real number, single precision complex number,
double precision complex number) x with single precision real numbers (double precision real

number, single precision complex number, double precision complex number),

(2) Directions
1. DILBG(X), DDILOG(D), CDILOG(C), and CDDILG (B)

X, D, C, and B are arbitrary expressions of corresponding types, DDILOG, CDILOG, and
CDDILG require the declaration of corresponding types.
2. Range of argument
0, >0

3. Error processing

If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as 0, (See "FNERST.”)

“(3) Calculation method

Spence function routines are called using the relationship dilog(x)=Sp(1-x).

Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y., p.1005 (1970).
(1987. 07. 07) (1988. 01. 27)
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ERFC1/DERFC1 (ln'tegral of complementary error function)

Integral of the Complementary Error Function

Programm | Ichizo Ninomiya: May 1986

ed by

Format Function Language; FORTRAN Size; 55 and 110 lines respectively

(1) Outline

ERFC1 (or DBRPCI) calculates i'erfcx with single (or double) precision for single (or double)

precision real x, where,

ilerfcx= f erfctdt ,
x
2 [7 -2
erfcx=—“/7F j; e dt.

(2) Directions

1. ERFC1(X), DERFC1(D)
X (or D) is an arbitrary single (or double) precision real type expression. DERFC1
requires declaration of double precision,

2. Range of argument
X=0, D=0

3. Brror processing

If the argument is outside the range, an error message is printed but calculation

continues with the function value assumed to be 0. (Refer to FNERST.)

(3) Calculation method
(1) When x<0, an error results,

(2) When 0=x =2, to calculate a rational function f{X) is used,

ilerfex=(f(x))®

(3) When 2<x <13.1, a rational function g is used to calculate
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ilerfcx=e*@g(4/&?)

(4)- When 2>13. 1,

i'ezrj%xr=()

Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y., p.299 (1970).
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EXI/DEXI and EI/DEI (Exponential integral)

Exponential Integral

Programmed | Ichizo Ninomiya; April 1985

by

Format Function language; FORTRAN77, Size: 57 and 113 lines

respectively

(1) Outline
For single (double) precision real x, EXI(DEX1) and EI (DEI) each calculate the following

exponential integrations with single (double) precision:
. T et “et ' :
Ei(x)= Tdt yEr1(x)= —t—dt (E] (x)=-E1 (—x))
o T
If x, Ei(x) is regarded as the Cauchy’s principal value,

(2) Directions
1. EXI (X), DEXI (D), EI (X), DEI (D)
X (D) is an arbitrary single (double) precision real type expression, DEXI and DEI
require declaration for double precision,
2. Range of argument: X+#0, X<174.673 D+#0, and D<174 673 for EXI and DEXI
X#0, X=-174.673 D#0, and D=-174. 673 for EI and DEI
3. Brror processing
If an argument outside the range is given, an error message is printed and calculation is

continued with the function value put to (.

3 Calculation method
1. EXI (DEXD)
(1) When x<0, Ei1(x)=-E1(-x) is calculated by function routine EI or DEI.

(2) When 0<x <6, an optimal rational approximation A is used as follows:
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Ei(x)=(x-2)-A(B~-x)+log(x/2)
Here, ==0.37250741078136663446 is the zero of Ei(z).
(3) When 6<x <12, an optimal rational approximation B is used as follows:

Ei(x)=B(6/x-1/2)-e*/x

(4) When 12<x <24, an optimal polynomial approximation C is used as follows:

Ei(x)=C(1-12/x) - /x
(5) When 24<x <174.673, an optimal rational approximation D is used as follows:

Ei(x)=D(1-24/x) -e"/x

2. Calculation method of EI(DEI)
(1) When x<0, the function routine EXI or DEXI is used to calculate;

E1(x)=-Ei(-x)

(2) When 0<x <1, a rational approximation P is used as follows:

Ei(x)=P(x)-logx

(3) When 1<x <2, a rational approximation @ is used as follows:

"Ei1(x)=Q(x-1)

(4) When 2<x <175.040, a rational approximation R is used as follows:

Ei(x)=R(2/x)e*/x
(5) When x> 175, 040, we put E(x)=0,
(4) Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y. p.228 (1970)

(1987. 08. 05) (1987. 08. 11) (1987. 08. 24)
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FRESS/DFRESS and FRESC/DFRESC (Fresnel Sine and Cosine Integrals)

Fresnel Sine and Cosine Integrals

Programm { Ichizo Ninomiya, April 1977
ed by

Format | Punction Language: FORTRAN; Size: 72, 128, 72, and 128 lines
respectively

(1) Outline
FRESS (DERRESS) calculates S(x) and for a single (double) precision real numbers X with

single (double) precision, and FRESC (DFRESC) calculates C{x) similarly,

where,

S(x) - f—f S'Ultdt

C(:c) = J—f COStdt

(2) Directions
1. FRESS(X), DFRESS(D), FRESC(X), and DFRESC(D)
X (D) is an arbitrary expression of a single (double) precision real number type, The
function name of double precision requires the declaration of double precision,
2. Range of argument
0=X, 0=<D
3. Brror processing
If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as . (See "FNERST.”)

(3) -Calculation method

1 If 0=x =2,
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S(x)=x- VTAs(x?), C(x)=nTAc(x?) are calculated using the polynomial

approximations Ag,Ac.

2. If <x =4,
S(x)=Bs(x-3), C(x)=B:(x-3) are calculated using the polynomial

approximations (rational) Bs,Bc.

3. If &x =6,

S(x)=Cs(x~-5), C(x)=C.(x-D) are calculated using the polynomial approximations

CS ch.
4. If 6<x =8,
S(x)=Ds(x-T), C(x)=D.(x-T) are calculated using the polynomial approximations
Ds,De.

5. 1f 8<x=<8 23-10° (3.53-10),
R(x)=E(t), o(x)=t-F(t), t=8/x,
S(x)=-12- — cos(x-9)-Ap-1,

C(x) =% + sin(x-¢)-A/p-t

are calculated using the polynemial approximations (rational) E,F .

6. If £>8.23-10° (3.53-10'),

S@=}, c@=L
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(4) Note

1. Note that Presnel integrals have a different definition, -

Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y., P.300.
: (1987. 07. 15) (1987. 08. 11)

62



HYPGM/DHYPGM/QHYPGM, CHPGM/DCHPGM/QCHPGM (Hypergeometric series and

confluent hypergeometric series)

Title Hypergeometric Series and Confluent Hypergeometric Series

Programmed | Ichizo Ninomiya; December 1987

by

Format Function Language; FORTRAN Size; 21, 22, 22, 17, 18, and 18

lines respectively

(1) Outline
HYPGM, DHYPGM, and QHYPGM each calculate the following hypergeometric series, in single,
double, or quadruple precision with the accuracy given by &, for single, double, or quadruple
precision real numbers a, b, ¢ and x:
F(a,b,c,x)= ijigllgﬂh&i

= (c)nn!

CHPGM, DCHPGM, and QCHPGM each calculate the following confluent hypergeometric series, in
single, double, or quadruple precision with the accurécy given by e, for single, double, and

quadruple precision real numbers a, b and x:

v (@)x”
M(a,b,x)—g—(b)nn!

where (@)qa=a- (a+1)---(a+n-1).
(2) Directions
1. HYPGM (A, B, C, X, E), DHYPGM (DA, DB, DC, DX, DE), QHYPGM(QA, @B, GC, X, QF)
CHPGM (A, B, X, E), DCHPGM (DA, DB, DX, DE), QCHPGM (QA, B, X, QF)

A, B, C, X, and E (DA, DB, DC, DX, DE; GA, @B, QC, QX, QE) are arbitrary single (double;

quadruple) precision expressions, DHYPGM and DCHPGM (QHYPGM and QCHPGM) need to be declared as
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double (quadruple) precision,
2. Range of argument
HYPGM (DHYPGM, QHYPGM): 0=<IX|, [DX|, |QX|=1
3. Error processing
If the specified argument is outside the range or if no convergence occurs after calculation
of 1,000 terms, an error message is printed but calculation continues with the function value
assumed to be (,
(3) Calculation method
The series are accumulated sequentially starfing from the first term, When the absolute value
of the term added last is smaller than €, then convergence is assumed to have occurred, The
partial sum is used a the function value,
(4) Summary
Notice that some combinations of a, b, ¢, x and € may cause overflow or underflow or
nonconvergence,
Bibliography
1) Handbook of Mathematical Punctions, Dover, N.Y. p, 505, p.556 (1970)

(1987. 08. 11) (1988. 02. 15)
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ICEILS/D (Incomplete Elliptic Integrals of the First and Second Kind)

Incomplete Elliptic Integrals of the First and Second Kind

Programm { Ichizo Ninomiya, February 1982
ed by

Format Subroutine Language: FORTRAN; Size: 74 and 79 lines respectively

(1) Qutline
If the upper limit X and parameter m are given, ICEILS/D calculates the first and second kind

incomplete elliptic integrals

* dt ¢ do
F( . ): =
o L A (1-t%) (1-mt?) fo ~1-msin0

an

d
x 2 (] >
E(:r,m)=j; ‘/—lf_'"t—tz dt=j; A 1-msin“0d6

where,
O=x=1, Os¢psn/2, 0sms=1, (x=sing)
2) Directions

CALL ICEILS/D(X, AM, F, E, CF, CE, IND)

Argument | Type and | Attribut Content
kind (1) |e
X Real type | Input Upper limit of integral, (=x <1
AM Real type | Input Parameter m(=k%). (<0<l
R Real type | Output | Incomplete elliptic integral of the first kind F(x,m),
E Real type | Output Incomplete elliptic integral of the second kind E(x,m).
CF Real type |Output | Complete elliptic integral of the first 'kind Km).
CE Real type | Output Complefe elliptic integral of the second kind E(m).
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Argument | Type and Attribut Content
kind (1) |e

IND Integer Input/ou | Input: IND=0: Only F and CF are calculated,
type tput IND#0: F, | E, CF, and CE are calculated,

Qutput: IND=0: Normal termination,
IND=10000: x=0, x=1, m=0, or m=1 occurred, The
result is normal,
IND=20000: Arithmefico—geometrical mean method did
not converge even though the calculation
was repeated 20 times,

IND=30000: x<0, x>1. m<0, or m>1 occurred, The

calculation is interrupted,

x] For ICEILD, all real types should be changed to double precision real types.

(3) Calculation method
Gauss’s arithmetico-geometrical mean method is used,
1. Starting from ap=1,bo=~T-m ,co=+m, a sequence (a;,bi,C;) ;i=1 »2, =~ is generated
as follows:
ai+1=(ai+bi) /2,
bi+1=/aibi ,
ci+1=(ai-bi)/2,
If cN=0 is reached with a sufficient precision, the generation is stopped, Then, the complete
elliptic integrals are given by
K (m)=/(2ay) ,
E(m)=K (m) {1—%(08+2c?+2205+ -2 )

2. Starting from qoo=Sin"x. a sequence ®1,¢2, - - - ,oN is generated as follows:
tan(p;+«1-¢i)=(bi/a;) tanp;,1=0,1, - - - ,N-1
where, ©n+1>¢n,

| One1-20n | <.
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Then, the incomplete elliptic integrals are given as
F(x,m)=pn/ (2'an)

E(x,m)=(E(m)/K(m)) - F(x,m)+cisingi+ - + - +tCNSINEN

3 If m=1,
CF=0, (K(m)==)

CE=1 .
F=1 10g lﬂclogﬂl(tan( £2+IH)
2 1-x 2 4
E=x
(4) Note

1. This subroutine is used to calculate the standard incomplete elliptic integral of the first
and second kinds, It also outputs the complete elliptic integral of the first and second kinds
as a by-product, When only the complete elliptic integral is to be calculated, however, it is
more reasonable to use the special function routines CELI1 (DCELI1) and CELI2 (DCELI2).

2. This routine memorizes the AM value of the last call, If the same AM value is subsequently
input, part of the step in 1 in "Calculation method” above is omitted, Thus, it is more
reasonable to call this routine with the AM value left unchanged and only the X value changeé.

3. If P is a cubic or quartic polynomial of {, and R is an arbitrary rational function, fhe

general elliptic integral

f:R(./F)dt

can be reduced to the three standard types: first kind F(x,m), second kind E(x,m), and

third kind IT(n;x,m) through appropriate variable transformation,

Where,
. * dt
Nn;x,m)=
0 (1-nt2) A/ (1-t%) (1-m%t?)
Bibliography
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1) Handbook of Mathematical Functions, Dover, N.Y., pp.589-626 (1970).

(1989. 01. 20)
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JACELS/D/Q (Jacobian Elliptic Functions sn,cn,dn sn,cn,dn))

Jacobian Elliptic Functions sn,cn,dn sn,cn,dn)

Programm | Ichizo Ninomiya, April 1977
ed by
Format Subroutine Language: FORTRAN; Size: 54 and 55 lines respectively

(1) Outline

JACELS (JACELD) is a subroutine subprogram for calculating the Jacobian elliptic function

Sn(u,kz),cn(u,kz),dn(u,kz) and complete elliptic integral of the first kind K(kz) for

single (double) real numbers u,k2 with single (double) precision.

(2) Directions

CALL - JACELS/D/Q (U, AK, SN, CN, DN, @P, ILL)

Argument | Type and Attribut Content

kind (x1) e
U Real type | Input Variable u. |U|=QP
AK Real type | Input Square k:2 of the modulus k. (=AK=1
SN Real type | Output The value of the sn function is output,
CN Real type | Qutput The value of the cn function is output,
DN Real type | Output The value of the dn function is output,
ap Real type | Output The value of K is output,
ILL Integer Dutput ILL=0: Calculation is normally executed,

type ILL=30000: AK<Q or AK>1.

ILL=1: |U}>QP occurred,

x] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Calculation method

Salzer’s arithmetico-geometrical mean method n is used,
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(4) Note

Note that not the modulus k but k2 is input in AK
" Bibliography

1) H B. Salzer; Quick Calculation of Jacobian Elliptic Functions®, CACM, Vol.5, p.399, (1962).

(1987. 06. 26) (1987. 08. 21)
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PN/DPN, PNM/DPNM (Legendre and Adjoint Legendre Polynomial)

Legendre and Adjoint Legendre Polynomial

Programm | Ichizo Ninomiya and Yasuyo Hatano, revised in April 1977; December
ed by 1987

Format Function Language: FORTRAN; Size: 18, 19, 31, and 32 lines
respectively

(1) Outline

PN (DPN) calculates Pp(x) for an integer n and a single (double) precision real number x
with single (double) precision,
PNM (DPNM) calculates Pn(x) for integers m,m and a single (double) precision real numbers X

with single (double) precision,where, Pn(x) is a Legendre polynomial, and Pp(x) is a Legendre

adjoint polynomial,

(2) Directions
1. PN(N,X), DPN(N,D), PNM(N,M, X), and DPNM(N, M, D)

N and M are arbitrary expressions of an integer type, and X (D) is an arbitrary expression
of a single (doqble) precision real number type, IlP‘NAand DPNM requ'ire the declaration of
double precision,

2. Range of argument
0=N, O=M=N,

3. Error processing

If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as 0, (See "FNERST.”)

(3) Calculation method

1. PN (DPN)

(1) If n<0, an error results,
(2) 1f n=0, Pn(x)=1,
(3) 1If n=1, Pa(x)=x.
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(4) If n=2, the recurrence formula

Pe@)=Zlapc () - Ko

is sequentially applied to k (2~n) beginning from Po(x)=1,Pi(x)=x.

2. PNM (DPNM)
(1) If n=0 and 0<m=<n are not met, an error results,
() 1If m=0, PR(x)=Pn(x).
@) 1f m>0, Pi(x)=|1-2% | "2Fa(x).
(@ 1f n=m, FR(x)=1-8-- (2n-1).
(5) If n=m+1, Fa(x)=1-3----(2n-1)-x.
(6) 1If n=m+2, the recurrence formula

Fa@)=8lapp () - EBLpp,o(r)

is sequentially applied to k (m+2~n) beginning from

F(x)=1+3e o (2m=1) ,F21 (2)=1 -3¢ e (2m+1) -

(4) Note

The definition of Legendre adjoint polynomials of this routire is

Pi@)= | 1-22 | $LE0(D)

Note that there are different definitions,

(1987. 07. 03) (1988. 01. 08)
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QN/DQN and GNM/DQNM (Legendre Functions and Adjoint Legendre of the Second Kind)

Legendre Functions and Adjoint Legendre Functions of the‘ Second Kind

Programm | Ichizo Ninomiya, December 1987
ed by

Format Function Language: FORTRAN; Size: 60, 61, 93, and 94 lines
respectively

(1) Outline

QN (DQN) calculates Qn(x) for an integer n and a single (double) precision real number X with
single (double) precision,

QNM(DQNM) calculates Qn(x) for integers m,m and a single (double) precision real numbers X
with single (double) precision, Where, Qn(X) is the Legendre function of the second kind, and

Qr(x) is the adjoint Legendre function of the second kind,

(2) Directions

1 QN(N,X), DQN(N,D), QNM(N,M, X), and DGNM(N, M, D)

N and M are of an integer type, and X(D) is an arbitrary expression of a single (double)
precision real number type, DQN and DONM require the declaration of double precision,

2. Range of argument
0=N, 0sM=<N. [X|#1 [D|#1

3. Error processing
If an argument outside the range is given, an error message is printed, and the calcula.tion

is continued with the function value as 0, (Sce "FNERST.”)

(3) Calculation method
1. aN(paN)
(1) If n<0 or |x|=1, an error results,
() 1f |x]=0.9, do the following:
(i) 1f n=0, Qo(x)=1/21n 1+z/1-x.
(i) If n=l, Qi(x)=x-Qo(x)-1.
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(iii) If n=2, the recurrence fornula Qx (x)=((2k-1) -x-Qx-1(x)-(k-1)Qk-2(x) ) /k is

sequentially applied to k (2~n) starting from Qo(x),@i(x).
(3) If |x1>0.9, the calculation is reduced to the case of x>0 using Qu(-X)=(~1)"'Qu(x)

(4 If 0.9<x<1.05 the calculation conforms to the theoretical formula -
1 —n)k(n+1)k -x
Q@)=L In (L)
e k=0 (k!)2

_ (n)k(n+1)k -z
INCORICS (15 )"

1+x
1-x

Where,

e(n)

g
-

(5) If x>1.05, do the following:
(i) Take a sufficiently large integer N (details onitted), and set Fy=107", Fy.1=2xF¥.
(ii) Apply the opposi/te direction recurrence formula
Fie(x)=((2k+3) xF+1- (k+2) - Fis2) / (k+1)
to k (N-1~0) sequentially,
(iii) Qu(x)=Fa-Qo(x)/Fo. Where,

Q(z)=F% 1n | 13X

2. QNM(DQNM)
(1) 1f m<O,n<m or | x|=1, an error results,
(@ If |x]|=0.8, do the following:

(i) set F§=1/2-In(1+x/1-x) ,Fi=x-Qo(x)-1,
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(ii) Fg,Fn.1 are given by applying the two recurrence formulas
F= Pk~ @1 FEED 7 (1-02)  Fl=aFfe2krt!
alternatively to k (k=1~m-1),
(iii) If n=m, QR(z)=(1-x")"?F3,
(iv) 1f n=m+1, Q&(x)=(1-2%)*?F3..
W) 1f nzm+2, Q(x)=(1-2%)™2F" is given by applying the recurrence formula

FE=((2k-1)xFk-1- (k+m-1)FE-1) /(k-m) to k (k=m+2~n).
(3 1f |x]>0.8, the calculation is reduced to the case of x>0 using Q(-x)=(-1)""1Q2(x)

(4 If 0.8<x=1.1, the calculation conforms to the theoretical formula

2102
@)=L z‘f,ﬂl { ()} Z(Qo(x)—co(n-m)w(k))

(n-m) !m! =

SRS (2 @ smum o)

(- (n+1)k i ol T (—n);\(n+1)k(m—1 -k)! k
(m+1) k! t} = x)"}: , -t

(B) If 1.1, do the following:
(i) Take a sufficiently large (details omitted) integer N, and set FR=10"7, FR_,=2xFp.
(ii) Fgp,Fn+1 is given by.applying the opposite direction recurrence formula to k (k=N-1~m)

sequentially,

(iii) The two recurrence formulas

Fko=(FE-aFk:D /(2k+2)

and

Fl=(aFka+ (1~ FED /(2k+1)

are alternatively applied to k (k=m-1~0) starting from Fg,Fa1.

(iv) Q(x)=(a?-1)"?F2-Qo(x)/FY.
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(4) Summary

This routine conforms to

Q)= | 1-a2 | 2L ()

Note that there are other definitions,

Bibliography o

1) Handbook of Mathematical Functions, Dover N.Y., p.332 (1970).
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QNOME/DQNOME (The Nome of Elliptic @ Functions)

The Nome of Elliptic @ Functions

Programm | Ichizo Ninomiya, April 1981
ed by

| Format Function Language: FORTRAN; Size: 23 and 32 lines respectively

(1) Outline

QNOME (DONOME) calculates the nome qQ(x) of elliptic 6 functions for a single (double)
precision real numbers X with single (double) precision, where, X represents the parameter m=k2

of elliptic functions,

(2) Directions

1. QNOME(X) and DQNOME (D)

X (D) is an arbitrary expression of a single (double) precision real number type, DANOME
requires the declaration of double precision,
2. Range of argument
0=x=1, 0=D=1

- 3. Error processing

If an argument outside the range is given, an error message is printed, and calculation is

continued with the function value as 0, (See "FNERST.”)

(3) Calculation method

1. If 0=x=0.5, q(x) is calculated using the optimal rational approximation formula,

2. 1f 0.5<x=1, the calculation is converted to that of the complementary nome Q( I-x) using

the relation logq(x)logq(1-x)=r2,

Bibliography
1) Handbook of Mathematical Functions, Dover, N.Y., p.591 (1970).
(1987. 06. 25)
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RGAMA/DRGAMA (Reciprocal of Gamma Function)

Reciprocal of Gamma Function

Programm | Ichizo Ninomiya, April 1981
ed by

Format Function Language: FORTRAN; Size: 41 and 54 lines respectively

(1) Outline

RGAMA (DRGAMA) calculates 1/I'(x) for a single (double) precision real numbers x with single

(double) precision,

(2) Directions
1. RGAMA(X) and DRGAMA (D)
X (D) is an arbitrary expression of a single (double) precision real number type, DRGAMA
requires the declaration of double precision,
2. Range of argument
X=-56, D=-56
3. Error processing
If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as (. (See “FNERST.”)

(3) Calculation method

1. If -56<x<0, the calculation is reduced to that of 1/I'(1-x) using the following

inversion formula,
1 _rd-z)sinrx
r(x) T
2. If 0=x <32, the argument is converted to that in the range of 1=<x <2 as required using

the recurrence formula I'(1+x)=xI'(x), and 1/F(x)=P(t),t=x-1 is calculated with the

optimal approximation polynomial P,

3. If 32<x <57, log I'(x) is computed using an approximation formula and 1/I'(x) is

computed as follows:
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1 —p-logr(x)
r(x)
4, If x>57,
. 1
@ 0
(4) Note
1. '(x) has the pole of the order 1 at x=0, -1, -2, -+--. However, 1/I'(x) has no

singularity other than infinity, It is a so-called entire function,
2. For the calculation of rational functions that have a Gamma function in the denominator, it

is more reasonable to use this function program rather than the Gamma function program,

Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y!, p. 253 (1970).
. (1987, 07. 31)
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SI/DSI and CI/DCI (Sine and Cosine Integrals)

Sine and Cosine Integrals

Programm | Ichizo Ninomiya, May 1983
ed by

Format | Function Language: RORTRAN; Size: 75, 130, 74, and 137 lines
respectively

(1) Outline
SI1(DSI) calculates S;(x) for a single (double) precision real numbers x with single (double)

precision, and CI(DCI) calculates C;i (x) similarly,

where,

(= [ sint
S,(:r)j; T di

C;(x)=- f "cost gy
- o

(2) Directions
1. SI(X), CI(X), DSI(D), and DCI(D)
X (D) is an arbitrary expression of a single (double) precision real number type, The
function name of double precision requires the declaration of double precision,
2. Range of argument
0<X and 0<D for sine integral,
0<X and 0<D for cosine integral,
3. Error processing
If an argument outside the range is given, an error message is printed, and the calculation

is continued with the function value as (. (See “FNERST. ")

(3) Calculation method
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1. If 0sx =2 (0<x =2 in case of cosine integral),

Si(x)=x-As(x%), Ci(x)=Ac(x®)+logx

is calculated using the polynomial approximations As,Ac.

2. If kx=4,

S;i(x)=Bs(x-3), Ci(x)=B:(x-3)

is calculated using the polynomial approximations Bs,Bc.

3. If 4<x <6,
Si(x)=Cs(x-5), Ci(x)=Cc(x-5)

is calculated using the polynomial appfoximations Cs,Ce.

4, If 6<xr <8,

Si(x)=Ds(x-T), Ci(x)=Dc(x-T)

is calculated using the polynomial approximations Ds, D,

5. If 8<x=8 23-10° (3.53-10'),

R(x)=E(1), p(x)=t-F(t), t=8/x and
Sg(x)=—£— - R-t-cos(z-¢), Ci(x)=R-t-sin(x-9)

33

are calculated using the polynomial approximations (rational approximations) E,F .

6. If x8.23-10° (3.53-10),
Si($)=% » Ci(x)=0

Bibliography

1) Handbook of Mathematical Functioms, Dover, N.Y., p.231.
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SPENC/DSPENC and CSPENC/CDSPEN (Spence Function)

Spence Function

Programmed Ichizo Ninomiya, December 1987

by

Format Function Language: FORTRANT7; Size: 38, 58, 41, and 62 lines

respectively

(1) Outline

SPENC (DSPENC, CSPENC, CDSPEN) calculates the Spence function
x —
Slo(x)=-f0 ———l"(l B g

for single precision real numbers (double precision real number, single precision complex
number, double precision complex number) X with single precision real numbers (double precision

real number, single precision complex number, double precision complex number),

(2) Directions
1. SPENC(X), DSPENC(D), CSPENC(C), CDSPEN (B)
X(D,C,B) is an arbitrary expression of corresponding type, DSPENC, CSPENC, and CDSPEN
require the declaration of corresponding types.
2. Range of argument

No limit,

(3) Calculation method
" 1. Calculation method of SPENC(DSPENC)
(1 1f |x| =1/4, Sp(x)=x-A(x) is calculated using an optimal polynomial
approximation A,

@ If 1-e?sxsl1-e72, Sp(x)=t-(l—t/4+t2-B(t2)) is calculated using an optimal
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polynomial approximation B,
Where, t=-In(1-x)

@) If 1-e%x=2, Sp(x)= 2/6+t(1+t/4+t2-8(t?))-t-ln| 1-x| is calculated,
Where, t=lnx

@) 1f x<1-e®, Sp(x)=—-n2/6-1n?(-x)/2-t-A(l) is calculated, Where, t=1/z.

G) If x=1, Sp(x)=n?/6. .

©®) 1f 22, Sp(x)=r2/3+t- (1+1/4+t°B(t%))-1n®x/2 is calculated, Where,

t=In(1-1/x)

2. Calculation method of CSPENC(CDSPEN)

6(16
() 1f |z]<0.1, Sp(z)=zzni| )Z"/nz is calculated,

@ 1f |z|51,Re(z)s1/2, Sp()=t- (1-t/4+3 ey Boat?/(2n+1)1) is
calculated,

Where, t=—In(1-z)

@ 1f |z-1]s.Re(z)>1/2,
Sp(2)=12/6-t - In(1-2) +1 (1+1/4+3 oy Benl2/(2n+1) 1) is calculated,
Where, t=Ilnz

@ 1f |z]>1, |=-1>1,

4(11
Sp(z)=-72/6-1n?(-z) /2+1 (1+t/4+2,,§, 'Baat?/(2n+1)1) is calculated,

(4) Note

1. There is the relationship dilog(1-z)=Sp(=) with Dilogarithm dilog of Euler,
Therefore, the value of Spence functions can be calculated even with the function routine DILOG,
However, it is more effective to use SPENC in this section, .
2. There is the relationship Db(-In(1-x))=Sp(x) with the functions Db of Debye,
Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y. pp.997-1005 (1970).

(1987. 08. 05) (1987. 08. 11) (1987. 08. 24) (1988. 02. 15)
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TMFRM/DTMFRM/TMFMP/DTMFMP (Solution of Thomas-Fermi Bquation and its derivative)

Solution of Thomas-Fermi Equation and its Derivative

Programmed | Ichizo Ninomiya: April 1985

Format Function Language; FORTRAN Size: 38, 59, 36, and 54 lines respectively

(1) Outline
TMFRM (or DTMFRM) calculates ¢ (x) with single (or double) precision for single (or d’ouble)
precision real x,
TMFMP (or DTMFHP) calculates ¢’ (x) with single (or double) precision for single (or double)
precision real x,
@ 7 (x)=¢ (x)xx(3/2) -xxx(-1/2) where ¢ satisfies the Thomas-Fermi equation,
(2) Directions
1. TMFRM(X), THFMP (X), DTMFRM (D), DTMFMP (D)
X (or D) 1is an arbitrary single (or double) precision real type expression, DTMFRM and
DTMFMP require declaration of double precision,
2. Range of argument X=( and D=0
3. Error processing .
If the argument is outside the range, an error message is printed but calculation continues
with the function value assumed to be (.
(Refer to FNERST.)
(3) Calculation method
1. When 0=<x<1, optimal rational approximations A and B are used to calculate:
¢ (x)=A(x+x(1/2))
¢’ (x)=B(xxx(1/2))
2 When 1<x<a, optimal rational approximations C and D are used to calculate:
@ (x)=C (xxx v ) £x4/x%23
¢’ (x)=¢ (x) D(xxxv)/x
where, »=-0,77200187265876558394, and
a=5, 4-10%29 (9. 5-10%x23)

3. When a<x=<b, then ¢ (x)=144/xx%3 is calculated,
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When a<x<b’, then ¢’ (x)=-432/x+x4 is calculated,
Where, b=2, 43-10%x26 and b’ =1. 681020,

4. When x>b, then ¢ (x)=0. When x>b',. then @’ (x)=0.

(4) Bibliography
DH. Krutter; “ Numerical Integration of the Thomas-Fermi Equation from Zero to Infinity, “J. of

Comp. Physics, Vol. 47, :pp. 308-312 (1982). ' ‘
. (1987. 08. 07)
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ZETA/DZETA (Riemann zeta function)

Title: Riemann Zeta Function

Programmed | Ichizo Ninomiya: May 1984

by

Format Function language: FORTRAN Size: 94 and 213 lines respectively

(1) Outline

When single (double) precision real x is given, ZETA (DZETA) calculates the following Riemann

zeta functions in single (double) precision,
C(x)=) k7, x>1
k=0
c(x)=(§o(-1 Y=y /(1-24y,

¢(x)=2* Isin(rmx/2)I (1-x) ¢ (1-x) , =0

(2) Directions

1. ZETA(X)  DZETA(D)

Use an arbitrary single (X) or double (D) precision real type expression, DZETA needs to be

declared as double precision,
2 Range of argument: X=-97 D=-97

3. Error processing

If an argument outside the range is given, an error message is printed but calculation

continues assuming the function value to be 0,

(3) Calculation method

1. In case of X=(0, optimal polynomial or rational approximation is used depending on the range
of X,
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2. In case of X<(0, it is reduced to a case of ‘X=( by the following inversion formula:

¢ ()= lsin(Mx/2) (1-x) ¢ (1-x)

" Bibliography
1) Nandbook of Mathematical Functions, Dover, N.Y., p. 807 (1970). |

(1987.07.27)
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14. Bessel function and related function
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Al/DAI, AIP/DAIP, B1/DBI, BIP/DBIP (Airy functions and their derivatives)

Airy Functions and Their Derivatives

Programm | Ichizo Ninomiya; April 1981
ed by

Format | Function Language; FORTRAN Size; 74, 131, 72, 130, 90, 160, 93,
and 159 lines respectively

(1) Outline
Al (DAI), AIP (DAIP), BI (DBI), and BIP (DBIP) calculate A; (x), Ai’" (x), Bi(x). and
B: " (x) respectively, with single (double) precision, for a single (double) precision real

number X,

(2) Directions
L AI(X), DAI(D), AIP(X), and DAIP(D)
BI(X), DBI (D), BIP(X), and DBIP(D)
X and D are arbitrary single and double precision real-type expressions respectively, DAI,
DAIP, DBI, and DBIP need to be declared as double precision,
2. Range of argument
(1) AL, DAL, AIP, and DAIP

Xz-1.15130-10* (£ |x|¥2s2"r)
Dz-3.04201 - 10" (& |D|¥2s2%r)
(2) BI, DBI, BIP, and DBIP

X<0- - -Z2|X|¥2s2'%

-1.15130- 10*sX=40.948 3
>0- - - &|X|¥2s25210g2
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(D<0- - -£|D|¥2s2y
-3.04201 - 10'°sD=40.946 3

>0- - -£|D|*2s262 10g 2

3. Error processing

If the specified argument is outside the range, an error message is printed but calculation

continues with the function value assumed to be (. (See FNERST,)

(3) Calculation method
1. Al and DAI
(1) When x<-9'/3, optimal rational approximations Ci,S; are used to ca]cﬁlate:
Ai(x)=12174(C1(2/2) cosz+81(2/2)sinz) where z=2/31x1%2,
(2) When —91/3éx<0. optimal polynomial approximations P1,Q are used to calculate

Ai(x)=P1(z®)+ 1211 (x)

(3) When Osxs9'/3, optimal rational approximation Rj is used to calculate 4; (x)=R(x).

(4) When 9!3«x<41 .808(2 < 2/3:t3/2 < 2060log2), optimal rational approximation E|

is used to calculate:
Ai(@)=e* 1z 1 4E|(2/2) where z=2/32%2,

(5) When x=41.808, Ai(x)=0.

2. AIP and DAIP

(1) When x<-9l/ 3, optimal rational approximations C2,S2 are used to calculate:
Ai(@)=1214(Ca(2/2)cosz+82(2/2z)sinz) where z=2/3 112,

(2) When -9‘/3§I<0, optimal polynomial approximations P2,Q2 are used to calculate

A; (x)=x?P2(x3) +Q2(x3) .

(3) When 051‘59'/3, optimal rational approximation R2 is used to calculate A; (x)=Re(x).

(4) When 91/3«x<41 .808, optimal rational approximation E2 is used to calculate:
Ai(x)=x"*eE2(2/z) where z=2/3¢%?,
(5) When x =41.808, Ai(x)=0.

3. BI and DBI

(1) When x<-g"' 3. optimal rational approximations C3,S3 are used to calculate:
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B; (x)=lxl"/2(C3(2/z)cosz + S3(2/zZ)sinz) where z=2/3|xl3/2,
(2) When —9‘/3§x<0, optimal polynomial approximations P3,Q3 are used to calculate

Bi(x)=P3(x®) + a@(x>).

(3) When 05:1:51441/3, optimal rational approximations Aj,Bi are used to calculate

Bi(x)=A1(2%) + xBi(z%).

(4) When 144'/3<1‘. optimal rational approximation E3 is used to calculate:
Bi (x)=x""/2e*E3(1-8/2) where z=2/32%2,

4, BIP and DBIP

(1) When :r<—91/3, optimal rational approximations C4,S4 are used to calculate:
B:i (x)= 121 4(Cs(2/2) cosz+Ss(2/2)sinz) where 2=2/31x1%2,

(2) When —9'/3§x<0, optimal polynomial approximations P4,Q4 are used to calculate

B; (x)=x?P4 (x°) +Qs (z%) .

(3) When 0§x§144'/3, optimal rational approximations A2,Bp are used to calculate
Bi (z)=x?A2(x%) +B2 (%) .
(4) When 144]/3<:r, optimal rational approximation E4 is used to calculate:

B (tx Y=x4e?E4(1-8/2) where 2=2/3x%/2,

Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y., p. 446 (1970).
' (1989. 01, 13)

91



s

BERO/DBERO,BEIO/DBEIO,BKERO/DKERO,BKEIO/DKEIO,
BER1/DBER1,BEI1/DBEI1,BKER1/DKER1,BKEI1/DKEI1

(Kelvin functions of the order ( and 1)

Kelvin Functions of the Urdei‘ 0 and 1

Programm | Ichizo Ninomiya: September 1984

ed by

Format Function language; FORTRAN Size; All 150 lines or less

(1) Outline

BERO (DBERQ) berox
BE10(DBE10) beiox
BKERQ (DKER() kerox
BKEI0 (DKEI0) keiox
calculate for single or double precision real x respectively.
BER1 (DBER1) . berix
BEI1(DBEI1) beiix
BKER1 (DKER1) kerix
BKEI1(DKEI1) keix

(2) Directions
1. BERO(X), BEIO(X), BKERO(X), and BKEIO(X), etc.
DBERO(D), DBEIO(D), DKERO(D), and DKEIO(D), etc.
X is an arbitrary expression of single precision real type., D is an arbitrary expression of
double precision real type, The name of a double precision function needs to be declared as
double precision,
2. Range of argument
0=<X=247. 02264 for ber and bei functions,
0=D=247. 02264.
0<X, 0<D for ker and kei functions,
3. Brror processing

If an argument outside the range is given, an error message is printed and calculation is
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continued with the function value assumed to be 0, (Refer to PFNBRST.)
(3) Calculation method
1. BERO(DBERQ), BEIO(DBEIO), BER1(DBER1), and BEI1(DBEI1)
(1) If x is less than 0, an error results,
@ 1f 0sxs2, berox=Aor (%) ,beio=rAoi (z*) ,berix=xAir(2?) ,bei=zA1i (2?) are

calculated by the optimal polynomial approximations Aor,Aoi,A1r,Al1l,

(3) If 2<x=4, berox=Bor(x-3) ,beiox=Boi (x-3) ,ber1x=Bir(x-3) ,betix=Bii (x-3) are

calculated by the optimal polynomial approximations Bor,Boi,Bir,Bit.

(@) If 4<x=6, berox=Cor(x-5),beiox=Coi(x-5),berix=Cir(z-5),bei1x=Cii(x-5) are

calculated by the optimal polynomial approximations Cor,Coi,Ci7,Cit.

(5) If 6<x=8, berox=Dor(x-T) ,beiox=Doi (x-7),ber|x=D1r(:t—7),bei|:i=D|i(x-7) are

calculated by the optimal polynomial approximations Dor,Doi,Dir,Dii.

(6) If 8<x=247. 02264,

berox=e*/ vZ, ~Eo(8/x) - (8/x) cos(Go(8/x)+x/~2) —-}t-keiox

beiox=e™ 2. \/Ey (8/xj - (8/x) sin(Go(8/x)+x/~2) +%Icerox

berix=e*’ 2. ,/E1(8/x) - (8/T) cos (G1(8/x)+x/2) —%Icei 1z
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beix=e”"Z - o/E10(8/7) - (8/%) sin(G1(8/x)+x/v/Z) +1kerix

are calculated by the optimal polynomial approximations Eo,Go,E1,G1.

() If x>247.02264, an error results,
2. BKERO(DKEROQ), BKEI0(DKEI0), BKER1 (DKER1), BKEI1 (BKEI1)

(1) If x<0, an error results,

() 1f 0<x=2,
kerox=Aor (x%)-logx - berox
keiox=401 (12)—logx - beiox
ker|x=A1r(3:2) /x-logx - berx
keiix=Ai(2?)/z-logx - beix

are calculated by the optimal polynomial approximations Agr,Aoi,Air,A|r,

2 If 2<x<4, kerox=Bor(x-3),keiox=Boi (x-3),kerix=Bir(x-3) ,kei1x=B;i(x-3) are

calculated by the optimal rational approximations Bor,Boi,Bir,Bit,

(3) If 4<x=<254. 8646,
kero:c=e"/ JZJEo (4/x) - (4/x) cos(Go(4/x)-x/~2)

keioz=e/"2 \/Eo(4/x) - (4/x) sin(Go(4/x)-x/~2)

kerix=e™/ "2 ,/E1(4/%) - (4/x) cos (G (4/x)-x/VZ)

kei |i:=e"‘/ V2, /E1(4/T) - (4/x) sin(G1(4/x)-x/~/2)
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are calculated by the opiimal polynomial (rational) approximations lZo.(?o,lfl,(Jl,
(4) If x>254. 8646, kerox=keiox=kerix=kei;x=0 results.

Bibliography

(1) Handbook of Mathematical Functions, Dover, N.Y., pp.379-385 (1970).
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BESJFC/B and BESIFC/B (Bessel Functions of Fractional Order with Complex Argument)

Bessel Functions of Fractional Order with Complex Argument

Programm | Toshio Yoshida

ed by

Format | Function Language: RORTRAN; Size: 187, 189, 231, and 232 lines

respectively

(1) Outline
BESJRC (BESJFB) is a function subprogram for obtaining the first kind Bessel function Jv (2)
of the v-th order (real number) of complex variables z by single (double) precision
BESIFC (BESIFB) is a function subprogram for obtaining the first kind modified Bessel
function [ v (z) of the v-th order (real number) of complex variables z by single (double)

precision,

(2) Directions

1. BESJFC(N, Z), BESJFB(N, Z)
BESIFC(N, Z), BESIFB(N, Z)
Declaration such .as COMPLEXx8 BESJFC, Z, or COMPLEXx16 BESIFB, Z is required for function
names and the argument Z,

2. Range of argument
[Re(2) | =174. 673
m(z) [=<174.673

3. Error processing

If an argument outside the range is given, an error message is output, and the

calculation is continued with the function value as (. (See FNERST.)

(3) Calculation methed
The cutting plane line is a negative real axis,

The Taylor expansion is used in |Re(z) |+|Im(z) | <1, and the method of using recurrence
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technique is used in other cases, For details, see "Bibliography.”
Bibliography
1) Toshio Yoshida et al., “Recurrence Techniques for the Calculation of Bassel Function In(z)

with Complex Argument,” Information Processing, Vol. 14, No.1, and pp, 23-29 (1973).

(1987. 08, 07)
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BESJNC/B and BESINC/B (Bessel Punctions of Integral Order with Complex Argument)

Bessel Functions of Integral Order with Complek Argument

Programm | Toshio Yoshida, June 1973, Revised in June 1985

ed by

Format Function Language: FORTRAN; Size: 152, 153, 145, and 146 lines respectively

(1) Outline

BESJINC (BESJNB) is a function subprogram for obtaining the Bessel function of first kind of the
n-th (integer) order of the complex variable z with single (double) precision,

BESINC (BESINB) is a function subprogram for obtaining the modified Bessel function of first

kind of the n-th (integer) order of the complex variable z with single (double) precision,

(2) Directions
1. BESJINC(N, Z), BESJNB(N, Z)
BESINC (N, Z), BESINB (N, Z)
Declarations such as COMPLEX+8 BESJNC, Z, or COMPLEXx16 BESJNB, Z are required for

function names and the argument Z,

2. Range of arguments: |Real(z) |<174.673 and |Imag(z) |=<174. 673
3. Error processing
If an argument outside the range is given, an error message is output, and the calculation is

continued with the function value as 0, (See FNERST,)

(3) Calculation method

Recurrence formulas are used for calculation, For details, see "Bibliography. ®
(4) Note

Because this calculation uses recurrence formulas, the computation time becomes longer as

|z|becomes larger. If |z|>100, it is efficient to use the asymptotic expansions,
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1) Toshio Ydshida; "Bessel Fﬁnction Subprogram of Complex Variable: In (z) and Jn (z),” Nagoya
University Computer Center News, Vol.5, No.3, pp.179-185 (1974). |

2) Toshio Yoshida et al. ; "Reccurence Techniques for the Calculation of Bassel Funciton In(z)

with Complex Argument,” Information Processing, Vol 14, No.1, pp.23-29 (1973).
(1987. 08. 07)
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BESKNC/B (Modified Bessel Functions of the Second Kind of Integral Order with Complex

Argument)

Modified Bessel Functions of the Second Kind of Integral Order with Complex Argument

Progranm | Toshio Yoshida, June 1985

ed by

Format Function Language: FORTRAN; Size: 149 and 211 lines respectively

(1) Outline
BESKNC (BESKNB) calculates Kn(Z) with single (double) precision for an integer n and single

(double) precision complex number z.

(2) Directions
1. BESKNC (ﬁ, ), BESKNB(N, Z)
COMPLEX%8 BESKNC, Z, or COMPLEXx16 BESKNB, Z should be declared for function names and the
argument Z,
2. Range of argument
'|2]#0 and
0=Re(Z) =174.673 and
1Im(2) | < {8.23><105 (single precision) and 3.53x10" (double precision)}

Or

-174.673<Re(2)<0 and | Im(z) | <174.673
3. Error processing

If an argument outside the range is given, an error message is output, and the calculation

is continued with the function value as 0. (See FNERST.)

(3) Calculation method

From the relation K-n(z)=Kn(z), the case n<( can be reduced tc the case n=(),
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1. If Re(z) =0, Kn(z) (n=2) is calculated using the recurrence formula

Kie1 (2)=(2k/2)Ki(2) +Kk-1(2)  K=1,2, -+ ,n-1'

from K0(z) and K](z).

KO(z) and Ki(z) are calculated using

Ko(z)=-{v+log(z/2) } Io(2) +2kzl:12k (2)/k

and

k1(2)=(1/z-11(2)Ko(2)) /Io(2)
when |Im(z) |[<{-2. 25Re(z)+4. 5(single precision), -4Re(z)+8(double precision)},
However, IK(z) is calculated using recurrence formulas, Except for the above case, the

calculation is executed with the approximation formula of fn(1/z) as the form of

Kn(2)=41/(22) €*fa(1/2)

Note that the approximation is obtained by applying = method to the differential equation

t2fa (£)+2(E+1) fa(t)-(nP-4) fa(t)=0
that fn(t) satisfies, For details, refer to “Bibliography.”

2. If Re(Z)<0, the cutting plane line of Kn(Z) should be selected for the negative real axis,
Therefore, the value of Kn(z) is obtained by using the relational expression

Kn(2)=(-1)"Kn(-2)-mila(-2)

if Im(z) =0, and the relational expression
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Kn(2)=(-1)"Ka(-2)+7iIn(-2)

if Im(2)<0.

Bibliography
1) Toshio Yoshida and Ichizo Ninomiya; “Computation of Bassel Function Kn(z) with Complex

Argument by Using the 7 -Method”Information Processing. Vol 14, No.8, pp. 569-575(1973).

(1987. 08.07)
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BESYNC/B (Bessel Function of the Second Kind of Integral Order with Complex Argument)

Bessel -‘Functions of the Second Kind of Integral Order with Complex Argument

Programm | Toshio Yoshida, June 1985

ed by

Format Function Language: FORTRAN; Size: 45 and 50 lines respectively

(1) Outline
BESYNC. (BESYNB) calculates Yn(z) for the argument n and single (double) precision complex

number z with single (double) precision,

(2) Directions
1. BESYNC(N, Z), BESYNB(N, Z)
COMPLEX%8 BESYNC, Z, or COMPLEX=16 BESYNB, Z should be declared for function names and

the argument Z,

2. Range of argument
Iz] #0
[Re(z) [=174.673 and |In(2) | =174. 673
3. Error processing
When an argument outside the range is given, an error message is output, and the

calculation is continued with the function value as (), (See FNERST.)

(3) Calculation method

From

Yon(2)=(-1)"Ya(2)

and

Ya(conjg(z))=conjg(Yn(z))
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, the case n<) or Im(z)<0 can be reduced to the case n>( and Im(z)>(.

Yn(z) is obtained by using the relational expression

Yo(2)=i™In(-i2)-%i"(-1)"Kn(-iZ)

Where, the value of In(-iz) is obtained by using BESINC/B, and the value of Kn (-iz) is obtained
by using BESKNC/B.

(1987. 08. 07)
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BHO/DHO/BH1/DH1 (Struve Functions of the Qrder Q and 1)

Struve Runctions of the Urdef 0 and 1

Programmed | Ichizo Ninomiya, April 1983

by

Format Function Language; FORTRAN

(1) Outline
BHO (DHO) calcuiates the Struve function Ho of the (-th order for a single (double) precision
real number x by single (double) precision,
BH1 (DH1) calculates the Struve function Hi of the 1-st order for a single (double) precision
real number x by single (double) precision,
(2) Directions
1. BHO(X), BH1(X), DHO (D), DH1 (D)
X(D) is arbitrary an expression of single (double) precision real type, DHO and DH} require
the declaration of double precision,
2. Range of argument
0=X=<8.23B+5, 0=D=3.53D+15
3. Error processing
If an argument outside the range is given, an error message is printed, and the calculation
is continued with the function value as (.
(See FNERST.)
(3) Calculation methed
1. If 0=<x<2, Ho (x)=x-P1 (xxx2) and H| (x)=x+£2-Q1 (x+x2) are calculated with the polynomial

approximations Py and Q1.

2. If 2<x=<4, Ho (x)=P2 (x-3) and Hj (x)=Q2 (x-3) are calculated with the polynomial

approximations P2 and Q2.
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3. If 4<x<6, Ho (x)=P3 (x-5) and H1 (x)=Q3 (x-5) are calculated with the polynomial

approximations P3 and Q3.

4, 1f 6<x<8, Ho (x)=P4 (x-7) and Hi (x)=Q4 (x-7) are calculated with the polynomial

approximations P4 and Q4.

5. If 8<x<8, 25B+5(3. 53D+15), Lo (x)=P5 ((8/x)*%x2)/x+Yo (x) and L1 (x)=Q5 ((8/x)*x2) are

calculated with the polynomial approximations (rational approximations) Ps and Q5.

(4) Bibliography
} 1) Handbook of Mathematical Functions, Dover, N.Y., p.228 (1970).

(1989. 01. 25)
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BI10/DI10/QI0O, BI1/DI1/QI1, BKO/DKO/QKO, and BK1/DK1/QK1 (Modified

Bessel functions of order ( and 1)

Modified Bessel Functions of the Order ( and 1

Making Ichizo Ninomiya; May 1983

Format Function language; FORTRAN Size; 47, 72, 139, 50, 72, 139, 54, 73,
162, 55, 73, and 160 lines respectively

(1) Outline
BIO (DIO, dIO), BI1 (DI1, QI1), BKO (DKO, QK0), and BK1 (DK1, QK1) calculate Io(x), Ii(x), K
o(x), and Kj(x) respectively for single (double, quadruple) precision real x with single

(double, quadruple) precision,

(2) Directions

1. BIO(X), BI1(X), BKO(X), BK1(X)
DIOCD), DIL(), DKO(), DKL(D)
a10(e), a11(@), QK0(@), QK1(Q)
X (D, Q) is 5n arbitrary single (double, quadruple) precision real expression,

2. Range of érgument
0<¥<174. 673 for BIO(X), BI1(X), DIO(X), DI1(X), QIO(X), and QI1(X)
0<X for BKO(X), BK1(X), DKO(X), DK1(X), QKG(X), and QK1 (X)

3. Error processing
If an argument outside the range is given, an error message is printed, Calculation is

continued with the function value assumed to be (., (See FNERST.)

(3) Calculation method

1. BIO and BI1 (DIO and DI)
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(1) When O=x=6, polynomial approximation; Ao, A are used as follows:

Io(x)=Ao(2?), Ii(x)=x-A1(x?)

(2) When 6<x=8, polynomial approximations Bo,Bi are used as follows:

Io(x)=Bo((x-6) (x+6)), I1(x)=Bi((x-6) (x+6))

(3) When B<x=174.673, rational approximations Cp,C1 are used as follows:

Io(x)=Co(1-8/x) -e*/~#T, I1(x)=C1(1-8/x)-e*/¥T

2. BKO and BK1 (DKO and DK1)
(1) When O<x=1, polynomial approximations Ag,A1,Bo,Bi are used as follows:

Ko(x)=x?A9(x%)+(log2-v-logx) - Bo(x?)

K1(x)=A1(x?) /x+(log2-y-logz) -x-Bi (2%),

(2) When 1<x=2, rational approximations Cp,Ci are used as follows:

Ko(x)=Co(x-1), Ki(x)=Ci(z-1)

(3) When 2<x=177.850, rational approximations Eg,E are used as follows:

Ko(x)=Eo(2/x)e™/~T, Ki(x)=E1(2/x)e™/~NT

(4) When x=>177.850, we put Ko(x)=0, Ki(x)=0,
3. alI0 and @I1
(1) When O=x=12, polynomial approximations Ap,A; are used as follows:

To(x)=Ao(z%), In(x)=z-Ai(a?)

(2) When 12<xs16, polynomial approximations Bo,Bj are used as follows:
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Io(x)=Bo((2-12) (x+12)), I1(x)=Bi((xz-12) (z+12))

(3) When 16<x=32, rational approximations Cp,Ci are used as follows:

Io(x)=Co(1-16/x)e™/¥xT, I1(x)=C1(1-16/x)e*/~VT

(4) When 32<x=174.673, rational approximations Eg,E1 are used as follows:

Io(x)=Eo(1-32/x)e™/¥T, I1(x)=E1(1-32/x)e’/¥T

4. QKO and QK1 -
(1) When O<x=1, polynomial approximations Ag,A;,Bo,Bj are used as follows:

Ko(x)=A0(22)-Bo(z2) logz, Ki(x)=A1(z2)/x+B1(2) -z~ logz

(2) When 1<x=2, rational approximations Co,C are used as follows:

Ko(x)=Co(x-1), Ki(x)=Ci(x-1)/x

(3) When 2<x=4, rational approximations Eg,E| are used as follows:

Ko(x)=Eo(2/x)e™*/¥T, Ki(x)=E1(2/x)e"/~T

(4) When 4<x=8, rational approximations Go,G; are used as follows:

Ko(x)=Go(4/x)e™/~T, Ki(x)=G1(4/x)e*/NT

(5) When 8<x=177.850, rational approximations Po,P1 are uscd as follows:

Ko(x)=Po(8/x)e™/~T, Ki(x)=P1(8/x)e™/~/T

(6) When x>177.850, we put Ko(x)=0, K;(x)=0,

Bibliography
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1) Handbook of Mathematical Punctions, Dover, N. Y., -p. 37L‘ . SR v
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BIOIO/DIOIO, BIOI1/DIOI1, BKOIO/DKOIO, BKOI1/DKOI1l (Integrals of

modified Bessel functions)

Integrals of Medified Bessel Funqtions

Programm | Ichizo Ninomiya: August 1978
ed by

Format Function Language; FORTRAN Size; 39, 67, 40, 711, 44, 66, 42, and
64 lines respectively .

(1) Outline

:
(BIOIO(DIOIO) fo To(t)dt
BIOI1(DIOI1) fox Tolt-lyy
1 BKozopko10) * fo © Ko(bydt
(BKOI 1 (DKOI1) { f: K"tﬂdt

Each function routine calculates the definite integral corresponding to single or double

precision real number X, with single or double precision respectively,

(2) Directions

1. BIOIO(X), BIOI1(X), BKOIO(X), BKOIL(X)
DI0I0(D), D1011(D), DKOIO (D), DKOI1 (D)
X and D are arbitrary single and double precision real-type expressions respectively. The
double precision function name needs to be declared as double precision,

2. Range of argument
BIOIO and BIOI1: 0=X=<174.673
DIOIO and DIOI1: 0=<D=174.673
BKOIO and BKOI1: 0=X |
DKOIO and DKOI1: 0=D

3. Error processing
If the specified argument is outside the range, an error message is priﬁted but calculation

continues with the function assumed to be . (See FNERST.)
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(3) Calculation method
1. For BIOIO, DIOIO, BIOI1, and DIQI1
(1) In case of x<0 or x>174.673, an error results,

(2) In case of 0<x <16, polynomial approximations Pg,P; are used to calculate:

j; on(t)dt=xPo(x2)

JRCUSTENES

(3) In case of 16<x=174.673, rational approximations Rg,R; are used to calculate:

* - -16
fozo(t)dt-e—ﬁRo(f‘-‘T)

TIo(t)-1

2. For BKOIO and DKOIO
(1) 1n case of x<O, an error results,

(2) In case of OsSxs2, polynomial approximations Po,Qp are used to calculate:
T
fo Ko(t)dt=xpo(xz)+xgo<x2)log§
(3) In case of 2<x=180.218, rational approximations Rp are used to calculate:

fo Ko(tdt=E-S_Ro(£)

(4) In case of x>180.218, f;Ko(t)dt=7r/2,

3. Por BKOI1 and DKOI1

(1) In case of x=0, an error results,
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(2) In case of O<x=2, polynomial approximatiors P],Q are used to calculate: .
“Ko(t) o, _ 1i0eZ). jog L 2
j; + dt—(Pl(x2)+2 log 2) log Z+Q1(2°)
(3) In case of 2<x=180.218, rational approximation Ry is used to calculate:

f KO(t)dt_ 3/2Rl( )

(4) 1n case of x=180.218,
[t g

(1989. 01. 13)
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BIOMLO/DIOMLO/BI1IML1/DI1IML1

(Modified Bessel Functions Minus Modified Struve Function (Order 0, 1))

Modified Bessel Fumction Minus Modified Struve Function (Order 0, 1)

Programmed | Ichizo Ninomiya, November 1983

by

Format Function Language; FORTRAN

(1) Outline

BIOMLO (DIOMLO) obtains the difference between the (-th order modified Bessel function 10 and
the 0-th order modified Struve funcfion L0 for the single (double) precision real number x with
single (double) precision, BIIML1 (DI1ML1) calculates the difference between the 1-st order
modified Bessel function 11 and the 1-st order modified Struve function L1 for the single

(double) precision real number x with single (double) precision,

(2) Directions
1. BIOMLO(X), BY1ML1(X), DIOMLO(D), DIIML1(D), and X(D) are arbitrary expressions of single
(double) precision real type, DIOMLO and DIIML] require the declaration of double precision,
2. Range of argument 0=<X, (=D
3. Brror processing
If an argument outside the range is given, an error message is printed, and the calculafiop

is continued with the function value as (. (See FNERST.)

(3) Calculation method
1. If 0=x=8, 10(®)-L0(x)=R1(x) and 11(x)-L1(x)= x-S1(x) are calculated with the rational

approximations Rl and S1.

2. If 8<x=<16, 10(x)-LO(x)=R2(x-8) and I1(x)-L1(x)=S2(x) are calculated with the rational

approximations R2 and S2,

3 1f x16, 10(x)-LO(x)=R3({16/x)*+2) and 11(x)=L1(x)=S3((16/x)%x2)/x are calculated with the
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polynomial approximations R3 and S3.

(4) Note

This function program should be used to calculate the difference between modified Bessel and
Struve functions, If the difference is found by calculating the modified Bessel and Struve
functions separately, precision cannot be attained because of a severe cancellation,

(5) Bibliography

1) Handbook of Mathematical Functions, Dover, N Y., p.498(1970).

(1987. 08. 07)
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BIF/DIF (Modified Bessel functions of the first kind of fractional orders)

Modified Bessel Flinctions of the Rirst Kind of Fractional Orders

~

Programm | Ichizo Ninomiya; September 1981
ed by

Format | Function Language; FORTRAN Size; 129 and 188 lines respectively

(1) Outline
BIF (DIF) calculates I,(x) with single (double) precision for single (double) precision real
numbers ¥ and X,
(2) Directions
1. BIF(U,X) and DIF(W, D)
U and X are arbitrary single precision real-type expressions, W and D are arbitrary double
precision real-type expressions, DIF needs to be declared as double precision,
2. Range of argument
0=<0(0=<W), 0<X, (0<D) However, any region where the function value overflows is
excluded,
3. Brror processing
If the specified argument is outside the range, an error message is printed but calculation
continues with the function value assumed to be {). (See FNERST.)
3 Calculaﬁon methed
1. BIF(DIF)
(1) In case of x<0 or u<0, an error results,

(2) In case of (J:/2)2§u+1, the following Taylor series is calculated:

VO _(z/2)wE
Lu(®)=Y i e T)

(3) In case of x=10(18) and :r20.55u2, the following asymptotic expansion is used:

42—, (4%-1) (4P-9)
8z 2! (8x)2
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(1) (4P9) (P25) | )
3! (8x)* .

(4) In case of u=10(35) in a region other than (2) and (3), the following uniform

asymptotic expansion is used:

Iu(x)—'/—(l f2)1/4{1 Zu Uk(t)} :

This calculation is based on the following:

g=x/u, t=1/A/1+€2, n=a14€8+logl £/(1+4/14£2))

where ux(t) is a kth order polynomial of £, |

(5 In case of an area other than the above, the following recurrence formula is used:

Tv-1(x) =201y (x) /2+Iv+1(X)

(4) Note

Both BIF and DIF involve a great amount of calculation and are time consuming, So, it is
better not to use these function programs for those'function that can be calculated in another
method, For instance, Io(x) can be calculated by using any of BI10(X), BIN(0,X), and
BIF(0.0,X). Among them, however, BI0(X) is the fastest in calculation with better precision,
Generally speaking, BI0Q and BI1 (DI0 and DI1) should be used to calculate modified Bessel
functions of orders ( and 1; BIN (DIN) should be used for other functions of integral orders, As
for Bessel functions of half odd order, it is better to calculate them via the spherical Bessel
function, Por Iss2(x), for instance, it is more reasonable to calculate SIK(2, X) and multiply

it by A/2x/7 rather than to calculate BIF(2.5,X).

Bibliography
1) Ichizo Ninomiya; “Calculation of Bessel functions by recurrence formula®, Numerical method 1]

for computers, Baifu-kan (1966).
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2) D. BE. Amos, S. L. Daniel and M, K., Weston; "CDCAG00 Sﬁbroutines»IBBSS and JBESS for Bessel
Functions Jv(x) and Ju(x),x=0,vu=0, ACM Trans., on Math, Software, Vol 3, No, 1, pp.76-92

(1977).

(1989. 01. 25)
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BIN/DIN, BKN/DKN (Modified Bessel functions of integer orders)

Modified Bessel Functions of Integral Orders

Programm | Ichizo Ninomiya; September 1981
ed by

Format Function Language; FORTRAN Size; 123, 183, 49, and 50 lines
respectively

(1) Outline
BIN (DIN) and BKN (DKN) calculate Ih(x) and Kn(x) respectively, with single (double)

precision, for an integer n and a single (double) precision real number x,

(2) Directions
1. BIN(N,X), DIN(N,D), BKN(N,X), and DKN(N, D)

N is an arbitrary integer-type expression, X and D are arhitrary single (double) precision
real-type expressions respectively, The double precision function name needs to be declared
as double precision,

2. Range of argument

Modified Bessel function of the first kind In(x): 0=<N, 0=<X(0<D)

However, any region where the function value overflows is excluded,

Modified Bessel function of the second kind Kn(x) : 0<N, 0<X(0<D)

However, any region where the function value overflows is excluded,

3. Error processing
If the specified argument is outside the range, an error message is printed but calculation

continues with the function value assumed to be (, (See FNERST.)

(3) Calculation method

1. BIN (DIN)

(1) In case of x<@ or n<0, an error results,
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(2) In case of (x/2)2§n+1. the following Taylor series is calculated:

n+2k
In(x) Zlga‘cﬁik) 1

(3) In case of x=10(18) and :r=0.55n2, the following asymptotic expansion is used:
-1, (4n%-1) (4n%-9)

e
@7 " 21 (8x)2
_(4n-1) (n’9) 4n’-25) | }
3! (8x)3

(4) In case of n=10(35) in a region other than (2) and (3), the following uniform-

asymptotic expansion is used:

In(x )_,/_ (1 52) |/4{ Zn-kuk(t>}

This calculation is based on the following:

g=x/n, t=1/a1+¢2, n=n/1+€2+log( ¢/(1+4/14€2)

where ux(t) is a kth order polyncmial of i,

(5 In case of an area other than the above, the following recurrence formula is used:

I-1 (x) =2k I (x) /x+IKe1 (X)

2. BKN (DKN)
(1) In case of n<0 or x <0, an error results,
(2) In case of x>180.218, Ka(x)=0 is assumed,
(3) In case of n=0, BKO (DK0) i's called to calculate Ko(x).
(4) In case of m=1, BKl (DK1) is called to calculate K1(x).
(5) In case of n=2, the following recurrence formula is repeatedly calculated, starting

with Ko(x),Ki1(x), to obtain Kn(x) :
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Kice1 (x) =2kKi () L4Ki-1 (2)

(4) Note
For calculation of modified Bessel functions of order ( or 1, the functions specific to them

are superior in calculation time and precision to the above functions, For instance, BIO(X) is

better than DIN(0, X).

Bibliography

1) Ichizo Ninomiya; "Calculation of Bessel functions by recurrence formula®, Numerical method II
for computers, Baifu-kan (1966).

2) D. B. Amos et al.; "CDC 6600 Subroutines IBESS and JBESS for Bessel Functions Iv(x) and
Ju(x) ,x=0,v=0", ACM Trans. on Math, Software, Vol 3, No.1, pp.76-92 (1977).

(1989. 01. 25)
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BJO/DJO/QJO,BJ1/DJ1/QJ1,BYO/DYO/QY0,BY1/DY1/QY1

BJ2/DJ2, BJ3/DJ3, and BJ4/DJ4& (Bessel function of the order ( and 1)

Bessel Functions of the Order ( and ]

Programm | Ichizo Ninomiya May, 1983
ed
Format | Function Language; FORTRAN Size; 76, 112, 248, 74, 112, 248, 83, 132, 262,

82,132, 261 lines

(1) Outline
Given real number X with single (double, quadruple) precision, BJO(DJO, @J0), BJ1(DJ1,QJ1),

BYO(DY0, @Y0) and BY1(DY1, QY1) calculate Jo(x), Ji(x), Yo(x) and Yi(x) in single (double,

quadruple) precision respectively,

Similary BJ2(DJ2), BJ3(DJ3), and BJ4(DJ4) calculate Jo(x), J3(x), and Ja(x) respectively,

(2) Directions

1. BJO(X), BJ1(X), BYO(X), and BY1(X)

DJO (D), DJ1 (D), DYO(D), DY1(D)

0J0(@), aJ1(a), aY0 (@), aY1(a)

X(D,Q) is an arbitrary expression of real type with single (double, quadruple) precision,

The function name of double (quadruple) precision needs the declaration of the double (quadruple)

precision,

BJ2(DJ2) etc, are the same as BJO(DJO).

2. Range of argument

For the first kind Bessel function, (<X<8, 23'105. 0=<D<3. 53*10'5, 0$Q§1030.

Por the second kind Bessel function, 0<X=8. 23°105. 0<D=3. 53'10'5, 0<Q§10‘3o .

3. Brror processing

When the argument is outside the range, it is handled as an error, and the message is

printed, The calculation continues with the function value as (,
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(3) Calculation method

1. Calculation methods for BJO, BJ1, BY0, BY1(DJO,DJ1,DY(.DY1), and BJ2(DJ2)

(1) If Osx=2 (O<x=2 for the second kind of functions), calculation is done using

polynomial approximation Aji,1=0, - - - ,4,Ay0,Ay1,P0,P1 as follows:

Ji(x)=2'Aji (2?),i=0,1, - - - ,4
Yo(x)=Ay(x®) + Po(z®)logzx,

Y1(x)=x-Ay|(12) - 2/(nx) + Pi(a®)logx,

(2) If 2<x=4, calculation is done using polynomial approximation Bji,1=0,
as follows:

Ji(x)=B;i(z-3),1=0,1, - - - ,4

Yo(x)=Byo(x-3), Yi(x)=Bji1(z-3)

(3) If 4<xs6, calculati_on is done using polynomial approximation
Cji»i=0,1, + - - ,4,Cy0,Cy1 as follows:

Ji(x)=Cji (x-5)

Yo(x)=Cyo(x-5), Y1(x)=Cy1(x-5)

(4) If B6<x=8, calculation is done using polynomial approximation
Dji,i=0,1, - - - ,4,Dy0,Dy1 as follows:
Ji(x)=Dji (x-7)

Yo(x)=Dyo(x-7), Yi(x)=Dy1(x-T7)

M ’4,By0’Byl

o If 8<x§8.23-105(3.53-1015), calculation is done using polynomial (rational)

approximation E; ,Gi,1=0,1, - - - ,4 as follows:
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Ri (x)=E: (¥?), 0i(x)=1C: (1),
Ji (x)=AYRi cos«m+%—%+x),i=0,l, S |
Y:(x)=+/tR; sin(go.-+%i—%+x) ,i=0,1

Where, y=8/x.
2. Calculation method of QJ0, QJ1, QY0, and QY1
(1) If O=x=2 (O<x=2 for the second kind of functions), calculation is done using

polynomial approximation Ajo,Aj1,Ay0,Ay1 as follows:

Jo(x)=Ajo(2®), Ji(x)=xAj1(zP),
Yo(x)=Ayo(z2)+2Jo(x) logz,

Y1(x)=xAy1 (2?)+& (J1 (x) Loga-1/1)

(2) In the range of 2<x=12, four functions are calculated by using the polynomial
approximation which centers on each middle point of five intervals

2<xs4, 4<xrs6, 6<xs8, 8<xs10, 10<xs12,

@) 1f 12<xs10%, calculation is done using rational approximation Po,P1,S0,Si as

follows:

Ro(x)=Po(¥?), Ri(x)=P1(1?),
0(x)=uSo(¥?) —F+x, P1()=uSI(WP)-T+a
Jo(x)a/ﬂ%cos@

Yo(x)=+"yRosingo

J1(x)=AyRising

Y1(x)=-~/uR1 cosei

Khere, y=12/x.
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(4) Note

The second kind Bessel function No(x),N1{(x) is the same as Yo(x),Y1(x) respectively.

Bibliography
1) Handbook of Mathematical Functions, Dover,N. Y., p. 358

2) J.P Hart;”Computer Approximations” and J Wiley(1968).
(1989. 01. 25)
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BJOIO/DJOI10, BJOI1/DJOI1, BYOIO/DYOIO, BYOI1/DYOI1 (Integrals of

Bessel functions)

Intégrals of Bessel Functions

Programm | Ichizo Ninomiya: January 1978
ed by

Format Function Language; FORTRAN Size; 46, 78, 43, 79, 55, 93, 52, and
94 lines respectively

(1) Outline

.
(BJOIO(DJOIO) fo Jo(t)dt
BJOI1(DJOI1) _L ELISONT
18roroproro) 4 fo " Yo(b)dt
(BYOI'1(DYOI1) \ f: Yogt)dt

Each function routine calculates the definite integral corresponding to single or double

precision real number x, with single or double precision respectively.

(2) Directions

1. BJOIO(X), BJOI1(X), BYOIO(X), BYOI1(X)
DJOI0(D), DJOI1(D), DYOIO(D), DYOI1(D)
X and D are arbitrary single and double precision real-type expressions respectively, The
double precisibn function name needs to bé declared as double precision,

2. Range of argument
BJOIO and BY0I0: 0<X<823-10°.
DJOI0 and DYOI0: 0<D<3,53-10'°,
BJOI1 and BYOI1: 0<Xs8, 23-10%,
DJOI1 and DYOI1: (<D<3, 53-10"°,

3. Error processing
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If the specified argument is outside the range, an error message is printed but calculation

continues with the function value assumed to be (), (See FNERST,)

(3) Calculation method

1. In case of (<x<4, polynomial approximations Pg,Q0,R0,P1,Q1,R1 are used to calculate:
j;zJo(t)dt=:rPo(:tz)
[ Yott)dt=ato(?) vaRo(z?) Logk
f " LD giopy(22)-109%
z
L YokD) - (Q (®)-L10gL ) log £+R1(22)

2. In case of 4<x<8,23-10°, rational approximations So,To0,S1,T1 are used to calculate:
_[) “Jo(t)dt= 7%(50(%) cos (x—%)—To(%) sin (x—%))ﬂ
LIYo(t)dt= T/%(So(%) sin (x—%)#(%) cos (:c—%))

f Jo(t) t—x‘%(&(%) cos (x—%)-ﬁ(%) sin (x—%))
LQYLgt—)dhx‘%(Sl(%) sin (x-i—)—ﬂ(%) cos (x-%))

(1989. 01. 17)
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BJF/DJF (Bessel functions of the first kind of fractional orders)

Bessel Functions of the First Kind of Fractional Orders

Making Ichizo Ninomiya; September 1981

Format Function language; FORTRAN Size; 100 lines each

(1) Outline
BJF (DJF) calculates Jy(x) for single (double) precision real numbers u,x with single

(double) precision,

(2) Directions
1. BJF (U, X) and DJF (4, D)
U(W),X(D) is an arbitrary single (double) precision real expression, DJF requires
declaration for double precision,
2. Range of argument
Uz0(¥=0),0sXs8.23-10°(0sDs3.53-10%)
excluding X>200,U>1.384/X (D>200,W>1.384+D).
3. EBrror processing ’
If an argument outside the range is given, an error message is ﬁrinted, Calculation is

continued with the function value assumed to be 0, (See PFNERST.)

(3) Calculation method
1. BJF(DJF)
(1) When u<), x<0, or x>8.23-105(3.53-10'5), error processing starts,

@) When (x/2)%su+1, Taylor series
2 14k u+2k
Ju(x)=2( 1) (x/2)
=0

kI’ (utk+1)

is calculated,

(3 1f x=10(18) and x=0. 55112 , asymptotic expansion
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Ju(x)=A2/7x { P(u,x) cos ¢-Q(u,x)sing }
is used,

where

¢=x—(u/2+1/4)m,

TSI I
2! (8x)?

P(u,x)=

’

4?1 (4ud-1) (P-9) (4uP-25) |
Q(U,I)— 8x 31 (81')3 re

(4) For an area which is not covered by (2) and (3) but satisfies x <200, the following

recurrence equation is used:

Jo-1(2) =20 (2) /T-Jpu1 ()
(5) Any other area causes an error.

(4) Note

BJF and DJF each require a large amount of calculation and take time, Therefore, these
function programs should not be used for a function which can be calculated by other methods,
For instance, Jo(x) can be calculated by any of BJO(X), BJN(0,X), and BJF(0.0.X). but BJO(X) is
the best in both speed and precision, Generally, BJO or BJ1 (DJ0O, DJ1) should be used to
calculate 0-th and 1st order Bessel functions, Bessel functions of half odd number order should
be calculated via a spherical Bessel function, For J5/2(x), for instance, it is more

reasonable to multiply SJN(2 X)by ~/2T/T than to calculate BJF (2.5, X).

Bibliography
1) Ichizo Ninomiya; “Calculation of Bessel functions by recurrence formulas,” Numerical Analysis

11 for Computer, Baifuukan (1966)

(1987. 07.07)
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BJN/DJN, BYN/DYN (Bessel functions of irtegral orders)

Bessel Functions of Integral Orders

Pfogramm Ichizo Ninomiya: September 1981
ed by

Format | Function  Language; FORTRAN  Size; 91, 91, 46, and 47 lines
respectively

(1) Outline

BJN (DJN) and BYN (DYN) calculate Jo(x) and Yn(x) respectively, with single (double)

precision, for an integer n and a single (double) precision real number x.

(2) Directions
L BJN(N,X), DJN(N,D), BYNCN,X), and DYN(N,D)
N is an arbitrary integer-type expression, X and D are arbitrary single and double
precision real-type expressions respectively, The double precis.ion function name needs to
be declared as double precision,
2. Range of argument
Bessel function of the first kind Jn(x): N20,0sX=8.23-10°(0sD=3.53-10'%)
X>200,N>1.384/X (D>200,N>1.3844D) are excluded,
Bessel function of the second kind Yn(x): N§0.0<X§8.23-105(0<D§3.53-1015)
Any region where the function value overflows is excluded,
3. Error processing
If the specified argument is outside the range, an error message is printed but

calculation continues with the function value assumed to be 0. (See FNERST.)

(3) Calculation method
1. BJN( DJN)

(1) In case of n<0, x<0, or x>8.23- 105(3.53 . 10'5), an error results,
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(2) In case of Osn=4, special routines BJO (DJO), BJ1 (DJ1), BJ2 (DJ2). BJ3 (DJ3), or BJ4
(DJ4) are called, ‘

(3) In case of (x/2)2§n+l, Taylor series
o (1R (a2)mk
Ja(x)=
o

k! - (n+k)!

is calculated,

(4) In case of x=10(18) and x§0.55n2, the following asymptotic expansion is used:

Jn(x)=A/2/7x {P(n,x)CcOSs?-Q(n,x)SiNG }

where

¢=x-(n/2+1/4)=x,

2 2
P(n,z)=1- 4D UN-9)
21 (8x)

ooooooooo

_4n?-1 _ (4n®-1) (4n®-9) (4n®-25)
WD ="g 3! (8r)° ¥

(9 In case of x <200 in a region other than (3) and (4), the following recurrence formula

is used:

Ji-1(x) =2k JK (x) /x~dKs1 (X)

(6) In case of a region other than the above, an error results,
2. BYN (DYN)
(1) In case ‘of n<), x =0, or x>8.23-105(3.53-10'5), an error results,
(2) In case of n=0, BYQ (DY0) is called to calculate Yo(x).
(3) In case of n=1, BYl (DY1) is called to calculate Yi(x),
(4) In case of n=2, the following recurrence formula is calculated repeatedly starting with
Yo(x),Y1(x) to determine Yn(x):

Yie1 () =2kYk () /x — Yi-1(X)

(4) Note

The Bessel function of the second kind N,(x) is the same as Yn(x).
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Bibliography
1) Ichizo Ninomiya; “Calculation of Bessel functions by recurrence formula”, Numerical method II
for computers, Baifukan (1966).

(1989. 01. 25)
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BKF/DKF (Modified Bessel Functions of the Second Kind of Fractional Order)

Modified Bessel Functions of .the Second Kind of Fractional Order

Programm | Toshio Yoshida, June 1985

ed by

Format | Function Language; FORTRAN; Size; 786 and 1508 lines respectively

(1) Outline
BKF (DKF) calculates Kv (x) for the single (double) precision real numbers » and x with single

(double) precision,

(2) Directions
1. BKF(V,X), DKF(W, D)
V and W correspond to », and X and D correspond to x,
V and X (W, D) are expressions of sjngle (double) precision real type. DKF requires the
declaration of double precision,
2. Range of argument
X>0 (0>0)
However, the region where function values overflow is excluded,
W0 0<D<3.53%10
3. Error processing
If an argument outside the range is given, an error message is output, and the

calculation is continued with the function value as 0. (See FNERST.)

(3) Calculation method

Kv (x) should be defined as

I,(x)-I,(x)

=,
K»(x)= 2 sinvr

The case v>( can be reduced to the case v<0 from the relation K-v (x)=K» (x).
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In this method, the value of Kv (x) is di;ectly calculated at 0 v <2.5.°
At v>2.5, the value of Kv (x) is calculated with the recurrence formula

Ke1 (2)= 82K, (x) +Kom1(2)

The calculation method of K» (x) at 0<v <2.5 depends on the value of x. If x is small, the
calculation is executed with the previous definition formula of Kv (x)., However, the calculation
is executed so that the number of significant digits is not reduced even if » is near the
integer. For details, see 1) in "Bibliography, "If the value of x is large, the calculation is

executed with the approximation to f» (1/x) in the form of

Ko(@)= 5[ e fu(3)

However, the approximation formula is obtained by applying 7 method to the differential
equation

0 (D42(E+DF,(8)- (0P~ Fu(£)=0
that f v (t) satisfies,
For details, see 2) in “Bibliography, "
Bibliography

1) Toshio Yoshida and Ichizo Ninomiya: "Computation of Modified Bessel function Kv (x) with Small

Argument x, ° Transactions of Information Processing Soc, of Japan, Vol 21, No.3. pp.238-245

(1980).

2) Toshio Yoshida and Ichizo Ninomiya: ”Computatidn of Modified Bessel function Kv (x) with Large
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BLO/DLO/BLA1/DL1 (Modified Struve Functions of the Order  and 1)

Modified Struve Functions of the Order ( and ]

Programmed | Ichizo Ninomiya, April 1983

by

Format Function Language; FORTRAN

(1) Outline
BLO (DLO) calculates the modified Struve function L ¢ of the 0-th order for a single (doubie)
precision real number x with single (double) precision,
BL1 (DL1) calculates the modified Struve function L | of the 1-st order for a single (double)
precision real number x with single (double) precision,
(2) Directions
1. BLO(X), BL1(X), DLO(D), DL1(D)
X(D) is arbitrary an expression of single (double) precision real type. DLQ and DL1 require
the declaration of double precision,
2. Range of argument
0=X, D=174.673
3. Error processing
If an argument outside the range is given, an error message is printed, and the calculation
is continued with the function value as (),

(See FNERST.)
(3) Calculation method

1. If 0=x<16, Lo (x)=x-P1 (xs%2) and L (x)=x*%2-Q (xx*2) are calculated with the polynomial

approximations Py and Q1.

2. If 16<x<174.673, Lo (x)=P2 ((16/x)*%2)/x+I¢ (x) and L1 (x)=02 ((16/x)%x2)+I 1 (x) are

calculated with the polynomial approximations P2 and Q2.
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(4) Bibliography
1) Handbook of Mathematical Functions, Dover, N.Y., p.498 (1970). : . S

(198901 25)
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BYF/DYF (Bessel Functions of the Second Kind of Fractional Order)

Bessel Functions of the Second Kind of Fractional Order

Programm | Toshio Yoshida, June 1985

ed by

Format | Function Language: FORTRAN; Size: 713 and 1061 lines respectively

(1) Outline
BYF (DYF) calculates Yy (x) for the single (double) precision real numbers v and x with single

(double) precisfon,

(2) Directions

1. BYF(V,X), DYF(W, D)
V and W correspond to », and X and D correspond to X,
V and X(W, D) are expressions of single (double) precision real type, DYF requires the
declaration of double precision,

2. Range of argument
V>0 0<K<s, 23x10°
W0 0<D<3, 53x10™

3. Error processing
If an argument outside the range is given, an error message is output, and the calculation

is continued with the function value as ., (See FNERST.)

(3) Calculation method

Yv (x) should be defined as

Y, (x)=J2() cgf n:g:c—J—u(x)

In this calculation method, the value of Y (x) is directly calculated at (S v <2.5,

At »>2. 5, the value of Yv (x) is calculated with the recurrence relation
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Yy 1 () =22Y,, (x) -Yp-1 (x)

The calculation method of Yv (x) at 0=<v =2 5 depends on the value of x, If x is small, the
calculation is executed with the previous definition formula of Yv (x). However, the calculation
is executed so that the number of significant digits is not reduced even if v is near the

integer, For details, see bibliography l).

If x is large, Yv (x) is calculated by the imaginary
part of the approximation to the first kind Hankel function Hx/(') (x) that is obtained by
applying = method to the differential equation that Hx/(')(x) satisfies,

For details, see Bibliography 2).

Bibliography

1) Toshio Yoshida and Ichizo Ninomiya: “Computation of Bessel Function Yv (x) for Small Argument
x.” Transactions of Information Processing Soc, of Japan, Vol, 23, No.3, pp.296-303 (1982).

2) Toshio Yoshida and Ichizo Ninomiya: “Computaion of Bessel Function Yv (x) for Large Argument

x.” Transactions of Information Processing Soc. of Japan, Vol 24, No. 4, pp.436-443 (1983).

(1989. 01. 25)
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JOYOS/D and J1Y1S/D (Bessel functions of order 0 and 1)

Bessel Functions of the Order 0 and ]

Prog | Ichizo Ninomiya; May 1983
ramm
ed

by

Form | Subroutine Language; FORTRANT?  Size; 105, 188, 102, and 186

at lines respectively

(1) Outline

JOYOS(D) and J1Y1S(D) are subroutine subprograms that calculate Qth and 1st order Bessel
functions Jo (x) and Yo (x), and Ji (x) and Yy (x) for a single (double) precision real number x,

with single (double) precision,

(2) Directions
CALL JOY0S/D(X, VJ, VY, ILL)

CALL J1Y1S/D(X, VJ, VY, ILL)

Argume | Type and Attr Content

nt kind (1) | ibut

e
X Real type | Inpu| Value of variable x, 0=X<8.23-10%¢5(3. 53-10%%15) .
. 4
vJ Real type |Outp] Value of Bessel function of

ut the first kind, Jo (x) or J1 (x)

VY Real type [Qutp| Value of Bessel function of

ut the second kind, Yo (x) or Y1 (x)

140



/#3

Argume | Type and Attr Content

nt kind (1) | ibut

ILL Integer Qutp | ILL=0: Normal termination,
type ut 1LL=30000: Argument X is outside of the range.

vJ=0. 0 and VY=0, 0.

x] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Calculation method

1) When x=<0 or x>8, 23-10%x5(3, 53-10%x5), an error results,

2) When 0<x=<2, optimal polynomial approximations Ap, A1, Bo, and By are used to calculate:
Jo (x)=A0 (xx)
Yo (x)=2/m=*Jo (x) log (x) +Bo (x*x),
J1 (x)=x*A1 (xxx)
Y1 (x)=2/m=xJy (x)log(x)+xsB1 (x#x)-2/ (7 x)

3) When 2<x<4, optimal polynomial approximations C1, C2, C3, and C4 are used to

calculate:

Jo (x)=C1 (x-3),
Yo (x)=C2 (x-3),
J1 (x)=C3 (x-3),
Yi (x)=C4 (x-3)-2/(7x)

4) When 4<X<6, optimal polynomial approximations D1, D2, D3, and D4 are used to calculate:

Jo (x)=D1 (x-5),
Yo (x)=D2 (x-H),
J1 (x)=D3 (x-5),
Y1 (x)=D4 (x-5).

5) When 6<X<8, optimal polynomial approximations Ei, E2, E3, and E4 are used to calculate:
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Jo (x)=E1 (x-7),

Yo (x)=E2 (x-T),

J1 (x)=E3 (x-7),

Y1 (x)=E4 (x-7).
6) When 8<x=<8.23-10%x5(3. 53-10%x15), optimal polynomial approximations (rational functions)
Fo, F1, Go, and G1 are used to calculate:

Ho=(Fo ((8/9):x2)x8/x) '/, |

M1=(R1 (@/0a2)38/0) /2,

P0=Go ((8/x)%x2) x8/x-7 /4+x,

P1=61 ((8/x)%%2)*8/x-7 /44,

Jo (x)=Mo=cos(Po) ,

Yo (x)=Mo=sin(Po) ,

J1 (x)=M12sin(Py) ,

Y1 (x)=-M1xcos(Py).

(4) Note
This routine uses the entire common part of the calculation method of Jo (x) and Yo (x), or
J1(x) and Yi (x). Therefore, when both of these functions are calculated, it is more

advantageous to use this routine than to use individual functions to calculate them separately.

(1989, 01. 20)
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SI0/DSI0, SI1/DSI1, SKO/DSKO, SK1/DSK1 (Modified spherical Bessel

functions of the order ( and 1)

Modified Spherical Bessel Functions of the Order 0 and {

Programm | Ichizo Ninomiya: April 1977
ed by

Format | Function Language; FORTRAN Size; 18, 22, 18, 22, 23, 31, 24, and
31 lines respectively

(1) Outline

SI0 (DSIQ), SI1 (DSI1), SKO (DSK0), and SK1 (DSK1) calculate io(x), t1(x), ko(x), and k1(x)

respectively, with single (double) precision, for a single (double) precision real number X,

Where,

in(x)=4/%1n+l/2(x) ’ kn(x)=4/‘27[?l{n+|/2(x)

(2) Directions
1. SI0(X), SI1(X), SKO(X), SK1(X)
DS10(D), DSI1(D), DSKO (D), DSK1 (D)
X and D are arbitrary single and double precision real-type expressions respectively, The
double precision function name needs to be declared as double precision, |
2. Range of argument
For modified spherical Bessel function of the first kind: |X|<174.673 and |D|<174. 673
For modified spherical Bessel function of the second kind: (<X, 0<D.
3. Error processing
If the specified argument is outside the range, an error message is printed but calculation

continues with the function value assumed to be (. (See FNERST.)
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(3) Calculation methed

L

2.

3.

4

SI10 and DSI0

(1) In case of |x|=174. 673, an error reéults,

(2) In case of |x|<1, to(x) is calculated by a polynomial approximation,

(3) In case of |x|=1, 1o(x)=sinhx/x is calculated.
SI1 and DSI1

(1) In case of |x|=174.673, an error results,

(2) In case of |x|<1, 11{x) is calculated by a polynomial approximation,

(3) In case of |x|=1, 11(x)=1/x(coshx-sinhx/x) is calculated,

SKO and DSKQ
(1) In case of x<(, an error results,
(2) In case of x>180.218, ko(x)=0.
(3) In case of (<x<l, ko(x) is calculated by a rational approximation,
() In case of 1sx<180.218, ko(x)=n/2-e*/x is calculated,
SK1 and DSK1
(1) In case of x=<{, an error results,
(2) In case of x>180.218, k1(x)=0,
(3) In case of (<x<l, k1(x) is calculated by a rational approximation,

(4) In case of 1<x=<180.218, ki(x)=r/2(1+1/x)e™*/x is calculated,

(4) Notes

The modified spherical Bessel function can easily be defined by exponential and hyperbolic

functions,

resu

also

If it is calculated as defined, however, severe cancellation occurs near the origin,

1ting in deteriorated precision, Using the above functions can eliminate such problem and

save the calculation time,
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SIK/DSIK and SKN/DSKN (Modified spherical Bessel functions of integral orders)

Modified Spherical Bessel Functions of Integral Orders

Programm | Ichizo Ninomiya; September 1981
ed by

Format Function Language; FORTRAN Size; 125, 188, 49, and 50 lines
respectively

(1) Outline
SIK (DSIK) and SKN (DSKN) calculate in(x) and kn(x) respectively, with single (double)

precision, for an integer n and a single (double) precision real number X.

in(@)= /5 Ine1/2(2) s kn(2)= /5= Kne1/2(2)

(2) Directions
1. SIK(N,X) and SKN(N, X)

DSIK(N, D) and DSKN(N, D)

N, is an arbitrary integer-type expression, X and D are arbitrary single and double
precision real-type expressions respectively. The double precision function name needs to be
declared as double precision,

2. Range of argument
Modified Bessel function of the first kind i,(x):
N=0, X=0 (0=0)
However, any region where the function value overflows is F:xcluded,
Modified Bessel function of the second kind:
N0, X>0 (0>0)
However, any region where the function value overflows is excluded,

3. Error processing
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If the specified argument is outside the range, an error message is printed but calculation

continues with the function value assumed to be (), (See FNERST.)

(3) Calculation method
1. SIK (DSIK)
(1) In case of x<0 or n<(, an error results,

(2) In case of (x/2)25n+3/2 the following Taylor series is calculated:

_ n 2/2 (%/2)*
- x 1
a(X) =133 @n+1) {1+ T1(2n+3) 21 (2s3) (2nd) i

(3) In case of x=10(18) and x;0.55(n+1/2)2, the following asymptotic expansion is

used:

1 u 1, (-1 @-9) (u-1)(u-9)(u-25) !

1a(x) 2’!: { o1 (&)2 2 (Bx)s .....

where p=(2n+1)2,

(4) In case of n+1/2210(35) in a region other than (2) and (3), the following uniform

asymptotic expansion is used:

e(*3) =
in(x) = & 222):’/4{1+k¥|(n+%)'KUk(t)}

This calculation is based on the following:

¢=x/(n+5)  t=1/A14€%,  n=n14¢%+l0g( ¢/(1+4/T+60) ]

where ux(t) is a kth polynomial of &,

(9) In case of an area other than the above, the following recurrence formula is used :

1k-1(x)=(2k+1) ik () /T+1ks1(T)
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2. SKN (DSKN)
(1) In case of n<) or x<(, an error results,
(2) In case of x>180.218, kn(x)=0.
3) In case of n=0, SK0 (DSK0) is called to calculate kp(x)-
(4) In case of n=1, SK1 (DSK1) is called to calculate ki(x).
(5 In case of n =2, the following recurrence formula is repeatedly calculated, starting

with ko(x),ki1(x), to obtain k1(x):

etet (2) =B e () ()

Bibliography .

1) Ichizo Ninomiya; ”Caléulation of Bessel functions by recurrence formula®, Numerical method Il
for computers, Baifu-kan (1966).

2) D. B. Amos et al; "CDC 6600 Subroutines IBESS and JBESS for Bessel Functions 1v(X) and
Ju(x) ,x=0,v=0" ACM Trans. on Math, Software, Vol.3, No.1, pp.76-92 (1977).
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SJO/DSJO, SJ1/DSJ1, SYO/DSYO, SY1/DSY1 (Spherical Bessel functions of the

order () and 1)

Spherical Bessel Functions of the Order ( and 1

Programm | Ichizo Ninomiya; April 1977
ed by

Format Function Language; FORTRAN Size; 18, 22, 18, 22, 19, 25, 19,
and 25 lines respectively

(1) Outline

$J0 (DSJO), SJ1 (BSJ1), SYO (DSY0), and SY1 (DSY1) calculate jo(x), j1(x), wyo(x), and y1(x)

respectively, with single (double) precision, for a single (double) precision real number x.

Where,

jn(x)=4/ %JIHI/Z(J:) ’ yn(x)=4/ %YMI/Z(:I')

(2) Directions

L SJO(X), SJ1(X), SYO(X), SYi(X),
DSJO(D), DSJ1 (D), DSYO (D), DSY1 (D)
X and D are arbitrary single and double precision real-t&pe expressions respectively., The
double precision function name needs to be declared as double precision,

2. Range of argument

For Spherical Bessel function of the first kind: 1X1s=8.23-10°, DI 53.53-10'5,

For Spherical Bessel function of the second kind:
0<1X1s8.23-10°, 0<1D1s3.53-10".
3..Brror processing
If the specified argument is outside the range, an error message is printed but calculation

continues with the function value assumed to be . (See FNERST.)
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(3) Calculation
1. SJO(DSJO)
(1) In case
(2) In case
(3) In case
2. SJ1(DSJ1)
(1) In case
(2) In case
(3) In case

3. SY0(DSYO)
(D In casé
(2) In case
(3) In case

4. SY1(DSYD)
(1) In case
(2) In case

(3) In case

(4) Notes

1. The spherical Bessel function can easily be defined using-a trigonometric function,

method

of lxl 28.23-105( lx! 33.53-1015), an error results,
of |x|<1, jo(x) is calculated by a polynomial approximation,

of |x|=1, jo(x)=sinx/x is calculated,

of Ix| 28.23-105( lx| g3.53-10'5), an error results,

of |x|<1, F1(x) is calculated by a polynomial approximation,

of |x|=1, ji1(x)=1/x(sinx/x-cosx) is calculated.

of x=0 or x| 58.23-105( x| 23.'53-10‘5), an error results,

of |x|<1, yo(x) is calculated by a polynomial approximation,

of |x|=1, yo(x)=-cosx/x is calculated,

of x=Q or x| 28.23-105( lxl g3.53-10'5), an error results,

of |x|<1, yi1(x) is calculated by a polynomial approximation,

of |x|=1, y1(x)=—1/x2-(cosx+xsinx) is calculated,

/5|

it is calculated as defined, however, severe cancellation occurs near the origin, resulting

in deteriorated precision,

save the calculation time,

2. The synbol np(x) may be used instead of yn(x),
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SIJN/DSJN, SYN/DSYN (Spherical Bessel functions of integer orders)

Spherical Bessel Functions of Integral Orders

Programm | Ichizo Ninomiya; September 1981
ed by

Format Function Language; FORTRAN Size; 93, 98, 46, and 48 lines
respectively

(1) Outline
SIN (DSJN) and SYN (DSYN) calculate jn(x) and yp(x) respectively, with single (double)

precision, for an integer n and a single (double precision real number x.

Where,

jn($)=4/%-]n+l/2(x) ’ yn(x)=;\/%yn+l/2(x)

(2) Directions
1. SIN(N,X), DSIN(N,D), SYN(N,X), and DSYN(N,D)

N is an arbitrary integer-type expression, X and D are ~rbitrary single and double
precision real-type expressions respectively, The double precision function name-needs to be
declared as double precision,

2. Range of argument
Spherical Bessel function of the first kind jn(x):
Nz0, 0sX=8.23-10°(0sD=3.53-10%)
X>200, N>1.384~X (D>200, N=1.384+D) are excluded.
Spherical Bessel function of the second kind Yn(X):
N20, 0<X=8.23-10°(0<X=3.53-10%)
However,z any region where the function value overflows is excluded,
3. Error processing
If the specified argument is outside the range, an error message is printed but calculation’ |

continues with the function value assumed to be 0, (See FNERST,)
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Calculation method
SIN(DSIN)
(1) In case of n<0, x<0, or x>8.23 105(3.53- 1015), an error results,

(2) In case of (:1:/2)2§n.+3/2, Taylor series

N n a%/2 (a%/2)?
@ =TE e U TTensy T 2rens) gy~

is calculated,
(3) In case of x=10(18) and n+1/2s1.384/X, the following expansion formula is used:

jn(x)={P(n,x)sine +Q(n,x)cose } /x
where

¢ =x-nn/2,

P(n’x)zl_wq. .

21 (8x)2 ’
_p-1 - (p-1) (u-9) (u1-25)
Q(n)x)" T 3!(81‘)3 +ooee e ’
p=(2n+1)?

(4) In case of x=200 in a region other than (2) and (3), the following recurrence formula

is used:

Ik-1(x)=(2k+1) Gk (x) /2~ Jier1 (T)

(5) In case of a region other than the above, an error results,

SYN (DSYN)
(1) In case of n<Q, x =<0, or 1:>8.23-105(x>3.53-10]5), an error results,
(2) In case of n=0, SYO(DSY0) is called to calculate yo(x).

(3) In case of n=1, SY1(DSY1) is called to calculate yi(x).
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(4) In case of n=2, the following recurrence formula is rapeatedly calculated, starting

with yo(x),yi1(x), to obtain yp(x):

yk+1(x)=<2]§c—+l)yk(x) - Yk-1(x)

(4) Note

Spherical Bessel function of the second kind mp(X) is the same as Yn(X).

Bibliography
1) Ichizo Ninomiya; “Calculation of Bessel functions by recurrence formula”, Numerical method 11
for computers, Baifukan (1966)

(1989. 01. 12)
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ZBJO/DZBJ0,ZBJ1/DZBJ1, ..... ,ZBJ15/DZBJ15 (Positive zeroes of Jo~Jis)

Positive Zeroes of Bessel Functions Jo~Ji5

Programm | Ichizo Ninomiya: December 1983, revised in July 1986 and December 1988

ed by

Format Function Language; FORTRAN Size; 120 lines

(1) Outline

Bach of functions ZBJO (or DZBJ0) to ZBJ15 (or DZBJ15) calculates the n-th positive zero in Jo

to Jis for positive integer n, with single (or double) precision,

(2) Directions

2.1 {ZBJO(N)~ZBJ15(N)} {DZBJO(N)~DZBJ15(N)}

N is an arbitrary integer type expression, Each function whose name begins with D requires
declaration of double precision,

2.2 Range of argument
1=N<1000 for ZBJO and ZBJ1 (DZBJO and DZBJI1); 1?5N§5100 for other functions

2.3 Brror processing

If the argument is outside the range, an error message is printed but calculation continues

with the function value assumed to be (.

(3) Calculation method

When 1=N=<100, a numerical table calculated beforehand with sufficient precision is used,

When 100<N=1000, an asymptotic expansion formula is used,

Bibliography

) Watson, G. N., Theory of Bessel Functions, Cambridge University Press, pp,503-506 (1922)
(1989. 01. 25)
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ZBJOS/D and ZBJ 1S/D (Zeros and derivatives of Bessel functions Jo and J,)

Zeroes and Deviatives of Bessel Functions Jo and Ji

Programm | Ichizo Ninomiya: December 1983
ed by
Format Subroutine Language; FORTRAN Size£ 210 lines

(1) Outline

ZBJOS (or ZBJOD> and ZBJ1S (or ZBJ1D) each calculate the n-th positive zeros {jon, jln} and

(o (jon),Ji (iln)} of Bessel functions {Jo, J1} for positive integer n with single (or double)

precision,

(2) Directions

CALL ZBJOS/D (N, ZERO, DERIV, ILL)

CALL ZBJ1S/D(N, ZERO, DERIV, ILL)

Argument Type and Attribut Content
kind (1) |e

N Integer | Input Number of positive zero: 1sSN<100
type

ZERD Reﬁ] Output N-th zero jon (jln) of Bessel function Jo (J1)
type

DERIV Real Output | Derivative J6 (jon) (Ji (jin)) at zero jon (jln)
type

ILL "Integer | Output | ILL=0: Normal
type 1LL=30000: N<1 or N>100.

£] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Calculation method
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A numerical table calculated beforehand with«sqfficien_t precision is used:’
(4) Note

Jo (Gon)=-J1 (jon) and J1 (i1M)=Jo (iIn)=-Jz (jln). =

(1989. 01. 25)
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ZBJN/DZBJN (Positive Zeroes of Bessel Functions Jo~Ji5)

Positive Zeroes of Bessel Functions Jo~Jis

Programm | Ichizo Ninomiya, December 1983, revised in July 1986

ed by

Format Function Language: FORTRAN; Size: 42 and 43 lines respectively

(1) Outline

{ZBJN(DZBJN)} calculates the k-th zero of J, for positive integers n and k by single (double)

precision,

(2) Directions
2.1 {ZBJN(N, K), DZBIN(N, K)}
An arbitrary expression of the integer type can be written in N and K. DZBJN requires the
declaration of double precision,
2.2 Range of argﬁment
0SN<15, 1=K<100. However, 1<K=1000 for 0SNSL.
2.3 Error processing
If an argument outside the range is given, a message is printed as an error and the

calculation is continued with the function value as {,

(3) Calculation method

A numerical table precomputed with a sufficient precision is used for 1=<N=1(0,

An asymptotic expansion formula is for 100<N=1000.

Bibliography

1) Watson, G.N,, Theory of Bessel Functions, Cambridge University Press, pp.503-506 (1922)
: (1989. 01. 25
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ACCELS/D,LEVNTS/D,LEVNUS/D,WYNNES/D,WYNNRS/D,EULERS/D.,

BRZSKS/D (Acceleration of convergence of sequence or series)

Acceleration of Convergence of Sequences or Series

Programm | Ichizo Ninomiya: October 1984

ed by

Format Subroutine Language; FORTRAN - Size; 220 and 224 respectively

(1) Outline

Each of these subroutines calculates a limit value with the requested precision by accelerating
convergence of sequence S1,S2,°<¢,Sn, ¢+ or series Q| +az+-«-+ap+++-, which generally
shows slow convergence,

The series (a sequence is regarded as series An=AS,-1) is divided into the following five

types,

1. Alternating series

This type of series satisfies Qn+1/0n<0. Example: an=(—1)""/n

2. Series of linear convergence

This type of series satisfies un i/an = &, 1A 1<1, Example: an=0.5"+(-0.8)"

3. Series of logarithmic convergence

This type of series satisfies Qn+1/an — 1. Example: an=1/n2

4, Irregular sign series

This type of series has a, whose sign is irregular, Example: an=sinm:/n2

5. Others
Depending on the type of series given, each of these subroutines performs Levin's t-,

Levin’s u-, Wynn’s €-, or Wynn's p-transformation as follows:
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1. Alternating series

2. Series of linear convergence

3. Series of ldgarithmic-convergence
4, Irregular sign series

5. Others

: t-transformation,
: e-transformation, -
: p-transformation,
: e-transformation,

: u-transformation,
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(2) Di

rections

CALL ACCELS/D(ICAT, ISER, FUNTERM, EPSA, EPSR, NMAX, V, ERR, NTERM, ILL)

Argument | Type and Attribut Content
kind (x1) |e
ICAT Integer Input Type of series (a sequence is regarded as a series with term
type ASn-1) is specified,
ICAT=1: Alternating series, u-transformation is used,
ICAT=2: Series of linear convergence, ¢-transformation is
used,
ICAT=3: Series of logarithmic convergence,
p-transformation is used,
ICAT=4: Irregular sign series, ¢-transformation is used,
ICAT=5: Type unknown, u-transformation is used,
A value other than the above receives the same treatment as
ICAT=),
ISER Integer Input ISER=0 indicates a sequence,
type ISER+#( indicates a series,
FUNTRM Real type | Input General term an or Sn is given as a function of number n of
Function the term,
subprogram This subprogram must be declared in the EXTERNAL statement in
the calling program,
EPSA Real type | Input Absolute tolerance ea,
EPSR Real type | Input Relative tolerance er,
NMAX Integer Input Maximum allowable number of terms, NMAX=4.
type
v Real type | OQutput Limit value, The target value is
| V-Vo | <max(|Vo| er, €a), where Vo is the true value,
ERR Real type |Output |Estimated value of |V-Vo|.
NTERM Integer Output Number of terms used,
type
ILL Integer Qutput Error code,
type ILL=0: Normal termination,
ILL=10000: The convergence condition has not been
established but there is no room for further improvement
because of loss of significant digits.
ILL=20000: Convergence has not occurred though the maximum
number of terms was reached,
ILL=30000: NMAX<4.

x1 For double precision subroutines, all real types should be changed to double precision real

types,
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(3) Calculation method

1. e-transformation

e-transformation starts with 1 and determines 3 through the recurrent equation 2, This
routine calculates subsequence 4 until the convergence conditions are met,

n
1 8&?) =0’ 86") =Sn(:2ai) . n=1,2,
i=]
2 efV=gfMV+1/aeM

3  g",n=1,2,- - -;k=1,2, - - - ,n-1

4 861)’€E2)7 M er(lﬂ e

2. p-transformation
p-transformation starts with 1 and determines 3 through the recurrent equation 2. This

routine calculates subsequence 4 until the convergence conditions are met,
n

1 p%=0,p§"=8u=(} ai),n=1,2,

) i=]

2 p=piP+k/apfM

3 o.n=1,2,--;k=1,2, - -n-1

4 pf.pfP, - .0 -

3. t-transformation and u-transformation

t-transformation and u-transformation each start with 1 and determine 2. This routine

calculates subsequence 3 until the convergence conditions are met,
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1 t(gn)=sn(=il:an) ,n=1,2, - - -

k-1 k-1
2 M=ok gy ak(Bon=1,2, - - - 5k=1,2, - - 11

3 0,2, - . ot . ..

u-transformation is a transformation where t of t-transformation is changed to u and ! oof 2

is changed to nﬁ'z,

Refer to the paper in the bibliography for details of the calculation method,
(4) Bxample

Series

The following sample program calculates

1-1/3+1/6- - -+ D" /@n-1) 4. = X
with double precision with required absolute accuracy 10"0,

IMPLICIT REAL*8 (A-H,0-2)

EXTERNAL FUNTRM

ICAT=1

ISER=1

EPSA=1.D-10

EPSR=0.DO

NMAX=50

CALL ACCELDC(ICAL,ISER,FUNTRM,EPSA,EPSR,NMAX,V,ERR,NTERM.,.

ILLD

D=DABS(V-DATAN(1.D0))

WRITE(6,600) V,D,ERR,NTERM,ILL
600 FORMAT(1iH ,D18.10,2D11.3,216)

STOP

END

FUNCTION FUNTRM(N)

IMPLICIT REAL*8 (A-H,0-2)

IF(N.EQ.1) SGN=1.DO

FUNTRM=SGN/DFLOAT(N+N-1)

SGN=-SGN
RETURN
END

(5) Notes
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1. The series other than the alternating series may suffer loss of significant digits, So, do
not make the tolerance too small; otherwise, convergence will not 6ccun

2. To perform t-, u-, e€-, or p-transformation, each of these routines calls subroutine
LEVNTS/D, LEVNUS/D, WYNNES/D, or WYNNRS/D correspondingly. The specifications of these
subroutines are the same as those for the present routines except that the former does not have
input argument ICAT, Taking account of these conditions, one can use these special subroutines
directly, Euler transformation routine BULERS/D having the same specifications and Brezinsky

O -transformation routine BRZSKS/D are also available,

3. A function subpfogram that calculates a general term must be defined as a function of only the
number N (integer beginning from 1) of the term, This function routine is always called in

natural sequence like N=1, 2, 3 ... from the beginning, Use this to save the quantity of

calculation, (See the example above,)

Bibliography

(1) T. Fessler; ACM Trans, Math, Softw, Vol 9, pp.371-381 (1983).

(2) D. A Smith; SIAM J. Numer, Anal, Vol 16, pp.223-240 (1979).

(1987. 07. 25) (1988. 06. 20)
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16. Linear programming

B SRl
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LIPS/D (Linear programming by CRISS-CR0OSS method)

Linear Programming by CRISS-CROSS Method

Programm | Yasuo Akatsuka; November 1980
ed by

Format | Subroutine Language; FORTRAN  Size; 2684 Q770) byte

(1) Outline

The minimization of optimum control and the maximization problem are solved by the CRISS-CROSS
method by which the simplex method is applied, LIPS is a singie precision routine, and LIPD is a

double precision routine,

(Minimize)
(Objective function) Z=a1,14+a) 201+A] 3X2+ <« ¢+ » ++A], nTn-1
(Conditional expression) @2, {+a2 2X1+02 3X2+*>=-=« +a2 pxn-120

Qg 1+0g 2011 3X2+= = * . *+0g, nZn-120

(Prerequisite condition) x;(i=1,+--,n-1)20

(2) Directions

CALL LIPS/D(A, L, M, N, IW, Y, EPS, ICON)

Argument | Type and Attribut Content
kind (x1) |e

A Real type | Input/ou | A coefficient matrix of the objective function and
Two-dimens | tput conditional expression is input,
ional
array

L Integer Input Value of the first subscript in array declaration of A, L=M
type

M Integer Input Number of rows of A (number of conditional expressions + 1
type (objective function)),

N Integer Input Number of columns of A (number of unknowns of eguation + ),
type
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Argument | Type and Attribut Content
kind (1) (e
IW Integer - | Input/ou | Name of one-dimensional array with MtN number of elements,
type tput This is used as a work area,
One-dimens
ional
array
Y Real type | Output One-dimensional array with M#N-1 number of elements, Yi:
One-dimens Minimum (maximum) value of objective function, Y2~n:
ional Optimal solution, Yp+i~n+n-1: Slack value,
array
EPS Real type | Input Values smaller than EPS are considered ( during calculation,
ICON Integer Input/ou | Input,
type tput ICON=0: Calculation is performed until an optimal solution
is obtained,
ICON#0: The program returns each time a solution is
output,
Output,
1CON=30000: No solution is obtained,
ICON=1000: Called with ICON+Q,
ICON=0: The solution was normally obtained,

x] For double precision subroutines, all real types should be changed to double precision real

types,

(3) Notes

‘1. To solve a maximization problem, objective function = can be given with the signs of its
coefficients reversed. However, the value of Y is the absolute value,

2. To solve an equalities problem, the equaliti€s can be changed to inequalities by adding

conditional expressions with signs reversed, or by adding variables and conditional expressions,

Bibliography

1) N. K. Kwak; “Mathematical Programming with Business Applications, ® McGraw-Hill Book Company
(1973). '

2) T. Hu; "Integer Programming And Network Flows,” ADDISON-WESLEY PUBLISHING COMPANY, (1970).

(1987.07.07)
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SIMPLX/SIMPLD (Linear programming by simplex method)

Linear Programming by Simplex Method

Programm | Michiyo Kato; January 1975
ed by
Format Subroutine language; FORTRAN Size; 138 and 139 linés respectively

(1) Outline

SIMPLX/SIMPLD solves maximization and minimization problems for optimum control, using the

simplex method which is a kind of linear programming,

Under restrictive conditions;

QilXp+eeeeee +QAin0Tn0SSi  (i=1,---,my)

QjIx oo +jn0xn0ZS;  (J=1,---,m2)

7Sk A ELREERE +akn0xno=sk  (k=1,---,m3)
and

120 (I=1,--+,n0)

Ty, **+,Xn0 which maximizes

Z=C|x]+’ csee .+Cnmn

is determined,

(2) Directions

CALL SIMPLX(A, KA, M1, M2, M3, NO, S, C, INDEX, OF, X, EPS, ILL)

(1)
@)
3)

(4)

(5)

SIMPLX is a subroutine for single precision and SIMPLD is for double precision,

type

Argument | Type and Attribut Content
kind (x1) |[e

A Real type | Input/ou | The coefficient matrix of the conditional expression is set
Two-dimens | tput in the first N0 columns, The size with M=M1+M2+43 rows and
ional NO+M+M2 columns is needed,
array

KA Integer Input First subscript of AKA=M1+M2+M3
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Argument | Type and Attribut Content
kind (x1) |e

M1 Integer Input M1 is the number of standard conditional expressions in
type expression (1). M1=0

M2 Integer Input M2 is the number of inequalities in the opposite direction in
type expression (2). M2=0

M3 Integer Input M3 is the number of equations in expression (3). M3=0
type

NO Integer Input NO is the number of variables, N0=2
type

S Real type | Input S(M), one-dimensionai array name, The right-hand sides of
One-dimens conditional expressions (1), (2), and (3) are set., Note
ional M=M1+M2+M3,
array

C Real type | Input C(N), one-dimensional array name, The coefficients of
One-dimens evaluation function (5) are set, Note N=NO+M+M2,
ional
array

INDEX Integer Input 1 is set for maximization and -1 is set for minimization,
type

X Real type | Qutput X(N), one-dimensional array name, An optimum solution is put
Dne-dimens in X(1), ..., X(NO), and the value of the slack variable *2
ional is put in X(NO+D), ..., X(N).
array

OF Real type | Output | The maximum (minimum) value of the objective function is put

in this argument,
EPS Real type | Input A value smaller than EPS detected during calculation is
regarded as (. EPS>0

168




/7]

Argument | Type and Attribut Content

kind (x1) |e
ILL Integer Qutput ILL = 30000: The input argument does not satisfy the
type. specified conditions,
ILL = 1001: When INDEX = 1,

zj—c;j<0 is established and all elements of the
corresponding base vector are
negative and 0% are negative,

ILL = 1002: When INDEX = -1,
Zj-c;>0 is established and all elements of the
corresponding base vector are

negative and 6% are negative,

x] For double precision subroutines, real types are all assumed to be double precision real
types,

x2 See the calculation method in (3).

(3) Calculation method
Here, we take up an example under standard conditional expressions only (m=m;). If slack
variable 8120, - - - ,A5=0 is introduced, expression' (1) becomes
Qi X1+ * <+ Ain0xno+Ai=s;i (i=1,---,m) (6)
If &1, ¢+ + + ,Ap is assumed to be XnO+1, = * * »XnO+n, expressions (6), (4), and (5) are

represented by:

n0 m

Zai;x;+2xn0+,-=Si (i=1, - - - ,m) €))

i=0 i=1

xjz0 (7=1, -+ - ,nO+m) (8)
n0+m ' o

Z=)Y cjxj (j=1, - - - ,nO+m) (9)
i=1

If (7) is assumed to be AX=S, A is the matrix of mX (nO+m), X is the column vector of

(nO+m) and S is the columg vector of m,
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Step 1
m base vectors QnQ+1, * * * »Qn0+n are selected from matrix A, The rank of (QGnd+1s *** »QnO+n)
is m,
X which satisfies
Zn0+1An0+1+* * * +Ln0+aln0+2a=S (10)
is a feasible basic solution,
Step 2
Initial end point is supposed to be;
X=(0,--+,0,xn0+15 * = = Tn0+a) (11)
QnO+1s ** * »n0+w is linearly independent, and ay,---,dy is represented by
Qj=n0+1, jn0+ 1+ * = +TnO+m, jAn0rn  (J=1,---,m) (12)
From expressions (9) and (11), the following is obtained:
Z0=Cn0+1%n0+1+* * * +Cn0+aTn0in (13)
Z; is supposed to be;
Zj=Xn0+1, jCnl+1+* * *+Xn0+n, jCnl+n - (14)
Then, for adequate positive number 4, (10)-8 X (12) and (13)-0 X (14) become;
(Xn0+1-0Tn0+1, ) Ane 1+ - = +(XTn0+a~0Tn0+a, j) An0+a+0a;=S (15)
(Xn0+1-02n0+1, ) CaO+1+ - - + +(Ln0+a—02n0+a, ) Cro+a+0C;=20-0 (zj-C;) (16)
If @ which makes one of (xno+i=9xpo+i,;) (i=1,--+,m) 0 and the rest non-negative in the
left-hand side of expression (16) is found, the left-hand side beccmes new evaluation function 2
That is;
z=20-0(zj-c;) am
is established, If (zj-c;)s0(j=1,---,m) is satisfied, Z=2p is established, This
improves the maximization problem, The solution obtained when (Zj-cj)Z0 is gstahlished is the
optimum solution, The minimization problem is the reverse of the above,

Step 3

Tn0+i

60 = min Tn0ei ]

is selected and assigned to expression (19);

Tn0+1Tn0+1+ * * * +Tn0+i-10An0+i-1+Tn0+i+1qn0+i+1+ * * * +Tn0+aln0+n+XjA;=S (18)
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x . o x . . .
n0+1 n0+k, j (IC=1 ’2’ « . e ,1-—1 ,’l,+1 ,ﬂ'l)

Tn0d+i Toldedj ) (19)

Xnl+i, j

{xn0+k= Zn0+k—OXn0+k , j=Tn0+k

Xn0+k»Xj becomes positive and the end point moves to

X =(0,-+,Xjs°**3Zn0+1»* " »Tn0+i-1>Tn0+i+1>Lnl+n).

(4) Example

The following program handles a minimization problem involving six variables,

010 DIMENSION A(100,200),B(100),C(200),X(200),W(1600)
020 10 READ(5,1000,END=30) NS

030 NW=NS%*80

040 READ(5,1010) (WCI),I=1,NW)

050 1000 FORMAT(I10)
060 1010 FORMAT(80A1)

070 WRITE(6,1020) (W(I),=I=1,NW)
080 1020 FORMAT(1H ,80A1)

090 READ(5,1040) M1,M2,M3,NO,INDEX
100 M=M1+M2+M3

110 N=NO+M+M2

120 DO 20 I=1,M

130 READ(5,1030) (A(I,I1),11=1,NO)
140 20 CONTINUE

150 - READ(5,1030)(B(I2),12=1,M)

160 READ(5,1030) (C(I12),12=1,N)

170 1030 FORMAT(8F10.0)
180 1040 FORMAT(5110)

190 EPS=1.E-5

200 CALL SIMPLX(A,100,M1,M2,M3.NO,B,C,INDEX,OF,X,EPS,ILL)
210 WRITE(6,1050) ILL.,OF

220 WRITE(6,1060) (X(I)>,1=1,NO)

230 WRITE(6,1070)(CCI),I=1,N)

240 GO TO 10

250 30 STOP

260 1050 FORMAT(1HO,'ILL="',15,"' OBJECT FUNCTION VALUE IS',E15.
x6) ‘

270 1060 FORMAT(1H ,S5E12.5)

280 1070 FORMAT(1H ., ZJ-CJ' /5E12.5)

290 END

Example of input
)
XXX SUBJECT TO:
X14+43X2-X3+2X5>=7.0

=2X2+4X3+X4 >=12
=4 X2+3X3+8X5+X6>=10
AND X(1<=1<=6)>=0
MINIMIZE F(X)=X2-3X3+2X5
3 é -1
1.0 3.0 -1.0 0.0 2.0 0.0
0.0 -2.0 4.0 1.0 0.0 0.0
0.0 -4.0 3.0 0.0 8.0 1.0
7.0 12.0 10.0

171



14

o.o 1.0 _3.0 O.o 2.0 0.0

Example of output
X% SUBJECT T0O
. X1+3X2-X3+2X5>=7.0

~2X2+4X3+X4 >=12
=4£X2+3X3+8X5+X6>=10
AND X(1<=1<=6)>=0

MINIMIZE F(X)=X2-3X3+2X5
ILL= O OBJECT FUNCTION VALUE IS -0.110000E+02
0.0 , 0.40000E+01 0.50000E+01 0.0 0.0
0.0
2J-CJ
-20.20000E+00 0.0 0.0 -0.80000E+00-0.24000E+0
Z2J-CJ
0.0 -0.20000E+00-0.80000E+00 0.0
(5) Note

If a problem contains many conditional expressions for the number of variables, it is
reéommended to transform the problem into a dual problem,
Example: SUBJECT to |
Suz=1
2ui+duzz4
2u+ u=3
Su1z3
4u+2uz2=4
u+2uzz1
and, under u;(1=1,2)20, nininize g=2u1+2u2 is transformed to:
2x2+2x3+3x4+4x5+16=2
3x1+4x2+x3+2x5+2x6 =2
and, it is substituted by maximize f=x1+4x2+3x3+3x4+4x5+x6 under
xi(i=1,2,---,6)20,
u1=4/3, uz=1/3
x2=1/3, x3=2/3
z=g(u)=f(x)=10/3

(1989. 01. 25)
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Special data process:
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MAXCOS/1/D (Maximum Condensed Sort of a Vector)

Maximum Condensed Sort of a Vector

respectively,

Programm | Michiyo Kato, September 1982
ed by
Format Subroutine Language: FURTRAN; Size: 19, 19, and 19 lines

(1) Outline

If a real vector A and its element count K1 are given, MAXCOS/!/D rearranges them based on the

Quicksort method without any overlap, and gives to KG the order in the vector A,

(2) Directions

CALL MAXCOS/I1/D(A, K1, K2, KG, ILL)

Argument Type and Attribut Content
kind (x1) |e |

A Real type | Input/ou | Vector A to be processed.
One-dimens | tput This routine rearranges the elements in
ional decreasing order without any overlap,
array |

K1 Integer Input Number of elements of vector A to be
type processed,

K2 Integer Qutput Number of elements of vector A that do not
type overlap with another,

KG Integer Output Original number of element A that does not
type overlap with another,

ILL Integer Output ILL=0: Normal termination,
type 1LL=30000: Abnormal input.

x] For MAXCOI
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(MAXCOD), all real types should be integer types (double precision real types),

(1987. 08. 11)



MAXS/1/D

(Maximum element of vector and its number)

Maximum Element of Vector and'lts Number

Programm | Michiyo Kato; September 1982
ed by
Format Subroutine Language; FORTRAN Size; 17 lines each

(1) Outline

/77

When real vector A is given, MAXS, MAXI, and MAXD each return the maximum element value and its

number,

(2) Directions

CALL MAXS/1/D(A, K1, AL K2, ILL)

Argument

Type and Attribut Content
kind (1) le
A Real type | Input Target vector for processing,
One-dimens
ional
array
K1 Integer Input Number of elements of target vector A,
type
Al Real type | Qutput | Maximum element of vector A
K2 Integer Output Number of maximum element Al
type
ILL Integer Output ILL=0: Normal termination,
type ILL=30000: No vector is specified for A

x] For MAXI (MAXD), any real type should be changed to an integer type (double precision real

type).
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MINCOS/1/D (Condensed sortipg in ascending order and element numbers)

Minimum Condensed Sort of a Vector

Programm { Michiyo Kato; September 1982

ed by

Format Subroutine Language; FORTRAN Size; 22 lines each

(1) Qutline

When real vector A is given, MINCOS, MINCOI, and MINCOD each sort the vector elements in

ascending order without overlap and assign then sequential numbers within vector A,

(2) Directions

CALL MINCOS/I/D(A, K, K1, KG, ILL)

Argument Type and Attribut Content
kind (1) |e
A Real type | Input/ou | Target vector for processing.
One-dimens | tput- | The vector elements are sorted by this routine in
ional ascending order without ovér]ap,
array
K Integer Input Number of elements of target vector A
type
K1 Integer Output Number of elements of A which are not overlapped,
type
KG Integer Output | Ascending sequential number assigned to a
type non-overlapping element,
one-dimens |
ional
array
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Argument | Type and | Attribut Content

kind (x1) |e
ILL Integer Output | ILL=0: Normal términation, :
| type ILL=30000: Input error,

%1 For MINCOI (MINCOD), any real type should be changed to an integer type (double precision

real type).
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MINS/1/D (Minimum element of vector and its number)

Minimum Element of Vector and Its Number

Programm | Michiyo Kato; September 1982

ed by

Format Subroutine Language; FORTRAN Size; 17 lines each

(1) Outline
When real vector A is given, MINS, MINI, and MIND each return the minimum element value of the

vector and its number,

(2) Directions

CALL MINS/1/D(A, K1, AL, K2, ILL)

Argument Type and Attribut Content
kind (1) |e
A Real type | Input Target vector for processing.
One-dimens
ional
array
K1 .| Integer Input Number of elements of target vector A,
type
Al Real type | Qutput Mininum element of vector A,
K2 Integer Output Number of minimum element Al
type
ILL Integer Output ILL=0: Normal termination,
type ILL=30000: No vector is specified for A

x] For MINI (MIND), any real type should be changed to an integer type (double precision real
type).
(1987. 08. 11)
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MINSOS/I/D (Sort of vector in ascending order and element number)

Minimum Sort of a Vector ‘

Programm | Michiyo Kato; September 1982

ed by

Format Subroutine Languagef FORTRAN Size; 13 lines each

(1) Outline
' When real vector A and the number of its elements K are given, MINSOS, MINSOI, and MINSOD each
sort them in ascending order based on the Hoare’s Quicksort- method and returns sequential numbers

in original vector A to KG.

(2) Directions

CALL MINSOS/1/D(A, K, KG, ILL)

Argument Type and Attribut Content
| kind (1) |e
A Real type | Input/ou | Target vector for processing.
One-dimens | tput The vector elements are sorted by this routine in
ional ascending order,
. array
K Integer Input Number of elements of target vector A
type
KG Integer Output Number in ascending order of original element of
type ' vector A,
one-dimens
ional
array
ILL Integer Output ILL=0: Normal termination,
type 1LL=30000: Input error,

x] For MINSOI (MINSOD), any real type should be changed to an integer type (double precision
179
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real type), " (1987.08. 10
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PRODUS/I/D (The Product Set of Two Vectors)

The Product Set of Two Vectors

Programm { Michiyo Kato, September 1982

ed by

Format Subroutine Language: FORTRAN; Size: 38, 38, and 38 lines

respectively,

(1) Outline
If real vectors A and B are given, PRODUS/1/D rearranges them in increasing order of the

product set ANB, and outputs their order that was in the original vector,

(2) Directions

CALL PRODUS/1/D(A, B, K1, K2, K3, KG, KS, ILL)

Argument Type and Attribut Content
| kind (x1) |e
A Real type | Input/ou | Vector A to be processed, This routine
One-dimens | tput outputs ANB to A in increasing order,
ional Number of arrays=K1
array
B Real type | Input Vector to be processed,
One-dimens
ional
array
K1 Integer Input - K1 = number of elements of A to be processed
type + K2.
K2 Integer Input Number of element of vector B,
type
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Argument Type and | Attribut Content
kind (x1) |e
K3 Integer Output Number of elements of ANB,
type
KG One-dimens | Qutput Gives the original element numbers that are
ional rearranged iniincreasing order of the
array of elements of a product set ANB, However, the
integer element number of B follows that of A,
type. Size: Kl.
KS One-dimens | WORK Vector of size K2,
ional
array of
integer
type.
ILL Integer Output | ILL=0: Normal termination,
type ILL=30000: Abnormal input.

%] For PRODUI

(PRODUD), all real types should be integer types (double precision real types).
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SETPACK(MINS/I/D,MAXS/1/D,MINCOS/I/D,MINSOS/1/D,MAXCOS/1/D,SU

MS0S/1/D,SUBSOS/1/D,PRODUS/1/D) (Set operation program package)

Set Operation Package

Programm | Michiyo Kato; September 1982

ed by

Format Subroutine Language; FORTRAN Size; 531 lines in total

(1) Outline

These subroutines decide the minimum and maximum elements of vector data and their numbers,
sort vector data in ascending or descending order, condense vector data by deleting redundant
elements, or generate a set sum, difference, and product vector of two sets of vector data,
(2) Directions

These subroutines are explained individually,

(3) Calculation method

All these subroutines, other than those which determine the minimun and maximum elements of
vector data, first arrange vector data by the Hoare’s quick sort method” and then perform their

individual processing,

(4) Performance

The following table shows the result of the speed test conducted using FORTRANTT OPT(3) on the

M--200.
No, Subroutine name Calculation time Size of vector
(ms)
I MINS/1/D 6| 10000
1 MAXS/I/D | 6| 10000
111 MINCOS/1/D 115 10000
v MINSOS/1/D 102 | 10000
v MAXC0S/1/D 120 10000
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No, Subroutine name Calculation time Size of vector
(ms)
VI SUMS0S/1/D - 182 | 10000+5000
VIl SUBS0S/1/D . 192 | 10000+5000
VIII PRODUS/1/D 189 | 1000045000
(5) Note

1. A subroutine of the SORTxy typez) for vector sorting is called,

Bibliography

1) D. E. Knuth, *The Art of Computer Programming, “Vol 3, Sorting and Searching, Chapter
5:Sorting, Addison-Wesley (1972)

2) Refer to SORTxK, SORTxy, and SRTVxz,
(1987. 08. 05) (1987. 08. 21)
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SORTPACK(SORTx K,SORTﬁc Yy »SRTVx z) (Internal sorting of scalar or vector data)

(x:€C,D,1,Q,8), (y:C,D,1,Q9,S), (2:C,D,1,Q,S8)

Internal Sorting of Scalar or Vector Data

(SORTPACK)

Programm | Ichizo Ninomiya: July 1982

ed by

Format Subroutine Language; FORTRANT7
Size; SORTxk: About 118 lines
SORTxy: About 136 lines

SRTVxz: About 30 lines

(1) Outline
Bach of these subroutines sorts scalar data {ai,i=1,---,N} or vector data

fvi,i=1,---,N} in computer main storage based on key data {ki,i=1,--<,N}.

SORTxK, SORTxy, and SORTVxz are used to sort key data, scalar data, and vector data
respectively, Their names depend on key data type x, scalar data type y, and vector data type z

respectively,

xisC D, I, orS, yand zareC D, 1, Q ors Where
C: Characte; type (arbitrary number of bytes <256)
D: Double precision (8 bytes) real type
1: 4-byte integer type
Q: Quadruple precision (16 bytes) real type

S: Single precision (4 b&tes) real type

(2) Directions

CALL SORTCK(N, AK, IND)
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CALL SORTIS(N, AK, A, IND)

CALL SRTVSD(N, AK, V, KV, LV, IW, ¥, IND)

Argument | Type and Attribut Content
kind (%) e
N Integer type Input Number of data items, N=1
AK ﬂné—dimensiona Input/ou | Key data, One-dimensional array of size N. This is
1 array = tput sorted,
A One-dimensiona | Input/ou | Scalar data, One-dimensional array of size N, This is
1 array == tput sorted,
] Two-dimensiona | Input/ou | Vector data, Two-dimensional array of size LXN, This
1 array =x tput is sorted,
KV Integer type Input Adjustable dimension of V. KV=L
Ly Integer type Input Number of columns of V, Length of vector data, LV=1
W Integer type | Work One-dimensional array of size N,
One-dimensiona | area
1 array
H One-dimensiona | Work One-dimensional array of size LV, Same type as V.
1 array =x area
Input
IND=0: Data is sorted in ascending order of the key,
IND Integer type Input/ou IND#0: Data is sorted in descending order of the
tput key.
However, character type data is always sorted in
ascending order regardless of the IND value,
Oufput
IND=0: Nﬁrma] termination,
IND=30000: Argument error,

% The type is determined by the fifth character of the subroutine name,

zx The type is determined by the sixth character of the subroutine name,

CD QS

¢D 14853
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C: Character type a: Quadrgple precision real type
D: Double precision real type §S: Real type
I: Integer type
(3) Calculation method
Each of these subroutines uses the Hoare’s Quick Sort method that is the highest in speeds for
In-place sorting requiring no work area,
1. Sorting key data only
The following discusses sorting only key data in ascending order, The entire data is
regarded as a file and the consecutive parts are regarded as subfiles, The outline of the
algorithm is as follows:
(1) Empty the stack.
(2) When the size of the subfile being processed becomes small than 16, go to (6).
(3) Check three data items at the top, middle, and end of a subfile, then exchange tﬁem 3]
that the largest comes last, the smallest comes to the center, and the intermediate comes
first, Use the first data as the standard,
(4) Check data items one by one alternately from the beginning and end of a subfile, then
move those smaller than the standard data to the first half and those larger than the
standard data to the latter half, After completing this operation, the standard data is
transfered to the correct position and the subfile is divided into two subfiles (first and
latter halves), -
(5) Of the two subfiles, put the first and last locations of the larger subfile into the
stack, Make the smaller subfile current and go to (2).
(6) Sort the subfile by straight insertion sorting,
(7) If the stack is empty, terminates sorting, Otherwise, fetch the first and last locations
of the subfile that has been saved last, then go to (2).
‘To sort key data in descending order, change the signs of the entire key data, sort it in
ascending ofder. then change the signs back again,
2. Sorting key data and scalar data
Add a procedure, which moves dependent scalar data along with key data, to the procedure
"that sorts key data only,

3. Sorting key data and vector data
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Assign key data natural sequence numbers and sort it as dependent scalar data along with
key data. The final location of vector data is known from number data, So, by moving vector

data cyclically, almost all vector data is moved to the correct location by one movement,

(4) Performance

We performed a speed test for sorting real scalér data in ascending order with the real key.
We used FORTRANT7 (OPT3) on the M-200 for this test, The table shows test results, For
comparison, the table also shows the results of the subroutine operations based on ;even kinds of

in-place sorting methods appearing in the book of Knuthl) The key data used was generated by

uniform random numbers,

METHOD NAME 100 1000 10000
BUBBLE SORT BBSRTS 4MS 436MS 43318MS
STRAIGHT SSSRTS 4MS 367MS 36562MS
SELCTION SORT
STRAIGHT SISRTS 2MS 191MS 18783MS
INSERTION SORT
‘MERGE EXCHANGE MESRTS 3MsS 48MS 870MsS
SORT
DIMINISHING DISRTS 2MS 21MS 363MS
INCREMENT SORT
HEAP SORT HPSRTS 1MS i8Ms 246MS
QUICK SORT SORTSS 1MS 11MS 130MS
(FORT77)

QUICK SORT SORTSS 1MS 8Ms 102MS
(ASSEMBLER) :

(5) Example
1. Only character type key data C consisting of four characters is sorted,

CHARACTER*4 C(1000)

CALL SORTCK(N,C,-IND)

END

2. Real number key data AK and number data NO are sorted in ascending order,
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REALx4 AK(10000)
INTEGER*4 NO(10000)

® o 00 008 0 0 o

DO 10 I=1,N
10 NOCID>=I
IND=0
CALL SORTSI(N,AK,NO,IND)

END

3. Double precision eigenvalues E are sorted together with eigenvectors V in descending order

of eigenvalues E.

REALx*8 E(50),V(100,50),W(100)
INTEGER*4 IW(50)

N=50

Kv=100

L=100

IND=1

CALL SRTVDD(N,E,V,KV,L,IW,W,IND)

® o 00 000 9 00

END

(6) Notes
1. Order of the key data depends on the type of data, So, it is important to select a
subroutine appropriate to the type of target key data,
2. Scalar and vector data other than key data is not compared but is just moved based on the
key data, Therefore, different types of data can be mixed if they maich in the number of
bytes, For instance, a program for double precision real data can be used to sort §-byte
complex data, To sort vector data consisting of four 4-byte numbers, it is better to use a

scalar sort subroutine by regarding it as quadruple precision (1§ bytes) scalar data rather

than vector data,

Bibliography

1) D.E.Knuth; "The'Art of Computer Programming”, Vol 3, Sorting and Searching, Chapter 5:Sorting,

Addison-Wesley (1972).

(1989. 01. 25)
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SUBSOS/I/D (The Difference Set qf Two Vectors)

The Difference Set of Two Vectors

Programm | Michiyo Kato, September 1982

ed by

Format Subroutine Language: FORTRAN; Size: 36, 36, and 36 lines

respectively.

(1) Outline

If real vectors A and B are given, SUBSOS/I/D obtains the difference set A-B in increasing

order of elements, and outputs the number in the original vector,

(2) Directions

CALL SUBS0S/1/D(A, B, K1, K2, K3, KG, KS, ILL)

Argument .Type and | Attribut Content
kind (x1) e

A Real type | Input/ou | Vector A to be processed, This routine
One-dimens | tput outputs A-B to A in increasing order,
ional
array

B Real type | Input Vector B to be processed,
One-dimens
ional
array

K1 Integer Input K1 = number of elements of A to be processed
type + K2.

K2 Integer Input Number of element of vector B,
type
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Argument Type and Attribut Content
kind (x]) |e

K3 Integer Output Number of elements of A-B,
type

KG One-dimens | Qutput Gives the original element numbers that are
ional rearranged in increasing order of the
array of elements of a difference set A-B, However,
integer the element number of B follows that of A,
type Size: KI.

KS One-dimens | WORK Vector of size K2,
ional
array of
integer
type

ILL Integer Output ILL=0: Normal terminatiqm
type ILL=30000: Abnormal input.

x]1 For SUBSOI

13

(SUBSOD), all real types should be integer types (double precision real types).
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SUMSOS/I/D (The Sum Set of a Two Vectors)

The Sum Set of a Two Vectors

Programm | Michiyo Kato, September 1982

ed by

Pormat Subroutine Language: FORTRAN; Size: 15, 15, and 15 lines

respectively,

. (1) Outline

If real vectors A and B are given, SUMSOS/I/D obtains the sum set AUB in increasing order, and

gives the original vector numbers,

(2) Directions

CALL SUMSOS/1/D(A, B, K1, K2, K3, KG, ILL)

Argument Type and Attribut Content
kind (x1) e'
A Real type | Input/ou | Vector A to be processed,
One-dimens | tput This routine outputs AUB to A in increaéing
ional order,
array
B Real type | Input Vector B to be processed,
Dne-dimens
ional
array
K1 Integer Input K1: Number of elements of A to be processed +
type ' K2.
K2 Integer Input Number of elements of vector B,
type
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Argument | Type and Attribut Content
kind (1) |e

K3 Integer Output | Number of elements of AUB,
type

KG Integer Output The elements of a sum set is rearranged in
type increasing order, and the original element

number is given, However, the element number

of B follows that of A,

ILL Integer Output ILL=0: Normal termination,

type ILL=30000: Abnormal input,

x] For SUMCOI (SUMCOD), all real types should be integer types (double precision real types).

(1987. 08. 11) (1987. 08. 27)
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18. Figure display application program-
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CONRM (Contour Line)

Contour Line

Programm | Kazuo Hatano
ed by
Format Subroutine Language: FORTRAN; Size: undefined

17"]

For details, refer to p, 170~172 of "Guide to Figurative Output- (Revised),” page 242, August 1985."
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CONTOR

(Contour -Line)

Contour Line

Programm | Kazuo Hatano
ed by
Format Subroutine Language: FORTRAN; Size: Undefined

For details, refer to pages 169 and 166 of “Guide to Figurative Output (Revised), page 242,

August 1985, ”
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Contour Line

(Contour Line)

Programm | Kazuo Hatano
ed by
Format Subroutine Language: FORTRAN; Size: undefined

For details, refer to p.173-174 of "Guide to Figurative Qutput (Revised), page 242, August 1985.”
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CONT1S

(Contour Line)

Contour Line

Programm | Kazuo Hatano
ed by
Format Subroutine Language: FORTRAN; Size: Undefined

For details, refer to pages 168 and 169 of "Guide to Figurative Output (Revised), page 242,

August 1985.”
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CTL2 (Contour line display program)

Contour Line

Programm | Tomikazu Kamiya and Akihiko Yamamoto, October 1984

ed by

Format Subroutine Language: FORTRAN; Size: 327 lines

N

(1) Outline
(a) Draws the contour line using dashed lines,
(b) Capable of specifying the height of contour lines to be drawn and the type of the
corresponding pen and line (solid or dashed) by simple repetition method,
(c) Capable of indicating the function values (numerical strings) in an optional size,

digits, and steps at the same time for each contour line level,

(2) Directions

CALL CTL2(A, IA, NX, NY, LX, LY, ZLH, DZ, BEXY, KINO, DH, HN, JN, )

Argument | Type and Attribut Content
kind (x1) |e

A Two-dimensional array., It contains the values of mesh
points,

IA Two-dimensional work array. The size should match that of A

NX Adjustable dimensions of the first subscript of arrays A and

NY IA,
Adjustable dimensions of the second subscript of.arrays A and
IA.
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Argument | Type and | Attribut Content
kind (x1) |e

LX Number of mesh points (LX=NK) in the X direction (the first

LY subscript). ‘
Number of mesh points (LY=NY) in the Y direction (the second
subscript). | |

ZLh One dimensional array of ZLH(2). The lower limit of the
contour line level is put in ZLH(1), and the upper limit is
put in ZLH(2).

DZ Spacing between contour lines to be drawn (DZ+0.0).

BEXY

One-dimensional array declared as BEXY(4). The following
values should be input, |
The X coordinate.s at mesh point A(1,1) are put in BEXY(1),
and the X‘coordinates at mesh point A(LX,LY) are put in
BEXY(3).
The Y coordinates at mesh point A(l, 1) are put in BEXY(2),
and the Y coordinates at mesh point A(LX,LY) are put in

BEXY (4).
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Argument

Type and

kind (1)

Attribut

e

Content

KINO

Integer
type
One-dimens
ional

array

Input

This argument is declared as KINO(4), and the drawing
conditions should be set as follows:
KINO(1): The relationship between the level of contour lines
and the kind of lines should be specified,
=0: All lines are solid lines,
=1: All lines are broken lines,
=2: Positive or {) parts are solid lines,
Negative parts are broken lines,
=3: Negative parts are solid lines,
Positive or () parts are broken lines,
= others: The kinds of pens, that is, “|JN(1)I,
[IN(2) 1, |JN(3)], and <--” are repeated for each DZ
from ZLH(1).

If JN(K)>0, solid iines are drawn,
If JN(K)<0, broken lines are drawn,
KINO(2) : Whether to draw the value at each level of contour
lines should be specified,
=0: Values are not drawn (contour lines only).
=0: Values are drawn at the same time, They are
plotted at each step specified by KIND (3).
KINO(3): When the values at each level of contour lines are
to be drawn at the same time, the number of steps should be
specified, About one-third of LX and LY should be specified,
When the pen shifts to the contour line of the next level
before the current number of steps reaches that of KINO(3),
the values at the current level are drawn,
KINO(4) : The number of digits of numbers to be drawn at
KINDO(2) 0 should be specified,
This argument is the same as the argument N of the
NUMBER routine,

DH

Real type

Input

Khen broken contour lines are to be drawn, the length of a
broken line segment should be specified, This argument uses
the DASHP routine internally, and has the same meaning as the
argument DLEN, The length of broken lines varies according

to how much contour lines are congested or BEXY, LX, or LEY.

HN

Real type
One-dimens
ional

array

Input

The height of numeric strings to be drawn at KINO(2) #0
should be specified according to each level, If the level of
contour lines corresponds to the kind of the pen|JN(K)|, the .
numeric strings of height HN(K) is drawn, HN should be
specified at the same time as JN, If N=1, a simple variable

can be specified, (Size: N)
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Argument | Type and Attribut Content
kind (1) [e

JN Integer Input When a contour line is to be plotted, the kind of the pen and
type line should he'spécified by the iterative method. Assume
One-dimens that the level of contour lines is ZLH(1)+DZ- (K-1).
ional If the pen is [JN(MOD(K,N)) |, and the segment
array JNMOD(K, N))>0, a solid line is drawn, If the pen is

|JN(MOD(K, N)) |, and the segment JN(MOD(K, N))<0, a broken line

is drawn,

If MOD(K,N)=0, N is assumed,

However, if KIND(1)=0 to 3, it is preceded as the kind of the
segment, Thus, it is meaningless to specify a negative
INEK),

For example, if (1) KINO(1)=1, JN(1)=1, JN(2)=2, JN(3)=3, and
N=3 and (2) KINO(D)=4, IN(1)=-1, JN{(2)=-2, JN(3)=-3, and N=3

are specified as arguments, they have the same meaning,

(Size: N)
N Integer Input Size of HN and JN. If N=1, HN and JN can be single
type variables,

Notes: 1. For the reiationship between the level of contour lines and the kind of lines, the two
specification metheds, KINO(1) and JN, are avai]#ﬁle, However, KINO (1) should be preferentially
specified,

2. If KIND(1)=0 and KINO(2)=0, the function is quite the same as CTLKTL except the specification
of the pen,

3. If a value other than zero is given to only a specific HN(K), and a zero is given to others,
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only a specific level of contour lines can stand out,

(1987, 08, 11) (1988, 06.02)
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SOLMOR

(Solid Figure)

Solid Figure '

Programm | Kazuo Hatano
ed by '
Format Subroﬁtine Language: FORTRAN; Size: undefined

For details, refer p, 179-181 of “Guide to Figurative Output (Revised), page 242, August 1985. 7
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SOLRM (Solid Figure)

Solid Figure

Programm | Kazuo Hatano
ed by
Format Subroutine Language: FORTRAN; Size: undefined

For details, refer p, 181-186 of “Guide to Figurative Output (Revised), page 242, August 1985.”
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TRIMAP (Contour Line)

Contour Line

Programm | Yoshio Sato

ed by

Format | Subroutine Language: FORTRAN; Size: undefined

For details, refer to p, 175-179 of "Guide to Figurative Output (Revised), page 242, August 1985.7

(1987. 07.27)
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BITLOGICCIAND,IOR,IEOR,IEQV,INEQV,INAND,INOR,IMPLY,IDIF,ICOMP
L,INOT)

(Bitwise logical operations for 4-byte data)

Bitwise Logical Operations for 4-Byte Data

Programm | Ichizo Ninomiya; August 1980
ed by

Format | Function  Language; Assembler  Size; 71 lines

(1) Outline

BITLOGIC is a set of functions that performs bit-by-bit logical operations for 4-byte data,

IAND: Logical product INAND:  Negation of logical product
I0R: Logical add INOR: Negation of logical add
IEOR: Exclusive OR IMPLY: Implication

IEQV: Equivalence IDIF: Logical difference

INEQV: Negation of equivalence (same as IEOR) ICOMPL, INOT: Negation

(2) Directions
4-byte integer type function, Whatever argument can be used if it is a 4-byte number, [COMPL

and INOT each use one variable, and the other functions each use two variables,

K=IAND (X, Y) K=INOR (X, Y)
kK=IOR (X, Y) K=IMPLY (X, Y)
K=IEOR (X, Y) K=IDIF (X, Y)
K=IEQV (X, Y) K=ICOMPL (X)
K=INEQV (X, Y) K=INOT (X)

K=INAND (X, Y)

The truth table of these functions is shown for reference,
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X {Y | TAND | IOR IEOR IEQV | INAND | INOR | IMPLY | IDIF | ICOMPL (X)
(INEQV) (INOT)

010 0 0 0 1 1 1 1 0 1

0 (1 0 1 1 0 1 0 1 0 1

110 0 1 1 0 1 0 0 1 0

1j1 | 1 1 0 1 0 0 1 0 0

(3) Note

The logical elements for logical operators .NOT., .AND.., and .OR. must be logical

variables (constants, array elements, and relational expressions),

bit-by-bit logical operations for 4-byte data,
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IBITCT (Count of Bits "1” of a 4-Byte Data)

Count of Bits “1“ of a 4-Byte Data

Programmed | Ichizo Ninomiya, November 1982

by

Format Function Language: Assembler; Size: 59 lines

(1) Outline
IBITCT counts fhe number of "1” bits in the binary representation of four byte data,
(2) Directions
1. IBITCT(N)
. N is the four-byte data of an arbitrary type - The value of the function is a four-byte
integer type,
2. Limit of argument
All data is acceptable if it is a four-byte data,
(3) Calculation method
The number of bits per byte is counted and added up from the table,
(4) Performance
The M-200 requires about 2 micro seconds per data,

(1987. 08. 11)
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IBITRV (Bit Reversal of a 4-Byte Data)

Bit.Reversal of a 4-Byte Data

Programmed | Ichizo Ninomiya, November 1982

by

| Format Function Languageﬁ Assembler; Size: 66 lines

(1) Outline
IBITRYV puts a 4-byte data bit pattern in the reverse order,
(2) Directions
1. IBITRV(N)
N is the 4-byte data of an arbitrary type, The value of the function is a 4-byte integer
type.
2. Limit of argument
All data is acceptable if it is a four byte data,
(3) Calculation method
The data is put in the reverse order using the table of byte data reversed in advance,
(4) Performance

The M-200 requires about two micro seconds per data,

(1987.08.11)
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IGCD (Greatest common divisor of two integers)

GCD of Two Integers

Programm | Ichizo Ninomiya; March 1987

ed by

Format Function Language; FORTRANT? Size; 14 lines

(1) Outline

IGCD calculates the greatest common divisor of two integers,

(2) Directions
1. 1GCD (4, N)

M and N each are an arbitrary integer-type expression,
2. Range of argument

Any value can be specified for the argument,

(3) Calculation method
The Euclid's Algorithm is used,
1GCD determines the greatest common divisor of the absolute values of two numbers regardless of

whether they are positive or negative, If one of two numbers is 0, 0 is the greatest common

divisor,

(1987. 08. 11)
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PRIME (Generation of prime number table)

Generation of Prime Number Tﬁble

Programm

ed by

Ichizo Ninomiya; March 1987

Format Subroutine

Language; FORTRANT? Size; 51 lines

(1) Outline

PRIME calculates all prime numbers below a given positive integer,

(2) Directio

ns

CALL PRIME(N, NSIZE, NPRIME, IPRIME, ILL)

Argument Type and Attribut Content

kind e

N Integer Input Given integer., N=2.
type

NSIZE Integer Input Size of array IPRIME for prime number table, NSIZE=5,
type

NPRIME Integer Output Number of prime numbers ohtainéd, Number of prime
type numbers below N or NSIZE, whichever is smaller,

IPRIME Integer Output Prime number table, The prime numbers obtained are
type stored in ascending order starting with 2,
one-dimens
ional
array

ILL Integer Qutput Error code, ILL=0: Normal,
type ILL=30000: Argument error,

(3) Calculation method

PRIME repeats dividing integers K, other than multiples of 2, 3, and 5, by prime numbers
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greater than 7 and smaller than A/T?l If it cannot be exactly divided by any prime number, it

is a prime number,

(4) Note

If NSIZE is too small, only the first NSIZE number of prime numbers out of those equal to or
less than N is obtained,
From the viewpoint that the number of prime numbers equal to or less than N is about N/logN, it |
is recommended to specify rather a large v;lue for NSIZE. If N is small, make NSIZE=N for

safety,
Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y., pp.821-873.

(1987. 08. 11)
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PRMFAC (Prime factor decomposition of an integer)

Prime Pactor Decomposition of an Integer

Programm | Ichizo Ninomiya; March 1987

ed by

Format | Subroutine  Language; FORTRANTT  Size; 68 lines

(1) Outline
PRMFAC decomposes a given positive integer N into prime factors and uses them to calculate

Euler’s function @(N) ‘and Mobius’ function M(N).

(2) Directions

CALL RMFAC (N, NFAC, IFAC, IEXP, IEULER, IMOEBS, ILL)

Argument Type and Attribut Content

kind e

N Integer Input Given integer, N=1.

type

NFAC Integer Qutput Kind of prime factors of N,

type

IFAC Integer Output | The Jth prime factor in ascending order of J that lies in
type 1=<J=SNFAC enters IFAC(J).

one-dimens
ional

array

1EXP Integer Output The exponent of prime factor IFAC(J) of J that lies in
type 1=J=NPAC enters IEXP(J).
one-dimens

ional

array
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Argument | Type and | Attribut Content

kind e

IBULER Integer Output Buler’s function @(N),
type

IMOEBS Integer Qutput | Mobius’ function m(N),
type

ILL Integer Output Error code, ILL=0: Normal,
type ILL=30000: N<I.

(3) Calculation method

1. When the subroutine is called for the first time, the routine PRIME is called to generate the
prime number table consisting of 46340 or less prime numbers,

2. Whether K is a factor of N is examined, for all prime numbers K in the range of 2sK=+~N .

3. When N is decomposed to IV=]:I?=11)$i:

¢<N)=N-I[l<ps-1>/pi,
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u(N):l essee When N=1.
(N)=(-1)" --- When e;=1 is met for any i,

U(N)=0 «+cc. When ;=2 is met for certain i,

(4) Note

NFAC is 10 or less for all integers up to 231—1,
Bibliography

1) Handbook of Mathematical Functions, Dover, N.Y., pp.821-873.

(1987. 08.11)
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RANDOM/DRANDM (Generation of uniform random number)

Generation of Uniform Random Number

Programm | Ichizo Ninomiya; 1980
ed by

Format Function Language; Assembler  Size; 25 lines

(1) Outline

RANDOM and DRANDM each gene}ate uniform random numbers in interval (0, 1) using the congruence

method, RANDOM is a single precision routine, and DRANDM is a double precision routine, DRANDM

needs to be declared as double precision,

(2) Directions

X=RANDOM(IX)

Argument | Type and Attribut

Content
kind e
IX Integer Input Initial value, Non-negative integer, To generate one random
type

number sequence, this argument must be set to ( at the second
and subsequent call,

(3) Example

DIMENSION X(100)
X(1)=RANDOM(1)
b0 1 I=2,100

1 X(I>=RANDOM(O)

(4) Note

When a large amount of random numbers are generated, RANU2 of Fujitsu SSL Il is more efficient

than these functions,
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ROUND/DROUND (Round-off of real numbers)

Round-of f of Real Numbers

Programm | Ichizo Ninomiya; April 1981
ed by

Format Function Language; Assembler Size; 18 lines each

(1) Outline
ROUND rounds off a double precision real number into a single precision real number, DROUND

rounds off a quadruple precision real number into a double precision real number,

(2) Directions
ROUND (D), DROUND (@)
D and Q are arbitrary double and quadruple expressions respectively. DROUND needs to be

declared as double precision,

(1987. 06. 24)
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